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Abstract

Approximate Bayesian inference estimates descriptors of an intractable target
distribution – in essence, an optimization problem within a family of distribu-
tions. For example, Langevin dynamics (LD) extracts asymptotically exact samples
from a diffusion process because the time evolution of its marginal distributions
constitutes a curve that minimizes the KL-divergence via steepest descent in the
Wasserstein space. Parallel to LD, Stein variational gradient descent (SVGD) simi-
larly minimizes the KL , albeit endowed with a novel Stein-Wasserstein distance,
by deterministically transporting a set of particle samples, thus de-randomizes
the stochastic diffusion process. We propose de-randomized kernel-based particle
samplers to all diffusion-based samplers known as MCMC dynamics. Following
previous work in interpreting MCMC dynamics, we equip the Stein-Wasserstein
metric with a fiber-Riemannian Poisson structure, with the capacity of character-
izing a fiber-gradient Hamiltonian flow that simulates MCMC dynamics. Such
dynamics discretize into generalized SVGD (GSVGD), a Stein-type determinis-
tic particle sampler, with particle updates coinciding with applying the diffusion
Stein operator to a kernel function. We demonstrate empirically that GSVGD can
de-randomize complicated MCMC dynamics, which combine the advantages of
auxiliary momentum variables and Riemannian structure, while maintaining the
high sample quality from an interacting particle system.

1 Introduction

Evaluating an un-normalized target distribution π is a centerpiece of Bayesian inference, due to its
ubiquitous presence in posterior distributions. Markov chain Monte Carlo (MCMC) methods fulfill
this objective by generating asymptotically exact random samples from the distribution, a significant
subset of which involves discretization of continuous-time diffusion processes, most notably Langevin
diffusion, stochastic gradient Hamiltonian Monte Carlo (HMC) (Chen et al., 2014) and their further
generalizations, which we collectively call MCMC dynamics (Ma et al., 2015). Despite its simplicity
and theoretical soundness, this diffusion-based sampling often suffers from slow convergence and
small effective sample sizes, largely due to the auto-correlation of the samples.

As an alternative to the simulation of stochastic systems, particle-based variational inference (Liu
and Wang, 2016; Chen et al., 2018; Liu et al., 2019a) partially addresses the shortcomings of
MCMC by replacing the Langevin diffusion, the simplest MCMC dynamics, with a deterministic
interacting particle system that transports a set of interacting particles towards the target distribution.
Theoretically speaking, Langevin diffusion encodes an evolution of density that minimizes the
KL-divergence through steepest descent in the 2-Wasserstein space (Jordan et al., 1998), and particle-
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Figure 1: A diagram showing the contribution of our paper: we extend and generalize previous work
linking Langevin diffusion to gradient �ow on the 2-Wasserstein metricW2 through the Fokker-
Planck equation, and theW2 gradient �ow linking toSVGD (Liu and Wang, 2016) through projection
onto anRKHS; MCMC dynamics (Ma et al., 2015) are interpreted as a �ber-gradient Hamiltonian
(fGH) �ow on W2 (Liu et al., 2019b), and a projection onto anRKHS yieldsGSVGD.

based variational inference (PARVI) approximates such evolution using reproducing kernel Hilbert
space (RKHS) (Liu, 2017; Liu et al., 2019a), thus de-randomizing the Langevin diffusion process.

Given the elegant theoretical link between Langevin diffusion andPARVI, one crucial question arises:
can we leverage the advantages of generalMCMC dynamics onto de-randomized particle systems?
While it is dif�cult to formulate them as a direct Wasserstein gradient �ow, Liu et al. (2019b) propose
an interpretation for “regular”MCMC dynamics that augments the 2-Wasserstein space with a �ber
bundle, forming a �ber-Riemannian Poisson manifold, under whichMCMC dynamics follows a
Hamiltonian �ow on the �ber bundle, and a gradient �ow on each �ber.

We show that adapting the �ber-Riemannian Hamiltonian �ow to the Stein-Wasserstein metric (Liu,
2017; Duncan et al., 2019) yields a vector �eld in the form of applying thediffusion Stein operatorto
the kernel functionk(�; � ). A discretization of this vector �eld gives generalized SVGD (GSVGD),
an interacting particle system that generalizesSVGD, with particle updates balancing an attractive
force maximizing the log-likelihood and a repulsive force preventing a “mode collapse” of particles.
We further demonstrate that the connection drawn betweenLD andSVGD (Liu and Wang, 2016; Liu,
2017; Liu et al., 2019a) is retraced byGSVGD, reaf�rming our claim thatGSVGDmirrorsSVGD in
approximating a larger class ofMCMC diffusion processes. Within the generality of our framework,
we can developPARVI algorithms that exploit two key types of possible acceleration inMCMC
dynamics: auxiliary momentum variables and an adaptive Riemannian parametrization that allows
for fast and ef�cient exploration of the probability space (Girolami and Calderhead, 2011), as shown
in Table 1.

MCMC dynamics A C auxiliary variable Riemannian PARVI variant

SGLD (Welling and Teh, 2011) I 0 7 7
SVGD (Liu and Wang, 2016)
Blob (Chen et al., 2018)

SGRLD (Girolami and Calderhead, 2011) G(� ) � 1 0 7 3 Riemannian SVGD (Liu and Zhu, 2017)

SGHMC (Chen et al., 2014)
�

0 0
0 AI

� �
0 � I
I 0

�
3 7 HMC-blob (Liu et al., 2019b)

SGRHMC (Ma et al., 2015)
�

0 0
0 G (� ) � 1

� �
0 � G(� ) � 1=2

G(� ) � 1=2 0

�
3 3 this work (SGRHMC-Stein)

Table 1: An overview ofMCMC dynamics along with theirPARVI approximations. Between
(a), (c) and(b), (d), MCMC dynamics simulate diffusion processes (shown by one instance of a
particle trajectory) thattemporallydraw samples from the target distribution (samples marked by
scatterplots);PARVI approximates the density evolution ofMCMC diffusions with a set of particles
with deterministic interactions; Between(a), (b) and(c), (d), the two systems, namelyLD (Welling
and Teh, 2011) andSGHMC (Chen et al., 2014), follow different density evolutions, as(a), (b)
describe a gradient �ow and(c), (d) describe a �ber-gradient Hamiltonian �ow.
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2 MCMC dynamics – the relevant bits

In this paper, we consider the problem of extracting samples� 2 RD = 
 from an un-normalized
target distribution� (� ) / e� H ( � ) . We begin by reviewing the key characteristics ofMCMC
dynamics, with particular emphasis on Langevin dynamics and its Fokker-Planck equation (FPE),
the partial differential equation (PDE) that depicts the time evolution of a diffusion process. As the
FPEof LD conforms to a gradient �ow structure in the 2-Wasserstein metric space of probability
measures(P(
) ; W2) (Jordan et al., 1998), we then brie�y cover gradient �ow onP(
) as an
in�nite-dimensional Riemannian manifold. Through the lens of gradient �ow, we can seeSVGD
as a deterministic interacting particle system that approximates the gradient �ow ofLD through (i)
gradient �ow on a novel Stein-Wasserstein metric (Liu, 2017) or (ii) projecting the gradient �ow
direction onto anRKHS (Liu et al., 2019a). With Wasserstein gradient �ow (WGF) neatly linking
to bothLD andSVGD, we see that a diffusion processLD and an interacting particle systemSVGD
are, respectively, a stochastic instance and a deterministic approximation of the same Wasserstein
gradient �ow.

Notations: We user f to denote the gradient of a scalar-valued function, andr � f the divergence
of a vector-valued function,r � A applies the divergence operator to each row of a matrix-valued
function, _� t the “partial derivative” with respect tot.

2.1 Langevin dynamics and its Fokker-Planck equation

In this paper, we considerMCMC dynamics in the form of It̄o diffusion processes following the
stochastic differential equation (SDE) formula

d� t = f (� t )dt +
p

2� (� t )dW t ; (1)

consisting of drift coef�cientf : RD 7! RD , diffusion coef�cient
p

2� and aD-dimensional
Brownian motionW t . Ma et al. (2015) provide a complete recipe of all Itō diffusion processes
converging to the target measure� . The simplestMCMC dynamics takes the form of Langevin
diffusion (Langevin, 1908), which moves towards higher densities withf (� ) = r log � (� ) perturbed
by white noise� = I . Given an initial distribution� 0 � � 0, the Fokker-Planck equation describes
the time evolution of the density of� t (Risken, 1996)

_� t + r � (� t r log � ) � (rr ) : ( � t I ) = 0 ; (2)

whereX : Y = tr(X > Y ). Given that(rr ) : M = r � (r � M ), we can rewrite (2) as

_� t = r � (r � t � � t r log � ) = r �
�

� t r
� KL [� t k � ]

�� t| {z }
�rst variation of KL [� t k � ]

�
; (3)

a crucial step in developing the Wasserstein gradient �ow perspective ofLD, asr �E=�� coincides
with the differential of functionals induced by the Wasserstein metric.

2.2 Gradient �ow on (P(
) ; W2)

The conventional gradient �ow (or the steepest descent curve) that minimizes a smooth function
F : RD 7! R follows thePDE: _x t + r F (x t ) = 0 . De�ning gradient �ow on P(
) , informally
written as_� t + r W E(� t ) = 0 , requires a de�nition of the differentiationr W , which requires an
understanding of the Wasserstein metric, i.e., the inner productg� de�ned on its tangent space.

To simplify the discussion, we restrict the discussion on measures with a density function and with
�nite second-order moments. For each� , the tangent space constitutes smooth functions integrating
to zero,T� P(
) = f f jf 2 C1 (
) ;

R
f (� )d� = 0g, in that a curve onP(
) preserves volume. The

cotangent space constitutes an equivalence class of smooth functions in differing constant, noted as
the quotient spaceT �

� P(
) = C1 (
) =R. We characterize the inner product space using the metric
tensorG(� ) : T� P 7! T �

� P, a one-to-one mapping between elements of the tangent space and those
of the cotangent space. The inner productg� is de�ned by the inverse of the metric tensor, often
denoted as Onsager operators (Onsager, 1931)

g� (f 1; f 2) =
Z

f 1G(� )f 2d� =
Z

� 1G(� ) � 1� 2dx; � 1 = G(� )f 1; � 2 = G(� )f 2: (4)
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The Wasserstein Onsager operator takes the formG(� ) � 1 : � 7! �r � (� r � ). In the context of
Wasserstein gradient �ow, we de�ner W E(� ) asG(� ) � 1 �E ( � )

�� , leading to the formulation:

0 = _� t � G(� ) � 1 �E (� t )
�� t

= _� t + r �
�

� t r
�E (� t )

�� t

�
: (5)

The �rst variation ofKL [� k � ] takes the form of� KL [� k � ]
�� = log �=� + 1 , leading to the conclusion

by Jordan et al. (1998) that the time evolution of the Langevin diffusion follows a curve of steepest
descent in the Wasserstein space, laying the foundation for approximation using particle interaction.

2.3 SVGD as gradient �ow

PARVI transports a setN of interacting particles
n

� ( i )
t

o

1� i � N
towards the target distribution over

time. TakeSVGD for example, denoting the empirical measure at timet as�̂ t = 1
N

P N
i =1 � � ( i )

t
,

SVGD (Liu and Wang, 2016) follows the update rule

_� t = E� 0� �̂ t

h
k(� t ; � 0)r log � (� 0) + r 2k(� t ; � 0)

i
= v H (� t j �̂ t ); (6)

wherek(�; �) de�nes a positive-de�nite kernel, andr 2 denotes the gradient of the second argument.
TheFPEof SVGD can be written as

_� t � r �
�

� t K � r
� KL [� t k � ]

�� t

�
= 0 ; (7)

whereK � is an integral operator:K � f (� ) =
R

k(� ; � 0)f (� 0)d� (� ). We shall denote theRKHS
de�ned byk asH. While signi�cantly different fromLD at �rst glance,SVGD approximates the
WGF of LD by

• kernelizing the Wasserstein Onsager operator to giveGH (� ) � 1 : � 7! �r � (� K � r � ), thus
forming the Stein-Wasserstein metricWH (Liu, 2017; Duncan et al., 2019);

• projecting the gradient �ow vector �eldv (� ) = �r � KL [� k � ]
�� = r log � � r log � ontoH

(Liu et al., 2019a).

The interpretation ofSVGD yields valuable insights. While gradient �ow(7) on (P(
) ; W2) yields
no closed-form energy functional (Chen et al., 2018), it behooves to absorb the operatorK � into
the de�nition of the Stein-Wasserstein metric to guarantee a tractable energy functional. In the
meantime, the kernelization trick transforms a gradient �ow(2) simulated by a diffusion process into
an approximate deterministic transportation of particles – in other words, de-randomizes it.

2.4 MCMC dynamics as �ber-gradient Hamiltonian �ow

The concept of�ow on (P(
) ; W2) is a generalization of the gradient �ow: given a vector �eld
v : P(
) 7!

S
� 2P T� , the �ow of v is de�ned as_� t = v(� t ). Liu et al. (2019b) interpret “regular”

MCMC dynamics on(P(
) ; W2) as a �ow, by combining gradient �ow and Hamiltonian �ow on
the Wasserstein space, yielding a �ber-Riemannian manifold structure ofP(
) , a �ber bundle
consisting of Riemannian manifolds. In the context of a “regular”MCMC dynamics taking the form
of underdamped Langevin dynamics (Chen et al., 2014), the diffusion matrixA determines the
gradient �ow on each �ber, and the curl matrixC determines the Hamiltonian �ow on the �ber
bundle. The Hamiltonian �ow keepsKL [� k � ] constant while encouraging fast exploration of the
probability space; the �ber gradient �ow minimizes the KL. The �ber-gradient Hamiltonian �ow
determines aPARVI with the particle update

_� t = ( A (� t ) + C(� t ))
�

r log � (� t ) � br log � t (� t )
�

= v A ;C (� t ); (8)

where the intractablebr log � t is approximated via the Blob method (Carrillo et al., 2019).
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2.5 Stein's method and other relevant works

Our work enriches the practical application of Stein's method (Stein, 1972), which studies the class
of operators that maps functions to ones with expectation zero w.r.t. a distribution� . Gorham et al.
(2019) draw from the �ndings of the generator method (Barbour, 1988, 1990; Gotze, 1991) and note
the same property with in�nitesimal generators of Feller processes and their stationary measures,
which further extends into a mapping between diffusion-basedMCMC sampling and Stein operators,
noted asdiffusion Stein operators. In this work, we extend beyond sample quality measurement
(Gorham et al., 2019) and parameter estimation (Barp et al., 2019) and establish an application of the
diffusion Stein operator as a deterministic alternative of MCMC dynamics.

Myriad works (Chen et al., 2018; Liu et al., 2019a; Zhang et al., 2020) seek alternatives to approxi-
mating the gradient �ow(2) through kernelization. Notably, Chen et al. (2018); Liu et al. (2019a)
constructPARVI algorithms by approximating the termr log � t (� t ) in the gradient �ow, namely
with Blob method (Carrillo et al., 2019), kernel density estimation (Liu et al., 2019a) and Stein
gradient estimator (Li and Turner, 2017). The de-randomization of underdampedLD connects to
the viewpoint of acceleratingPARVI methods. Ma et al. (2019) demonstrate that underdampedLD
(Chen et al., 2014) accelerates the steepest descent steps taken by the overdampedLD, forming an
analog of Nesterov acceleration for MCMC methods. Wang and Li (2019) present a framework for
Nesterov's accelerated gradient method in the Wasserstein space, which consists of augmenting the
energy functional with the kinetic energy of an additional momentum variable.

3 PARVI for MCMC dynamics – a general recipe

In this section, we outline the main contribution of this work, which traces the roadmap delineated by
previous works to explore the �ow interpretation, as well as the approximation by interacting particle
systems of general formMCMC dynamics (Ma et al., 2015) in the form of Itō diffusion:

f (� ) =
1

� (� )
r � [� (� ) (A (� ) + C(� ))] ; (9)

� (� ) = A (� ); (10)

whereA andC are positive-semide�nite and skew-symmetric matrix-valued functions, respectively.
This general framework coversall continuous It̄o diffusion processes with stationary distribution
� , most notablyLD, stochastic gradientHMC (Chen et al., 2014), stochastic gradient Nosé-Hoover
thermostat (SGNHT) (Ding et al., 2014) and stochastic gradient Riemannian Hamiltonian Monte
Carlo (SGRHMC) (Ma et al., 2015).

We demonstrate in this section that applying the �ber-gradient Hamiltonian �ow structure ofMCMC
dynamics to the Stein-Wasserstein metric yields a �ow on(P(
) ; WH ) that discretizes intoGSVGD,
a PARVI that updates particles with the diffusion Stein operator (Gorham et al., 2019), suggest-
ing that the in�nitesimal generator ofMCMC diffusion processes offers a “kernel smoothing” de-
randomization. Apart from the Stein-Wasserstein metric, the analog ofGSVGDgeneralizingSVGD
extends to other interpretations ofSVGD, namely thatGSVGD takes steepest descent minimizing
the KL-divergence in incremental transformation of particles, and that thatGSVGD projects the
�ber-gradient Hamiltonian �ow onto anRKHS.

3.1 Fiber-gradient Hamiltonian �ow on (P(
) ; WH )

Similar to (2), we derive theFPEof MCMC dynamics (9)-(10)

_� t = �r � (� t f ) + ( rr ) : ( � t A ) (11)
= �r � (� t f ) + ( rr ) : ( � t A ) + ( rr ) : ( � t C)

| {z }
=0

(12)

= r �
�

� t (A + C) r log
� t

�

�
= r �

�
� t (A + C) r

� KL [� t k � ]
�� t

�
; (13)

which is a curve inP(
) following the continuity equation_� t + r � (� t v t ) = 0 ; v t =
(A + C) r log � t =� .
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