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A DP Variants

Algorithm design is a typical use case for differential privacy: given a privacy budget of ✏, the data
curator would like to add noise calibrated to meet the privacy demands. Our work concerns the
converse problem of how to calculate and report the incurred privacy loss to an individual after a
randomized algorithm is run on a fixed dataset. The table below summarizes the relevant variations
of the DP definition which characterize the privacy loss with varying degrees of granularity.

Let P, Q be distributions over ⌦, taking p(!) and q(!) to be the probability density/mass function of
each at !. Then the probability metrics used in the table are defined as follows:

• D1(P ||Q) = sup
S⇢⌦

✓
log

P (S)

Q(S)

◆
(max divergence)

• D
�
1(P ||Q) = sup

S⇢⌦:P (!)��

✓
log

P (S) � �

Q(S)

◆
(�-approximate max divergence),

• D↵(P ||Q) =
1

↵ � 1
logE!⇠Q

✓
p(!)

q(!)

◆↵�
(Rényi divergence).

Pure DP sup
D

sup
z,D0:D0'zD

D1
�
A(D)||A(D0)

�
 ✏

Approximate DP sup
D

sup
z,D0:D0'zD

D
�
1
�
A(D)||A(D0)

�
 ✏

Rényi DP sup
D

sup
z,D0:D0'zD

D↵

�
A(D)||A(D0)

�
 ✏

Data-dependent DP sup
z,D0:D0'zD

D↵

�
A(D)||A(D0)

�
 ✏(D)

Personalized DP sup
D,D0:D0'zD

max
⇣
D

�
1
�
A(D)||A(D0)

�
, D

�
1
�
A(D0)||A(D)

�⌘
 ✏(z)

Per-instance DP max
⇣
D

�
1
�
A(D)||A(D0)

�
, D

�
1
�
A(D0)||A(D)

�⌘
 ✏(D, z)

Ex-post per-instance DP

�����log
Pr
⇥
A(D) = o

⇤

Pr
⇥
A(D0) = o

⇤
�����  ✏(o, D, D

0) where D
0 'z D
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B Additional Experiments

B.1 Varying dimension and dataset size

Our first experiment uses a synthetic dataset for logistic regression as described in the experiments
section of the main paper. Figure 4 illustrates how the worst-case pDP loss over all individuals in
the dataset – i.e., maxz2D ✏1(✓̂P

, D, D±z) – changes as a function of the dataset size (number of
individuals in the dataset) n, compared to the worst-case pDP bounds given by the data-independent
and data-dependent approaches. We fix d = 50 and vary n from n = 100 to n = 10000.

Figure 4 illustrates how the worst-case pDP loss and bounds change as a function of the data
dimension d. We fix n = 1000 and vary d from d = 1 to d = 60. Figures 4 and 5 demonstrate that
for GLMs, the strength of our ex-post pDP bounds ✏

P
1

(·) does not depend on the size of the dataset or
the dimensionality of the data.

Figure 4: Worst-case pDP while varying n.

0 10 20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

0.25

✏1(·)

data-indep ✏
P
1

(·)

data-dep ✏
P
1

(·)

Figure 5: Worst-case pDP while varying d.

B.2 Privacy budget allocation

Here we investigate how to distribute the privacy budget between the components of Algorithm 1 and
Algorithm 2, with the same experimental setup as in Section 4.2. As before, we use the UCI credit
default dataset. Our experiments show that a careful allocation of the privacy budget is essential to
reaping the benefits of the data-dependent approach to releasing the ex-post pDP losses.

The plots in Figure 6 are ordered by increasing ✏
DEP
1

. ✏
INDEP
1

= 1 is fixed, as are (implicitly)
✏
INDEP
2

= ✏
INDEP
3

= 0. We see that as ✏
DEP
1

approaches the total privacy budget of ✏
INDEP
1

=
1, leaving less budget for ✏

DEP
2

and ✏
DEP
3

, the data-dependent release is little better than the
data-independent release – worse, even, because we’ve expended additional privacy cost without
significantly boosting the accuracy of the release.

Deciding between the data-independent or data-dependent approach is a delicate choice which
depends on the particular problem setting. However, based on our theoretical and experimental results
we can offer some loose guidelines:

• For non-GLMs, the data-independent bound has a dimension dependence. Therefore in the
high-dimensional case, we recommend the data-dependent approach for generic convex loss
functions and the data-independent approach for GLMs.

• For GLMs, the data-independent approach gives tight bounds without any overhead. The only
reason to use the data-dependent approach for GLMs would be to gain an even more accurate
estimate of the ex-post pDP losses, in which case it would be necessary to either suffer an
additional privacy cost, or maintain the privacy cost by suffering a less accurate estimate of
✓̂

P .
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Figure 6: Data-independent release uses a privacy budget ✏1 = 1 for each plot. From top to bottom,
the budgets for the data-dependent release are ✏1 = 0.2, ✏2 = 0.7, ✏3 = 0.1; ✏1 = 0.4, ✏2 = 0.5, ✏3 =
0.1; ✏1 = 0.5, ✏2 = 0.25, ✏3 = 0.25; and ✏1 = 0.8, ✏2 = 0.1, ✏3 = 0.1.
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B.3 Comparison of pDP losses and private upper bounds
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Figure 7: pDP losses ✏1(·) and upper bounds ✏
P
1

(·) for private logistic regression applied to the UCI
kidney dataset. DP budget for releasing ✓̂

P is ✏ = 1, marked in red.
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Figure 8: pDP losses ✏1(·) and upper bounds ✏
P
1

(·) for private linear regression applied to the UCI
wine quality dataset. Since we are dealing with an unbounded domain Rd, the algorithm does not
satisfy worst-case DP for any ✏ < 1.
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We run both the data-independent and -dependent variations of Algorithm 1 as described in the
experimental setup. Note that in this experiment the additional DP budget for the data-dependent
release is ✏2 = ✏3 = 1, i.e. the privacy budget for the data-dependent release is three times the DP
budget for the data-independent release. Figures 7 and 8 compare the pDP losses ✏1(·) and private
upper bounds ✏

P
1

with ✏1 (indicated by the vertical red line), the DP budget for Algorithm 1. Figure 7
shows results for private logistic regression on the UCI kidney dataset; Figure 8 shows results for
private linear regression on the UCI wine quality dataset (Dua & Graff, 2017). Our experimental
results indicate that for smaller ✏1 << 1 (larger �), the data-dependent approach provides a markedly
tighter bound on ✏1()·.
Figures 9 and 10 plot the ratio of the private upper bound ✏

P
1

(·) for both the data-independent
and -dependent approaches to the true pDP loss ✏1(·). This illustrates the relative accuracy of the
pDP estimates ✏

P
1

(·). For both logistic regression on the UCI kidney dataset (Figure 9) and linear
regression on the UCI wine quality dataset (Figure 10), the data-dependent approach provides a more
accurate estimate of the pDP loss ✏1(·), especially for logistic regression on the kidney dataset.
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Figure 9: Ratio of private upper bound ✏
P
1

(·) to actual pDP loss ✏1(·) for private logistic regression
applied to the UCI kidney dataset.
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Figure 10: Ratio of private upper bound ✏
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(·) to actual pDP loss ✏1(·) for private linear regression
applied to the UCI wine quality dataset.
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C Even Stronger Privacy Report

C.1 More Accurate Privacy Report by Adapting to the Data

We now present a more adaptive version of Algorithm 2 that could be even more accurate depending
on the intrinsic stability of the dataset itself. The key technical components include:

• Adapting to a well-conditioned H by releasing �min.

• A “regularized” construction of µ̂
p(·) that provides valid upper bounds of µ(·) for all choices

of � > 0.

Algorithm 4 makes use of a subroutine to add noise to the smallest eigenvalue of H , presented below
along with its privacy guarantees.

Algorithm 3 Releasing the smallest eigenvalue of H

Input: Dataset D, noise parameter �4, �min denoting the smallest eigenvalue of H .
Output: �̂

P
min

.
Output �̂

P
min

= �min + N (0, �
2
4
) .

Theorem 11. Algorithm 3 satisfies pDP with

✏4(·) =
f

00
(·)2kxk4

2�
2
4

+
f

00
(·)kxk2

p
2 log(1/�)

�4

,

and if f
00
(·)kxk2  � for all x then Algorithm 3 also satisfies (✏, �)-DP with ✏ = �2

2�2
4

+
�
p

2 log(1/�)

�4
.

Proof. Algorithm 3 is a standard Gaussian mechanism. By Weyl’s lemma, the smallest singular value
satisfies a perturbation bound of f

00(✓̂p; z)kxx
T k2 = f

00(✓̂p; z)kxk2 from adding or removing one
individual data point. The stated result follows from the theorem of the Gaussian mechanism with
per-instance (and global) sensitivity set as the above perturbation bound.

In the more general smooth-loss case we can simply replace f
00
(✓̂p; z)kxk2 with kr2

`(✓̂p; z)kF .
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Algorithm 4 More adaptive privacy report for Obj-Pert

Input: ✓̂
p from Obj-Pert, noise parameter �, �2, �3, �4; regularization parameter �; Hessian

H :=
P

i r2
`(✓̂p; zi) + �Id, failure probability ⇢.

Output: Reporting function ✏̃ : (x, y), ⇢ ! R2
+

.
Privately release ĝ

p by Algorithm 5 with parameter �2.
Set ✏2(·) according to Theorem 14.
Set gP (z) := f

0(·)[ĝP ]T x + �2||f 0(·)x||2F�1

N (0,1)(1 � ⇢/2).

Set ⌧ = F
�1

�1(GOE(d))
(1 � ⇢/2).

Privately release Ĥ
p by Algorithm 6 with parameter �3.

Set ✏3(·) according to Theorem 17
Privately release �̂

p
min

= �min + N (0, �
2
4
) (Algorithm 3).

Set ✏4(·) according to Theorem 11.
Set �̂

p
min

:= max{�, �̂
p
min

� �4F
�1

N (0,1)(1 � ⇢/2)}.
if �̂

p
min

� 2⌧�3 then

Set µp(x) = min
n

�̂p
min+⌧�3

�̂p
min

x
T (Ĥp)�1

x,
kxk2

�̂p
min

o
. (use the standard estimator)

else

Set µp(x) = min
n

�̂p
min+2⌧�3

�̂p
min

x
T (Ĥp + ⌧�3Id)�1

x,
kxk2

�̂p
min

o
. (use the regularized estimator)

end if

Set ✏
p
1
(·) :=

���� log
�
1 � f

00(·)µP (x)
����+ ||f 0

(·)x||22
2�2 + |gP (z)|

�2 .

Return the “privacy report” function ✏̃ = (✏p
1
, ✏2 + ✏3 + ✏4), i.e., the ex-post pDP of Algorithm 1

and the pDP of Algorithm 4 (i.e., overhead).

This algorithm allows any choice of � to be used in ObjPert, so that the privacy report is non-intrusive
and can be attached to an existing workflow without changing the main algorithm at all. The following
proposition shows that µ

p(x) is always a valid upper bound of the leverage score µ(x) and it is
accurate if �min is large (from either the Hessian or the regularization).

Proposition 12 (Uniform multiplicative approximation). Let �̂
p
min

and Ĥ
P

be constructed as in

Algorithm 4. Then with probability 1 � 2⇢,

�min � �4F
�1

N (0,1)(1 � ⇢/2)  �̂
p
min

 �min + �4F
�1

N (0,1)(1 � ⇢/2)

and for all x 2 Rd
simultaneously, the regularized estimator obeys that

x
T (ĤP + ⌧�3Id)

�1
x  µ(x) 

�̂
p
min

+ 2⌧�3

�̂
p
min

x
T (ĤP + ⌧�3Id)

�1
x.

Moreover, under the same high-probability event, if �̂
p
min

� 2⌧�3, then the standard estimator obeys

that

�̂
p
min

� ⌧�3

�̂
p
min

x
T (ĤP )�1

x  x
T
H

�1
x 

�̂
p
min

+ ⌧�3

�̂
p
min

x
T (ĤP )�1

x.

Proof. By Lemma 20, if we choose ⌧ = F
�1

�1(GOE(d))
(1 � ⇢/2), then with probability 1 � ⇢, the

GOE noise matrix G satisfies that kGk2 � ⌧ , the following holds: �⌧Id � G � ⌧Id.

Next, by the definition of Gaussian CDF, with probability 1 � ⇢,

�min � �4F
�1

N (0,1)(1 � ⇢/2)  �̂
p
min

 �min + �4F
�1

N (0,1)(1 � ⇢/2)

which implies that �min � �̂
p
min

, i.e.,

H � �̂
p
min

Id � 0
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Therefore with probability 1 � 2⇢,

H � H + G + ⌧�3Id � H + 2⌧�3I = H � �̂
p
min

Id + �̂
p
min

Id + 2⌧�3Id

�
�̂

p
min

+ 2⌧�3

�̂
p
min

(H � �̂
p
min

Id + �̂
p
min

Id) =
�̂

p
min

+ 2⌧�3

�̂
p
min

H,

where the first semidefinite inequality uses that H � �̂
p
min

Id is positive semi-definite.

Taking the inverse on both sides, we get

�̂
p
min

�̂
p
min

+ 2⌧�3

H
�1 � (ĤP + ⌧�3Id)

�1 � H
�1

.

Thus for all x 2 Rd, x
T (ĤP + ⌧�3Id)�1

x  x
T
H

�1
x 

�̂p
min+2⌧�3

�̂p
min

x
T (ĤP + ⌧�3Id)�1

x, which

finishes the proof for the regularized estimator.

Now we turn to the standard (unregularized) estimator. Under the same high-probability event:

H + G �H + ⌧�3I = H � �̂
p
min

Id + �̂
p
min

Id + ⌧�3Id

�
�̂

p
min

+ ⌧�3

�̂
p
min

(H � �̂
p
min

Id + �̂
p
min

Id) =
�̂

p
min

+ ⌧�3

�̂
p
min

H.

Similarly,

H + G �H � ⌧�3Id � H � �̂
p
min

Id + �̂
p
min

Id � ⌧�3Id

�
�̂

p
min

� ⌧�3

�̂
p
min

(H � �̂
p
min

Id + �̂
p
min

Id) =
�̂

p
min

� ⌧�3

�̂
p
min

H.

Together the above two inequalities give

�̂
p
min

� ⌧�3

�̂
p
min

H � H + G �
�̂

p
min

+ ⌧�3

�̂
p
min

H.

Take the inverse on both sides we get

�̂
p
min

�̂
p
min

+ ⌧�3

H
�1 � (ĤP )�1 �

�̂
p
min

�̂
p
min

� ⌧�3

H
�1

,

which implies that for all x 2 Rd,
�̂p
min�⌧�3

�̂p
min

x
T (ĤP )�1

x  x
T
H

�1
x 

�̂p
min+⌧�3

�̂p
min

x
T (ĤP )�1

x as

stated in the proposition.

The privacy (DP and pDP) of Algorithm 4 is a composition of the stated results in Theorem 10
with the the privacy guarantees stated in Theorem 11. Observe that if we choose �3 = �1 then the
additional DP and pDP losses are smaller than those of the main algorithm, i.e., we have a constant
overhead in terms of the privacy loss.

The next theorem shows that when �min(H) ! +1 as the number of data points n ! +1, we
could improve the leverage score part of the pDP losses from a multiplicative factor of 12 to 1 + o(1).
Theorem 13 (Utility of Adaptive privacy report.). Assume �min(H) � max{2�, 2⌧�3}. There is a

universal constant 0 < C  4⌧�3 + 2� such that for a fixed z 2 X ⇥ Y , and all ⇢ > 0, the privately

released privacy report ✏
P
1

(·) from Algorithm 4 obeys that

✏1(·)  ✏
P
1

(·)  (1 +
C

�min

)✏1(·) +
|f 0(·)|kxk

�2

p
2 log(2/⇢)

with probability 1 � 3⇢ where ✏1 is the expression from Theorem 6.
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Proof of Theorem 13. Similar to the proof of Theorem 10, it suffices to consider the approximation
of the first term when we replace µ with µp. First of all, by a union bound, the high probability event
in Proposition 12 and the high probability event in Theorem 9 (to bound the third term in the ex-post

pDP of ObjPert) holds simultaneously with probability at least 1 � 3⇢. The remainder of the proof
conditions on this event.

Observe that it suffices to construct a multiplicative approximation bound for the first term log(1 +
f
00(·)µ) or � log(1 � f

00(·)µ).

By our assumption that � > 2�, as well as the pointwise minimum in the construction of µp from
Algorithm 4, we know that µp  1/2 and log(1 � f

00(·)µp) is well-defined.

Using the fact that for all a � �1, a
1+a  log(1 + a)  a, we will now derive the multiplicative

approximation for both log(1 + f
00(·)µ) or � log(1 � f

00(·)µ) using the plug-ins: log(1 + f
00(·)µp)

or � log(1 � f
00(·)µp).

For brevity, in the subsequent derivation we will be using a to denote f
00(·)µ(x) and â to denote

f
00(xT

✓̂
p; y)µp(x).

Thus

log(1 + a)  log(1 + â)  â  (1 +
2⌧�3

�̂
p
min

)a  (1 +
2⌧�3

�̂
p
min

)(1 + a) log(1 + a)

(1 +
4⌧�3

�min

)(1 +
�

�min

) log(1 + a)  (1 +
C

�min

) log(1 + a)

where C can be taken as 4⌧�3 + 2�, by our assumption on �min and a high probability bound under
which �̂

p
min

� �min/2.

Similarly,

� log(1 � a)  a

1 � a
 â

1 � a


(1 + 2⌧�3

�̂p
min

)a

1 � a


(1 + 2⌧�3

�̂p
min

)

1 � �
�min

(� log(1 � a))

where

(1 + 2⌧�3

�̂p
min

)

1 � �
�min

= 1 +
2⌧�3

�̂
p
min

+
�/�min

1 � �/�min

 1 +
4⌧�3 + 2�

�min

under our assumption for �min, �. The additive error term in the third term follows from the same
bound as in the non-adaptive result without any changes.

The version for the standard (non-regularized) version is similar and is left as an exercise.

C.2 Dataset-Dependent Privacy report for general smooth learning problems

So far, we have focused on generalized linear losses. Most of our results can be extended to general
smooth learning problems.

For the third term in the pDP bound of Theorem 10, the challenge is that the two vectors are now
nontrivially coupled with each other via ✓̂

p. For this reason we propose to privately release the
gradient at ✓̂

p, which helps to decouple the dependence and allow a tighter approximation at a small
cost of accuracy and additional privacy budget.

For convenience, we will denote g = rJ(✓̂P ; D)T r`(✓̂P ; z). Below, we present an algorithm that
outputs g

P (a private approximation of g) as well as the additional privacy cost ✏4(·) of outputting
g

P .
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Algorithm 5 Release g
P , a private approximation of g = rJ(✓̂P ; D)T r`(✓̂P ; z)

Input: Dataset D, privatized output ✓̂
P , noise parameter �2, linear loss function L(✓; D) =P

i `(✓; zi), regularization parameter �, convex and twice-differentiable regularizer r.
Output: g

P (·), ✏2(·).
Construct noise vector e ⇠ N (0, �

2
2
I).

Set J
P := rL(✓̂P ; D) + rr(✓) + �✓̂

P + e.
Set g

P (·) s.t. g
P (z) = (JP )T r`z(✓̂P ; z).

Set ✏2(·) s.t. ✏2(z) = kr`(✓̂P
;z)k2

2�2
2

+
kr`(✓̂P

;z)k
p

2 log(2/�)

�2
.

Theorem 14. Let ✓̂
P

be fixed, Algorithm 5 satisfies

1. (✏2(D, D±z), �)-pDP, with

✏2(D, D±z) =
kr`(✓̂P ; z)k2

2�
2
2

+
kr`(✓̂P ; z)k

p
2 log(1/�)

�2

.

2. ✏2(o, D, D±z)-ex post pDP with probability 1 � ⇢,

✏2(o, D, D±z) =
kr`(✓̂P ; z)k2

2�
2
2

+
kr`(✓̂P ; z)k

p
2 log(2/⇢)

�2

.

Proof. This is a Gaussian mechanism and the proof follows from Corollary 23.

The theorem avoids an additional dependence in d from the `1-norm kr`(✓̂p; z)k1 in the dataset-
independent bound.

We remark that Algorithm 5’s pDP loss is dataset-independent and if we choose �2 = �1, the pDP
losses for running Algorithm 5 are on the same order as those of the main algorithm. Thus the
additional overhead is on the same order and no recursive privacy reporting is needed.

For the first term, our release of H and �min extends without any changes to the more general case.
The estimator of the leverage score needs to be modified accordingly.

We defer the analysis of how accurately this estimator approximates the first term of ✏1(·) to a longer
version of the paper.

C.3 Uniform Privacy Report and Privacy Calibration

The “privacy report” algorithm (Algorithm 2) that we presented in the main paper and the “adaptive
privacy report” (Algorithm 4 is straightforward and omitted. focus on releasing a reporting function ✏̃

that is accurate with high probability for every fixed input.

Sometimes there is a need to ensure that with high probability, ✏̃ is accurate simultaneously for all
z1, ..., zn in the dataset, or even for all z 2 Z for a data domain Z . The following theorem shows
that this is possible at a mild additional cost in the accuracy. These results are stated for Algorithm 2),
but extensions to that of Algorithm 4 is straightforward and thus omitted.
Proposition 15 (Uniform privacy report). With probability 1 � 2⇢, simultaneously for all n users in

the dataset, the output of Algorithm 2 obeys that ✏1(✓̂p
, D, D±z)  ✏

P
1

(✓̂p
, z)  12✏1(✓̂p

, D, D±z) +
|f 0

(·)|kxk
�2

p
2 log(n/⇢).

If we, instead, use the data-independent bound
|f 0

(xT ✓̂p
;y)|kxk1

p
2 log(2d/⇢)

� to replace the third-term

in ✏
P
1

(·), then with probability 1 � 2⇢, simultaneously for all x 2 X , the ex-post pDP report ✏
P
1

from

Algorithm 2 satisfies that

✏1(·)  ✏
P
1

(z, ✓̂
p)  12✏1(·) +

|f 0(·)|kxk1

p
2 log(2d/⇢)

�
.
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Proof. We note that the approximation of µx is uniform for all x. It remains to consider a uniform
bound for the third term over the randomness of ObjPert. The first statement follows by taking a
union bound. The second result is achieved by Holder’s inequality, the concentration of max of i.i.d.
Gaussians.

Sometimes it is desirable to calibrate the noise-level to a prescribed “worst-case” DP parameter
✏, �. The following corollary explains that the additional DP loss and pDP losses when we calibrate
Algorithm 2 with the same privacy parameter as those in Algorithm 1 will yield a total DP and pDP
that are at most twice as large under an additional condition that f

00  f
0.

Corollary 16 (The additional privacy cost). If we calibrate �2 such that the Algorithm 2 satisfies the

same (✏, �)-DP as Algorithm 1, i.e., when ✏ < 1, we could choose �2 = ⇢max

✏

p
2 log(1.25/�). Then

Algorithm 2 satisfies (✏(·), �)-pDP with

✏(·) =
✏
2(f 00(·))2kxk4

8⇢2
max

log(1.25/�)
+

✏(f 00(·))kxk2

⇢max

p
2

.

For those cases when
(f 00

(·))kxk2

⇢max
 |f 0

(·)|kxk
� (which is the case in logistic regression for all x s.t.,

kxk  1), the additional overhead in releasing a dataset-dependent pDP is smaller than the ex post

pDP bound in Theorem 6.

D Improved “Analyze Gauss” with Gaussian Orthogonal Ensembles

In this section we propose a differentially private mechanism that releases a matrix H when

H =
nX

i=1

Hx

where Hx 2 Rd⇥d is a symmetric matrix computed from individual data point x.

Examples of this include

1. (unnormalized / uncentered) sample covariance Hx = xx
T

2. Empirical Fisher information Hx = r`(✓; x)r`(✓; x)T where ` is the log-likelihood and ✓ is
the true parameter;

3. Hessian of a generalized linear loss function Hx = f
00(x, ✓)xx

T .
4. Hessian of a smooth loss function Hx = r2

`(x, ✓).

In the first three cases Hx is a rank-1 matrix and our use case in this paper is the third and fourth
example. Throughout this section we assume kHxkF  � for all x 2 X .

The mechanism we propose is a variant of “Analyze-Gauss” (Dwork et al., 2014b) but it reduces
the required variance of the added noise by a factor of 2 in almost all coordinates hence resulting in
higher utility.

The standard “Analyze-Gauss” leverages the symmetry of H and uses the standard Gaussian mech-
anism to release the upper triangular region (including the diagonal) of the matrix H with an
`2-sensitivity upper bound:

kUpperTriangle(H) � UpperTriangle(H 0)k2  kHxkF  �.

where UpperTriangle(H) 2 Rd2/2+d/2 is the vector that enumerates the elements of the upper-
triangular region of H . The resulting Gaussian noise is distributed i.i.d as N (0, �

2
3
) and it satisfies

(✏, �)-DP with

✏ =
�

2

2�
2
3

+
�

p
2 log(1/�)

�3

.

The alternative that we propose also adds a symmetric noise but doubles the variance on the diagonal
elements.
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Algorithm 6 Release H (a natural variant of “Analyze-Gauss”)

Input: Dataset D, noise parameter �3, H =
Pn

i=1
r2

`(zi, ✓̂
P ) + �Id.

Output: Ĥ
P .

Draw a Gaussian random matrix Z 2 Rd⇥d with Zi,j ⇠ N (0, �
2
3
) independently.

Output Ĥ
P = H + 1p

2
(Z + Z

T ).

The symmetric random matrix 1p
2
(Z + Z

T ) is known as the Gaussian Orthogonal Ensemble (GOE)
and well-studied in the random matrix theory. We will first show this this mechanism obeys DP and
pDP.
Theorem 17. Algorithm 6 satisfies pDP with

✏(·) =
kHxk2

F

4�
2
3

+
kHxkF

p
2 log(1/�)p
2�3

,

and Ĥ
p

satisfies ex post pDP of the same ✏ with probability 1�2�. If in addition supx2X kHxkF  �

then, Algorithm 6 satisfies (✏, �)-DP with

✏  �
2

4�
2
3

+
�

p
2 log(1/�)p

2�3

.

Improvements over “Analyze Gauss”. Notice that if we choose �3 to be 1/
p

2 of the noise scale
with used in the standard “Analyze Gauss”, we will be adding the same amount of noise on the
diagonal, achieve the same DP and pDP bounds, while adding noise with only half the variance in the
off-diagonal elements. The idea is to add noise with respect to the natural geometry of the sensitivity,
as we illustrate in the proof.

Proof. Algorithm 6 is equivalent to releasing the vector [f1, f2] using a standard Gaussian mechanism
with N (0, �

2
3
I d2

2 +d/2
), where f1 2 Rd is the diagonal of H/

p
2 and f2 2 R(d2�d)/2 is the vectorized

the strict upper triangular part of H .

The per-instance `2-sensitivity of [f1, f2] is

k�xk2 =

s X

1i<jd

Hx[i, j]2 +
X

k=1d

Hx[k, k]2(1/

p
2)2

=

vuuut1

2

0

@
X

1i<jd

Hx[i, j]2 +
X

1j<id

Hx[i, j]2 +
X

k=1d

Hx[k, k]2

1

A

=
1p
2
kHxkF

The result then follows from an application of the pDP computation of the Gaussian mechanism.

D.1 Exact statistical inference with the Gaussian Orthogonal Ensemble

Besides a constant improvement in the required noise, another major advantage of using the Gaussian
Orthogonal Ensemble is that we know the exact distribution of its eigenvalues (Chiani, 2014) which
makes statistical inference, e.g., constructing confidence intervals, easy and constant-tight.
Lemma 18 (Largest singular value of Gaussian random matrix (Rudelson & Vershynin, 2010,
Equation (2.4))). Let A 2 Rd⇥d

be a random matrix with i.i.d. �
2
-subgaussian entries, then there

exists universal constants C, c such that for all t > 0

P[smax(A) � (2 + t)
p

d�2]  Ce
�cdt3/2

.

i.e., with probability 1 � �

kAk2 
✓

2 +
� (log(C/�))

cd

�2/3

◆p
d�2.

25



Notice that the symmetric matrix, i.e., Gaussian orthogonal ensemble is identically distributed to
1p
2
(Z + Z

T ) where Z is a iid Gaussian random matrix, thus by triangular inequality, we have

Lemma 19 (Largest eigenvalue of Gaussian orthogonal ensemble). Let A be a Gaussian orthogonal

ensemble (i.e., a symmetric random matrix with N (0, �
2) on the off-diagonal and N (0, 2�

2) on the

diagonal), with probability 1 � �,

kAk2 
p

2

✓
2 +

� (log(C/�))

cd

�2/3

◆p
d�2.

Proof. The proof follows from triangular inequality of the spectral norm.

The above bound is asymptotic and we will use it for deriving the theoretical results. For practical
computation, the the exact formula of the CDF of the largest eigenvalue of GOE matrices is given
by (Chiani, 2014, Theorem 2). We could use this to bound the spectral norm of the noise added to
Algorithm 6.
Lemma 20. Let A be described as in Lemma 19.

kAk2  �F
�1

�1 of GOE
(1 � ⇢/2)

where F�1 of GOE is the CDF of the largest eigenvalue of the standard GOE matrix with constructed

by
1p
2
(Z + Z

T ) where each element of matrix Z is drawn i.i.d. from a standard gaussian.

Proof. Notice that the GOE matrix is symmetric, so the largest eigenvalue �1 and the negative
of the smallest eigenvalue ��d are identically distributed. Thus the operator norm kAk2 
max{|�1|, |�d|}  F

�1

�1 of GOE(1 � ⇢/2) with probability 1 � ⇢.

Numerical computation: Chiani (2014, Theorem 2) characterized the distribution of �1 and pro-
vided an exact analytical formula with stable numerical implementation to compute F�1 of GOE. Thus
F

�1

�1 of GOE can be evaluated using a binary search.

Using the Mathematica implementation provided by (Chiani, 2014), we find that F
�1

�1 of GOE(50)(1 �
⇢/2) = 12 for ⇢ = 8.465 ⇥ 10�6. Therefore in our experiments with d = 50, we choose ⌧ ⇡ 12.

E Omitted Proofs

With the two technical components presented, we are now ready to present the detailed proofs of our
main results: Theorem 6 and Theorem 10.

E.1 Proofs for the pDP analysis of objective perturbation

Proof of Theorem 6. We calculate the ex-post pDP loss of Algorithm 1 as follows. Consider the
perturbed objective function:

✓̂
P = argmin

✓2Rd

L̂(✓; D) + r(✓) +
�

2
||✓||2

2
+ b

T
✓. (2)

Let A be the algorithm that outputs ✓̂
P as stated in 2. The ex-post per-instance privacy loss (with the

abuse of notation discussed in Section 2.1) is then given by

✏1(✓, D, D±z) = max

 
log

Pr
�
A(D) = ✓̂

P
�

Pr
�
A(D±z) = ✓̂P

� , log
Pr
�
A(D±z) = ✓̂

P
�

Pr
�
A(D) = ✓̂P

�

!
,

Note that this characterization of ex-post per-instance DP is equivalent to that stated in Definition 3,
since switching the numerator and denominator of a log ratio is the same as flipping its sign.

Since we can’t easily calculate the distribution of ✓̂
P , we will instead use the bijection between the

output ✓̂
P and the noise vector b (observed in Chaudhuri et al. (2011)) to rewrite the log probability

ratio more cleanly.
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First-order conditions applied to (2) tell us that

b(✓̂P ; D) = �
⇣
rL̂(✓̂P ; D) + rr(✓̂P ) + �✓̂

P
⌘

. (3)

Then taking the gradient of the noise vector, we have

rb(✓̂P ; D) = �
⇣
r2L̂(✓̂P ; D) + r2

r(✓̂P ) + �Id

⌘
. (4)

Let b ⇠ N (0, �
2
Id), and denote ⌫(·) as the probability density function of the normal distribution:

i.e., the density at b is ⌫(b; �) / e
� ||b||22

2�2 . Then since the objective function J(✓; D) is strictly convex
in ✓ (implying as in Chaudhuri et al. (2011) that the mapping between ✓̂

P and b is bijective and
monotonic), by Lemma 30 we can write

log
Pr
�
A(D) = ✓̂

P
�

Pr
�
A(D±z) = ✓̂P

� = log

���det
⇣
rb(✓̂P ; D)

⌘���
���det
⇣
rb(✓̂P ; D±z)

⌘���

⌫(b(✓̂P ; D); �)

⌫(b(✓̂P ; D±z); �)

= log

���det
⇣
rb(✓̂P ; D)

⌘���
���det
⇣
rb(✓̂P ; D±z)

⌘���
+ log

e
� 1

2�2 ||b(✓̂P
;D)||22

e
� 1

2�2 ||b(✓̂P ;D±z)||22

= log

���det
⇣
rb(✓̂P ; D)

⌘���
���det
⇣
rb(✓̂P ; D±z)

⌘���
| {z }

(⇤)

+
1

2�2

⇣
||b(✓̂P ; D±z)||22 � ||b(✓̂P ; D)||2

2

⌘

| {z }
(⇤⇤)

.

Dealing first with the term (*), we observe that rb(✓̂P ; D±z) = rb(✓̂P ; D) ⌥ r2
`(✓̂P ; z). The

notation “⌥” means to subtract if z /2 D, and add if z 2 D. Using the eigendecomposition
r2

`(✓̂P ; z) =
Pd

k=1
�kuku

T
k and recursively applying the matrix determinant lemma, we have

���det
�
rb(✓̂P ; D±z)

���� =
���det
⇣
rb(✓̂P ; D) ⌥ r2

`(✓̂P ; z)
⌘���

=
���det
⇣
rb(✓̂P ; D) ⌥

dX

k=1

�kuku
T
k

⌘���

=
���det
⇣
rb(✓̂P ; D) ⌥

d�1X

k=1

�kuku
T
k ⌥ �dudu

T
d

⌘���

=
���det
⇣
rb(✓̂P ; D) ⌥

d�1X

k=1

�kuku
T
k

⌘���
⇣
1 ⌥ �du

T
d

�
rb(✓̂P ; D) ⌥

d�1X

k=1

�kuku
T
k

��1
ud

⌘

= . . .

=
���det
⇣
rb(✓̂P ; D)

⌘��
dY

j=1

�
1 ⌥ µj

�
,

where µj = �ju
T
j

⇣
rb(✓̂P ; D) ⌥

Pj�1

k=1
�kuku

T
k

⌘�1

uj . Therefore,
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(⇤) = log

���det
�
rb(✓̂P ; D)

����
���det
�
rb(✓̂P ; D±z)

����

= log

���det
�
rb(✓̂P ; D)

����
���det
⇣
rb(✓̂P ; D)

⌘��
dQ

j=1

�
1 ⌥ µj

�

= log
1

dQ
j=1

�
1 ⌥ µj

�

= � log
dY

j=1

�
1 ⌥ µj

�
.

We’ll handle the second term (**) next. We have that

(⇤⇤) =
1

2�2

⇣
||b(✓̂P ; D±z)||22 � ||b(✓̂P ; D)||2

2

⌘

=
1

2�2

h
⌥ r`(✓̂P ; z)

ih
2b(✓̂P ; D) ⌥ r`(✓̂P ; z)

i

= ± 1

�2

⇥
rJ(✓̂P ; D)T r`(✓̂P ; z)

⇤
+

1

2�2
||r`(✓̂P ; z)||2

2
.

The rest of the proof follows from adding together (*) and (**), and taking the absolute value.

Proof of Corollary 7. By restricting to generalized linear models, we can give a more interpretable
pDP result for Algorithm 1 with the main difference being a cleaner version of the generalized
leverage score. In the case of GLMs, we have that r`(·) = f

0(·)x and r2
`(·) = f

00(·)xx
T . So `(·)

has a rank-one Hessian with only one eigenvalue, and log
dQ

j=1

⇣
1 + µj

⌘
= log(1 + µ(x)). Here µj is

as defined in Theorem 6 and µ is defined as in Corollary 7.

Proof of Theorem 8. Using the eigendecomposition r2
`(✓̂P ; z) =

Pd
k=1

�kuku
T
k , for 0  j  d

we have that

µj(x) =

8
>><

>>:

�ju
T
j

⇣
� r2

L(✓̂P ; D) � �Id � r2
r(✓̂P ) �

Pj�1

k=1
�kuku

T
k

⌘�1

uj if z /2 D

�ju
T
j

⇣
�
P

zi2D
zi 6=z

r2
`(✓̂P ; zi) � �Id � r2

r(✓̂P ) �
Pd

k=j �kuku
T
k

⌘�1

uj if z 2 D.

:=

⇢
�ju

T
j H

�1

+z uj if z /2 D

�ju
T
j H

�1

�z uj if z 2 D.

The second equality introduces the shorthand µj(x) := �ju
T
j H

�1

±z uj . Observe that
r2

`(✓̂P ; zi), r2
r(✓̂P ) 2 Rd⇥d are positive semi-definite, since `(·) and r(✓) by assumption are

convex functions with continuous second-order partial derivatives. Since r2
`(✓̂P ; zi) is PSD,

its eigenvalues are non-negative and so �k � 0 for all 0  k  d. Then for any x 2 Rd,
x

T
uku

T
k x = (xT

uk)2 � 0. So uku
T
k is also PSD, and we then have that H+z + �Id and H�z + �Id

are both negative semi-definite. Therefore, H±z � ��Id and after taking the inverse, we see that
µj(x)  ��j

�  0 or equivalently �µj(x) � �j

� � 0.
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For �1 < µj(x)  0, we have that
��� log(1 � µj(x))

�� = log(1 + (�µj(x)))

 �µj(x)

 � log(1 + µj(x))

=
��� log(1 + µj(x))

��

 � log(1 � �j

�
).

The rest of the proof follows from converting the log-product into a sum of logs. For a linear loss
function `(✓; z) = f(xT

✓; y), the simplified bound can be achieved due to the rank-one Hessian
r2

`(✓̂P ; z) = f
00(xT

✓; y)xx
T whose only eigenvalue is �1 = f

00(xT
✓̂

P ; y)||x||2
2
.

Proof of Theorem 9. By Holder’s inequality,
���rJ(✓̂P ; D)r`(✓̂P ; z)

���  ||rJ(✓̂P ; D)||1||`(✓̂P ; z)||1.

Recall from (3) that rJ(✓̂P ; D) = �b(✓̂P ; D). Therefore ||rJ(✓̂P )||1 = max
i2[d]

|bi|, where bi ⇠

N (0, �
2). Applying a union bound and using the standard Gaussian tail bound,

Pr

max
i2[d]

|bi| � t

�
= Pr

"
[

i

|bi| � t

#


X

i2[d]

Pr
⇥
|bi| � t

⇤

 2de
� t2

2�2 .

So with probability 1 � ⇢, we have ||rJ(✓̂P ; D)||1  �

p
2 log(2d/⇢). The stronger bound for

linear loss functions comes from substituting ||r`(✓̂P )||1 = f
0(xT

✓; y)||x||1.

E.2 Proofs for the Privacy Report in the main paper

The proof of Theorem 10 relies on the following intermediate result.

Proposition 21 (Uniform multiplicative approximation). If �min(H) � 2�2F
�1

�1(GOE(d))
(1 � ⇢/2),

then with probability 1 � ⇢, for all x 2 Rd
simultaneously

1

2
x

T (ĤP )�1
x  x

T
H

�1
x  3

2
x

T (ĤP )�1
x.

Proof. By the choice of ⌧ = F
�1

�1(GOE(d))
(1 � ⇢/2), with probability 1 � ⇢, the noise matrix Z from

the release of Ĥ
P satisfies that kZk2  �2⌧  �min/2. Thus �H

2
� ��min

2
Id � Z � �min

2
Id � H

2
.

Adding H on both sides
H

2
� H + Z � 3H

2

which implies that
2

3
H

�1  (H + Z)�1 � 2H
�1

.

By definition of semidefinite ordering, for all x 2 Rd

2

3
x

T
H

�1
x  x

T (H + Z)�1
x  2x

T
H

�1
x.

In other word, 1

2
µ̂

p
1
(x)  µ1(x)  3

2
µ̂

p
1
(x).
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Proof of Theorem 10. The privacy guarantees (Statement 1-3) follow directly from the pDP analysis
in Theorem 17 that analyzes the release of H by adding a GOE noise matrix and the Gaussian
mechanism that releases g.

By the result follows from Proposition 21 we know that with probability 1 � ⇢, for all x

µ(x)  3

2
µ̂

p(x)  3µ(x)

For all a � �1 a
1+a  log(1 + a)  a. Recall that � � supz kr2

`(✓̂p; z)k2. By our condition that
� > 2�, as well as the pointwise minimum in the construction of µp, we have that f

00
µp  1

2
and

f
00
µp

2
 max{log(1 + f

00
µp), � log(1 � f

00
µp}  2f

00
µp.

Thus

log(1 + f
00
µ)  f

00
µ  f

00
µp  2 log(1 + f

00
µp)  2f

00
µp  3f

00
µ̂

p  6f
00
µ  12 log(1 + f

00
µ),

and similarly

� log(1�f
00
µ)  2f 00

µ  2f 00µp  �2 log(1�f
00
µp)  4f 00

µp  6f 00
µ̂
p  12f 00

µ  �12 log(1�f
00
µ).

This concludes the factor 12 multiplicative approximation in the first term of ✏1(·). The second term
of ✏1(·) does not involve an approximation. The third term of ✏1(·) is random and the bound is off
by an additive factor of min{�, �2}|f 0(·)|kxk2

p
2 log(2/⇢) — via the smaller of the data-dependent

bound and the data-independent bound, each holds with probability 1 � ⇢/2.

F pDP Analysis of the Gaussian mechanism

Theorem 22 (ex-post pDP of Gaussian mechanism). Let Q : Z⇤ ! Rd
be a function of the data.

Let |Q(D±z) � Q(D)|  �z . Then the Gaussian mechanism that releases o ⇠ Q(D) + N (0, �
2
Id)

obeys ex-post pDP with

✏(o, D, Dz) =

����
k�zk2

2�2
� �T

z (o � Q(D))

�2

���� .

Proof. We can directly calculate the log-odds ratio:

1

2�2

�
ko � Q(D)k2 � ko � Q(D±z)k2

�

=
1

2�2

�
(Q(D±z) � Q(D))T (2o � Q(D) � Q(D±z))

�

=
1

2�2

�
�T

z (2o � 2Q(D) � �z)
�

=
�k�zk2

2�2
+

�T
z (o � Q(D))

�2
.

The proof is complete by taking the absolute value.

Corollary 23 (pDP bound and high-probability ex-post pDP of Gaussian mechanism). Let � be

the cumulative distribution function (CDF) of a standard normal random variable. The Gaussian

mechanism that releases o ⇠ Q(D) + N (0, �
2
Id) satisfies dataset independent pDP bound with

✏(D, D±z)  k�zk2

2�2
+

k�zk��1(1 � �)

�
 k�zk2

2�2
+

k�zk��1(1 � �)

�
.

Moreoever, with probability at least 1 � ⇢ over the distribution of the randomized output o, the

Gaussian mechanism satisfies obeys the following dataset-independent ex post pDP bound

✏(o, D, D±z)  k�zk2

2�2
+

k�zk��1(1 � ⇢/2)

�
 k�zk2

2�2
+

k�zk
p

2 log(2/⇢)

�
. (5)
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Proof. Since o ⇠ Q(D) + N (0, �
2
Id), we have �T

z (o � Q(D)) ⇠ N (0, �
2k�zk2). The results of

pDP follows from the tailbound of the privacy loss random variable and Lemma 27.

For the high-probability bound of the ex post pDP, we need to bound both sides of the privacy loss
random variable. It suffices to show that the absolute value of the added noise is bounded with a
union bound on the two-sided tails, each with probability 1 � ⇢/2.

A tighter pDP bound can be obtained using the analytical Gaussian mechanism (Balle & Wang, 2018).
We choose to present the tail bound-based formula above for the interpretability of the results.

G Technical Lemmas

Lemma 24 (Sherman-Morrison-Woodbury Formula). Let A, U, C, V be matrices of compatible size.

Assuming A, C and C
�1 + V A

�1
U are all invertible, then

(A + UCV )�1 = A
�1 � A

�1
U(C�1 + V A

�1
U)�1

V A
�1

.

Lemma 25 (Determinant of Rank-1 perturbation). For invertible matrix A and vector c, d of compat-

ible dimension

det(A + cd
T ) = det(A)(1 + d

T
A

�1
c).

Lemma 26 (Gaussian tail bound). Let X ⇠ N (0, �
2). Then

P(X > �✏)  e
�✏2/2

✏
.

A convenient alternative representation (slightly weaker) is

P(X > �

p
2 log(1/�))  �,

and

P(|X| > �

p
2 log(2/�))  �.

for all � > 0.

Lemma 27 (Tail bound to (✏, �)-DP conversion). Let ✏(o) = log( p(o)

p0(o)
) where p and p

0
are densities

of ✓. If

Pp(✏(o) > ✏)  �

then for any measurable set S

Pp(✓ 2 S)  e
✏Pp0(✓ 2 S) + �.

Two useful applications of this result for DP are:

1. if Pp(✏(o) > ✏)  � for all pairs of neighboring dataset D, D
0

such that p = A(D), p0 =
A(D0) then A is (✏, �)-DP.

2. If D
0 = D±z , p = A(D), p0 = A(D±z) and that Pp(✏(o) > ✏)  � and Pp0(�✏(o) < �✏) 

�, then A satisfies (✏, �)-pDP for individual z and dataset D.

Proof. Let E be the event that |✏(✓)| > t, by definition it implies that for any Ẽ ⇢ E, Pp(✓ 2 Ẽ) 
e
tPp0(✓ 2 Ẽ). Now consider any measurable set S:

Pp(✓ 2 S) = Pp(✓ 2 S \ E
c) + Pp(✓ 2 S \ E)

 Pp0(✓ 2 S \ E
c)et + Pp(✓ 2 E)  e

tPp0(✓ 2 S) + �.

The two applications follow directly from the definitions of (✏, �)-DP and pDP.

Lemma 28 (maximum of subgaussian). Let X1, ..., Xn be iid �
2
-subgaussian random variables.

P[max
i

Xi �
p

2�2(log n + t)]  e
�t

.

Proof. The proof is by standard subgaussian concentration and union bound.
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Lemma 29 (Weyl’s theorem; Theorem 4.11, p. 204 in Stewart (1990)). . Let A, E be given m ⇥ n

matrices with m � n, then

max
i2[n]

|�i(A) � �i(A + E)|  kEk
2

(6)

Lemma 30 (“Change-of-variables” for density functions). Let g : Rd ! Rd
be a bijective and differ-

entiable function, and let X, Y be continuous random variables in Rd
related by the transformation

Y = g(X). Then the probability density of Y is

fY (y) = fX(g�1(y))

����det


@g

�1(y)

@y

����� ,

with


@g

�1(y)

@y

�
denoting the d ⇥ d Jacobian matrix of the mapping X = g

�1(Y ).

Lemma 31. (Billboard lemma) Suppose A : D ! R satisfies (✏, �) differential privacy. Consider any

set of functions fi : Di⇥R ! R, where Di is the portion of the dataset containing individual i’s data.

The composition {fi(⇧iD, A(D))} satisfies (✏, �)-joint differential privacy, where ⇧i : D ! Di is

the projection to individual i’s data.
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