
Formalizing the Generalization-Forgetting Trade-Off
in Continual Learning

R. Krishnan1 and Prasanna Balaprakash1,2

1Mathematics and Computer Science Division
2Leadership Computing Facility
Argonne National Laboratory
kraghavan,pbalapra@anl.gov

Abstract

We formulate the continual learning problem via dynamic programming and model
the trade-off between catastrophic forgetting and generalization as a two-player
sequential game. In this approach, player 1 maximizes the cost due to lack of
generalization whereas player 2 minimizes the cost due to increased catastrophic
forgetting. We show theoretically and experimentally that a balance point between
the two players exists for each task and that this point is stable (once the balance is
achieved, the two players stay at the balance point). Next, we introduce balanced
continual learning (BCL), which is designed to attain balance between generaliza-
tion and forgetting, and we empirically demonstrate that BCL is comparable to or
better than the state of the art.

Supplementary Information

We use R to denote the set of real numbers and N to denote the set of natural numbers. We use ‖.‖
to denote the Euclidean norm for vectors and the Frobenius norm for matrices, while using bold
symbols to illustrate matrices and vectors. We define an interval [0,K),K ∈ N and let p(Q) be the
distribution over all the tasks observed in this interval. For any k ∈ [0,K), we define a parametric
model g(.) with yk = g(xk;θk), where θk is a vector comprising all parameters of the model with
xk ∈ X k. Let n be the number of samples and m be the number of dimensions. Suppose a task
at k|k ∈ [0,K) is observed and denoted as Qk : Qk ∼ p(Q), where Qk = {X k, `k} is a tuple
with X k ∈ Rnm being the input data and `k quantifies the loss incurred by X k using the model g
for the task at k. We denote a sequence of θk as uk:K = {θτ ∈ Ωθ, k ≤ τ ≤ K}, with Ωθ being
the compact (feasible) set for the parameters. We denote the optimal value with a superscript (∗);
for instance, we use θ(∗)

k to denote the optimal value of θk at task k. In this paper we use balance
point, equilibrium point, and saddle point to refer to the point of balance between generalization and
forgetting. We interchange between these terms whenever convenient for the discussion. We will use
∇(j)i to denote the gradient of i with respect to j and ∆i to denote the first difference in discrete
time.

1 Additional Results

We define the cost (combination of catastrophic cost and generalization cost) at any instant k as
Jk(θk) = γk`k +

∑k−1
τ=0 γτ `τ , where `τ is computed on task Qτ with γτ describing the contribution

of Qτ to this sum. We will show that for any fixed k, the catastrophic forgetting cost Jk(θk) is
divergent in the limit k →∞ if equal contribution from each task is expected.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Lemma 1. For any k ∈ N, define Jk(θk) =
∑k
τ=0 γτ `τ . For all τ, assume `τ to be continuous with

L ≥ `τ ≥ ε,∀τ, ε > 0 and let γτ = 1. Then Jk(θk) is divergent as k →∞.

Proof of Lemma 1. With Jk(θk) =
∑k
τ=0 γτ `τ we write limk→∞

∑k
τ=0 γτ `τ ≥

limk→∞
∑k
τ=0 γτ ε, where γτ = 1 which provides limk→∞

∑k
τ=0 ε = ∞. Therefore, Jk(θk) is

divergent.

When `τ ≥ ε with ε > 0 implies that each task incurs a nonzero cost. Furthermore, γτ = 1, it
implies that each task provides equal contribution to the catastrophic forgetting cost and contributed
nonzero value to Jk(θk). The aforementioned lemma demonstrates that equivalent performance (no
forgetting on all tasks) cannot be guaranteed for an infinite number of tasks when each task provides
a nonzero cost to the sum (you have to learn for all the tasks). However, if the task contributions are
prioritized based on knowledge about the task distribution, the sum can be ensured to be convergent
as shown in the next corollary.

Corollary 1. For any k ∈ N, define Jk(θk) =
∑k
τ=0 γτ `τ where `τ is continuous and bounded such

that ε ≤ `τ ≤ L,∀ε > 0. Define N = 1
k and choose γN such that γN → 0, N → ∞ and assume

when there are infinite number of tasks, limN→∞
∑
N γN ≤M. Under these assumptions, Jk(θk)

is convergent.

Proof of Corollary 1. Since `τ ≤ L, Jk(θk) = limk→∞
∑k
τ=0 γτ `τ ≤ limk→∞

∑k
τ=0 γτL ≤

Llimk→∞
∑k
τ=0 γτ .

Since limk→∞
∑k
τ=0 γτ = limN→∞

∑
N γN as N = 1

k , therefore limk→∞
∑k
τ=0 γτ ≤ M and

Jk(θk) is upper bounded by LM . As a result, Jk(θk) is convergent since Jk(θk) is a monotone.

To solve the problem at k, we seek θk to minimize Jk(θk). Similarly, to solve the problem in the
complete interval [0,K), we seek a θk to minimize Jk(θk) for each k ∈ [0,K). In other words we
seek to obtain θk for each task such that the cost Jk(θk) is minimized. The optimization problem
for the overall CL problem (overarching goal of CL) is then provided as the minimization of the
cumulative cost Vk(uk:K) =

∑K
τ=k βτJτ (θτ) such that V (∗)

k , is given as

V
(∗)
k = minuk:K

Vk(uk:K), (1)

with 0 ≤ βτ ≤ 1 being the contribution of Jτ and uk:K being a weight sequence of length K − k.
We will now derive the difference equation for our cost formulation.

Proposition 1. For any k ∈ [0,K), define Vk =
∑K
τ=k βτJτ (θτ) with θτ ∈ Ω. Define uk:K =

{θτ ∈ Ω, k ≤ τ ≤ K},, with Ω being the compact (feasible) set as a sequence of parameters with
length K − k and V (∗)

k = minuk:K

∑K
τ=k βτJτ (θτ). Then, the following is true

∆V
(∗)
k = −minθk∈Ω

[
βkJk(θk) +

(
〈∇θkV

(∗)
k ,∆θk〉+ 〈∇xkV

(∗)
k ,∆xk〉

)]
, (2)

where ∆V
(∗)
k represents the first difference due to the introduction of a task, ∆θk due to parameters

and ∇xk due to the task data with βk ∈ R ∪ [0, 1],∀k and Jk(θk) = γk`k +
∑k−1
τ=0 γτ `τ .

Proof. Given V
(∗)
k = minuk:K

∑K
τ=k βτJτ (θτ), we split the interval [k,K) as [k, k + 1) and

[k + 1,K) to write

V
(∗)
k = minθτ∈Ω

[
βkJk(θk)

]
+minuk+1:K

[K∑
τ=k+1

βτJτ (θτ)
]
.

Vk =
∑K
τ=k βτJτ (θτ) provides

∑K
τ=k+1 βτJτ (θτ) is Vk+1 therefore

minuk+1:K

[∑K
τ=k+1 βτJτ (θτ)

]
is V (∗)

k+1. We then achieve

V
(∗)
k = minθk∈Ω

[
βkJk(θk) + V

(∗)
k+1

]
.

2

Since the minimization is with respect to k now, the terms in k + 1 can be pulled into of the bracket
without any change to the minimization problem. We then approximate V (∗)

k+1 using the information

provided at k. Since V (∗)
k+1 is a function of yk, which is then a function of (k,xk,θk), and all changes

in yk can be summarized through (k,xk,θk). Therefore, a Taylor series of V (∗)
k+1 around (k,xk,θk)

provides
V

(∗)
k+1 = V

(∗)
k + 〈∇θkV

(∗)
k ,∆θk〉

+ 〈∇xkV
(∗)
k ,∆xk〉+ 〈∇k(V

(∗)
k),∆k〉+ · · · ,

(3)

where · · · summarizes all the higher order terms. As k ∈ N and 〈∇k(V
(∗)
k),∆k〉 represents the first

difference in V (∗)
k hitherto denoted by ∆V

(∗)
k . We therefore achieve

V
(∗)
k+1 = V

(∗)
k + 〈∇θkV

(∗)
k ,∆θk〉

+ 〈∇xkV
(∗)
k ,∆xk〉+ ∆V

(∗)
k + ,

(4)

Substitute into the original equation to get

V
(∗)
k = minθk∈Ω

[
βkJk(θk)

]
+
(
V

(∗)
k + 〈∇θkV

(∗)
k ,∆θk〉

+ 〈∇xkV
(∗)
k ,∆xk〉+ ∆V

(∗)
k

)
+ · · · ,

(5)

Cancel common terms and assume that the higher order terms (· · ·) are negligible to obtain

∆V
(∗)
k = −minθk∈Ω

[
βkJk(θk) + 〈∇θkV

(∗)
k ,∆θk〉+ 〈∇xkV

(∗)
k ,∆xk〉

]
. (6)

which is a difference equation in V (∗)
k .

Note that V (∗)
k is the minima for the overarching CL problem and ∆V

(∗)
k represents the change in

V
(∗)
k upon introduction of a task (we hitherto refer to this as perturbations). Zero perturbations

(∆V
(∗)
k = 0) implies that the introduction of a new task does not impact our current solution; that is,

the optimal solution on all previous tasks is optimal on the new task as well.

The solution of the CL problem can directly be obtained by solving Eq. (6) using all the available data.
Thus, minθk∈Ω

[
H(∆xk,θk)

]
yields ∆V

(∗)
k ≈ 0 for β > 0, with H(∆xk,θk) = βkJk(θk) +

〈∇θkV
(∗)
k ,∆θk〉 + 〈∇xkV

(∗)
k ,∆xk〉. Essentially, minimizing H(∆xk,θk) would minimize the

perturbations introduced by any new task.

We simulate worst-case discrepancy by iteratively updating ∆xk through gradient ascent, thus maxi-
mizing generalization. Next, we minimize forgetting under maximum generalization by iteratively
updating θk through gradient descent. To formalize our idea, let us indicate the iteration index at k
by i and write ∆xk as ∆x

(i)
k and θk as θ(i)

k with H(∆xk,θk) as H(∆x
(i)
k ,θ

(i)
k) (for simplicity of

notation, we will denote H(∆x
(i)
k ,θ

(i)
k) as H whenever convenient). Towards these updates, we

will first get an upper bound on H(∆x
(i)
k ,θ

(i)
k) and solve the upper bounding problem.

Proposition 2. Let k ∈ [0,K) and define H(∆x
(i)
k ,θ

(i)
k) = βkJk(θ

(i)
k) + 〈∇θkV

(∗)
k ,∆θ

(i)
k 〉 +

〈∇
x

(i)
k

V
(∗)
k ,∆x

(i)
k 〉 assume that∇θkV

(∗)
k ≤ ∇θkJk(θ

(i)
k). Then the following approximation is true:

H(∆x
(i)
k ,θ

(i)
k) ≤ βkJk(θ

(i)
k) + (Jk(θ

(i+ζ)
k)− Jk(θ

(i)
k)) + (Jk+ζ(θ

(i)
k)− Jk(θ

(i)
k)), (7)

where βk ∈ R ∪ [0, 1],∀k and ζ ∈ N and Jk+ζ indicates ζ updates on ∆x
(i)
k and θ(i+ζ)

k indicates ζ
updates on θ(i)

k .

Proof. ConsiderH(∆x
(i)
k ,θ

(i)
k) = βkJk(θ

(i)
k)+〈∇θkV

(∗)
k ,∆θ

(i)
k 〉+〈∇x(i)

k

V
(∗)
k ,∆x

(i)
k 〉.Assuming

∇θkV
(∗)
k ≤ ∇θkJk(θ

(i)
k) we may write through finite difference approximation as

〈∇
θ

(i)
k

V
(∗)
k ,∆θ

(i)
k 〉 ≤ 〈∇

θ
(i)
k

Jk(θ
(i)
k),∆θ

(i)
k 〉,

≤ (Jk(θ
(i+ζ)
k)− Jk(θ

(i)
k))

(8)

3

Figure 1: Illustration of proofs. ∆x (player 1) is the horizontal axis and the vertical axis indicates θ (player 2)
where the curve indicates H. If we start from red circle for player 1 (player 2 is fixed at the blue circle) H is
increasing (goes from a grey circle to a red asterisk) with player 1 reaching the red star. Next, start from the

blue circle (θ is at the red star), the cost decreases.

Similarly, we may write

〈∇xkV
(∗)
k ,∆xk〉 ≤ 〈∇xkJk(θ

(i)
k),∆xk〉,

≤ (Jk+ζ(θ
(i)
k)− Jk(θ

(i)
k)).

(9)

Upon substitution, we have our result:

H(∆x
(i)
k ,θ

(i)
k) ≤ βkJk(θ

(i)
k) + (Jk(θ

(i+ζ)
k)− Jk(θ

(i)
k)) + (Jk+ζ(θ

(i)
k)− Jk(θ

(i)
k)). (10)

Our cost to be analyzed will be given as

H(∆x
(i)
k ,θ

(i)
k) = βkJk(θ

(i)
k) + 〈∇

θ
(i)
k

V
(∗)
k ,∆θ

(i)
k 〉+ 〈∇

x
(i)
k

V
(∗)
k ,∆x

(i)
k 〉. (11)

and use this definition of H(∆x
(i)
k ,θ

(i)
k) from here on.

2 Main results

We will define two compact sets Ωθ,Ωx and seek to show existence and stability of a saddle
point (∆x

(i)
k ,θ

(i)
k) for a fixed k. To illustrate the theory, we refer to Fig. 1, for each k, the initial

values for the two players are characterized by the pair {θ(i)
k (blue circle),∆x(i)

k (red circle)}, and
H(∆x

(i)
k ,θ

(i)
k) is indicated by the grey circle on the cost curve (the dark blue curve). Our proofing

strategy is as follows.

First, we fix θ(.)
k ∈ Ωθ and constructMk = {θ(.)

k ,Ωx}, to prove that H is maximizing with respect
to ∆x

(i)
k .

Lemma 2. For each k ∈ [0,K), fix θ(.)
k ∈ Ωθ and construct Mk = {Ωx,θ(.)

k } with Ωθ,Ωx

being the sets of all feasible θ(.)
k and x(i)

k respectively. Define H(∆x
(i)
k ,θ

(.)
k) as in Eq. (11) for

(∆x
(i)
k ,θ

(.)
k) ∈Mk and consider

∆x
(i+1)
k −∆x

(i)
k = α

(i)
k ∇∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k))/‖∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k)‖2.

4

Consider the assumptions∇
x

(i)
k

V
(∗)
k ≤ ∇

x
(i)
k

Jk and 〈∇
x

(i)
k

Jk,∇x(i)
k

Jk〉 > 0, and let α(i)
k → 0, i→

∞. It follows that H(∆x
(i)
k ,θ

(.)
k) converges asymptotically to a maximizer.

Proof. Fix θ(.)
k ∈ Ωθ and construct Mk such that Mk = {θ(.)

k ,Ωx} which we call a neighbor-
hood. Therefore, for (∆x

(i+1)
k ,θ

(.)
k), (∆x

(i)
k ,θ

(.)
k) ∈ Mk we may write a first-order Taylor series

expansion of H(∆x
(i+1)
k ,θ

(.)
k) around H(∆x

(i)
k ,θ

(.)
k) as

H(∆x
(i+1)
k ,θ

(.)
k) = H(∆x

(i)
k ,θ

(.)
k) + 〈∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k),∆x

(i+1)
k −∆x

(i)
k 〉. (12)

We substitute the update as α(i)
k

∇
∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k)

‖∇
∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k)‖2

to get

H(∆x
(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k) = 〈∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k), α

(i)
k

∇
∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k)

‖∇
∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k)‖2

〉.

(13)
The derivative ∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k) can be written as

∇
∆x

(i)
k

H(∆x
(i)
k ,θ

(.)
k)) ≤ ∇

∆x
(i)
k

[
βkJk(θ

(.)
k) + 〈∇

θ
(.)
k

V
(∗)
k ,∆θ

(.)
k 〉

+ 〈∇
x

(i)
k

V
(∗)
k ,∆x

(i)
k 〉
]

= ∇
x

(i)
k

V
(∗)
k ≤ ∇

x
(i)
k

Jk.
(14)

Substitution reveals

H(∆x
(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k) = α

(i)
k

〈∇
x

(i)
k

Jk,∇x(i)
k

Jk〉

‖∇
x

(i)
k

Jk‖2
(15)

for α(i)
k > 0; and under the assumption that 〈∇

x
(i)
k

Jk,∇x(i)
k

Jk〉 > 0 we obtain

H(∆x
(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k) = α

(i)
k

〈∇
x

(i)
k

Jk,∇x(i)
k

Jk〉

‖∇
x

(i)
k

Jk‖2
≥ 0. (16)

Let Bx = α
(i)
k

〈∇xk
Jk,∇xk

Jk〉
‖∇

x
(i)
k

Jk‖2 ≤ α(i)
k and therefore 0 ≤ H(∆x

(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k) ≤ α(i)

k .

We therefore have H(∆x
(i+1)
k ,θ

(.)
k) − H(∆x

(i)
k ,θ

(.)
k) ≥ 0 and H(∆x

(i)
k ,θ

(.)
k) is maximizing

with respect to ∆x
(i)
k . Furthermore, under the assumption that α(i)

k → 0, k → ∞, we have
H(∆x

(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k)→ 0 asymptotically and we have our result.

Similarly, we fix ∆x
(.)
k ∈ Ωx and construct Nk = {Ωθ,∆x(.)

k }, to prove that H is minimizing with
respect to θ(i)

k .

Lemma 3. For each k ∈ [0,K), fix ∆x
(.)
k ∈ Ωx and construct Nk = {∆x(.)

k ,Ωθ}. Then for
any (∆x

(i)
k ,θ

(.)
k) ∈ Nk define H(∆x

(i)
k ,θ

(.)
k) as in Eq. (11) with Proposition. 2 being true

and let θ(i+1)
k − θ(i)

k = −α(i)
k ∇θ(i)

k

H(∆x
(.)
k ,θ

(i)
k)). Assume that ‖∇

θ
(i)
k

Jk(θ
(i+ζ)
k)‖ ≤ L1 and

‖∇
θ

(i)
k

Jk+ζ(θ
(i)
k)‖ ≤ L2 and let α(i)

k → 0, i→∞. Then θ(i)
k converges to a local minimizer.

Proof. First, we fix ∆x
(.)
k ∈ Ωx and construct Nk = {Ωθ,∆x(.)

k }. For any
(∆x

(.)
k ,θ

(i)
k), (∆x

(.)
k ,θ

(i+1)
k) ∈ Nk we write a first-order Taylor series expansion of

H(∆x
(.)
k ,θ

(i+1)
k) around H(∆x

(.)
k ,θ

(i)
k) to write

H(∆x
(.)
k ,θ

(i+1)
k) = H(∆x

(.)
k ,θ

(i)
k) + 〈∇

θ
(i)
k

H(∆x
(.)
k ,θ

(i)
k),θ

(i+1)
k − θ(i)

k 〉. (17)

5

We then substitute θ(i+1)
k − θ(i)

k = −α(i)
k ∇θ(i)

k

H(∆x
(.)
k ,θ

(i)
k) to get

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) = −α(i)

k 〈∇θ(i)
k

H(∆x
(.)
k ,θ

(i)
k),∇

θ
(i)
k

H(∆x
(.)
k ,θ

(i)
k)〉.

(18)
Following Proposition 2, the derivative∇

θ
(i)
k

H(∆x
(.)
k ,θ

(i)
k) can be written as

∇
θ

(i)
k

H(∆x
(.)
k ,θ

(i)
k) ≤ ∇θk [βkJk(θ

(i)
k) + (Jk(θ

(i+ζ)
k)− Jk(θ

(i)
k)) + (Jk+ζ(θ

(i)
k)− Jk(θ

(i)
k))]

(19)
Simplification reveals

∇
θ

(i)
k

H(∆x
(.)
k ,θ

(i)
k)) ≤ ∇

θ
(i)
k

(βk − 2)Jk(θ
(i)
k) +∇

θ
(i)
k

Jk(θ
(i+ζ)
k) +∇θkJk+ζ(θ

(i)
k). (20)

Substitution therefore provides

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k)

≤ −α(i)
k 〈∇θ(i)

k

(βk − 2)Jk(θ
(i)
k) +∇

θ
(i)
k

Jk(θ
(i+ζ)
k) +∇

θ
(i)
k

Jk+ζ(θ
(i)
k),

∇
θ

(i)
k

(βk − 2)Jk(θ
(i)
k) +∇

θ
(i)
k

Jk(θ
(i+ζ)
k) +∇θkJk+ζ(θ

(i)
k)〉. (21)

Opening the square with Cauchy’s inequality provides

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) ≤ −α(i)

k

[
‖∇

θ
(i)
k

(βk − 2)Jk(θk)‖2

+ ‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖2 + ‖∇θkJk+ζ(θ

(i)
k)‖2

+ 2‖∇
θ

(i)
k

(βk − 2)Jk(θk)‖‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖

+ 2‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖‖∇θkJk+ζ(θ

(i)
k)‖

+ 2‖∇
θ

(i)
k

(βk − 2)Jk(θk)‖‖∇θkJk+ζ(θ
(i)
k)‖

]
.

(22)

We simplify with Young’s inequality to achieve

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) ≤ −α(i)

k

[
‖∇

θ
(i)
k

(βk − 2)Jk(θk)‖2

+ ‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖2

+ ‖∇θkJk+ζ(θ
(i)
k)‖2

+ ‖∇
θ

(i)
k

(βk − 2)Jk(θk)‖2

+ ‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖2

+ ‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖2

+ ‖∇θkJk+ζ(θ
(i)
k)‖2

+ ‖∇
θ

(i)
k

(βk − 2)Jk(θk)‖2

+ ‖∇θkJk+ζ(θ
(i)
k)‖2

]
.

(23)

Further simplification results in

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) ≤ −α(i)

k

[
3‖∇

θ
(i)
k

(βk − 2)Jk(θk)‖2

+ 3‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖2 + 3‖∇θkJk+ζ(θ

(i)
k)‖2

]
.

(24)

With the assumption that ‖∇
θ

(i)
k

Jk(θ
(i+ζ)
k)‖ ≤ L1 and ‖∇θkJk+ζ(θ

(i)
k)‖ ≤ L2,, we may write

H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) ≤ −α(i)

k Bθ, (25)

6

whereBθ =

[
((
√

3βk−2
√

3)2 +3)L2
1 +3L2

2

]
. Assuming that α(i)

k is chosen such that α(i)
k → 0, we

obtainH(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k)→ 0 as i→∞ andH(∆x

(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) <

0. Therefore H converges to a local minimizer.

From here on, we will define our cost function as H whereever convinient for simplicity of notations.
Since, for any k, there exists a local maximizer ∆x

(∗)
k ∈ Ωx, we may define N (∗)

k = {∆x(∗)
k ,Ωθ}

where the set Ωx is comprised of a local maximizer ∆x
(∗)
k

Lemma 4. For any k ∈ [0,K), let θ(∗)
k ∈ Ωθ, be the minimizer of H according to Lemma 3

and defineM(∗)
k = {Ωx,θ(∗)

k }. Then for (∆x
(∗)
k ,θ

(∗)
k), (∆x

(i)
k ,θ

(∗)
k) ∈ M(∗)

k , H(∆x
(∗)
k ,θ

(∗)
k) ≥

H(∆x
(i)
k ,θ

(∗)
k), where ∆x

(∗)
k is a maximizer for H according to Lemma. 2.

Proof. By Lemma 3, for each k ∈ [0,K), there exists a minimizer θ(∗)
k ∈ Ωθ such that

M(∗)
k = {Ωx,θ(∗)

k }. Therefore by Lemma 2, H(∆x
(i+1)
k ,θ

(∗)
k) − H(∆x

(i)
k ,θ

(∗)
k) ≥ 0 for

(∆x
(i+1)
k ,θ

(∗)
k), (∆x

(i)
k ,θ

(∗)
k) ∈ M(∗)

k . Let ∆x
(∗)
k ∈ Ωx be the converging point according to

Lemma 2. Then, for (∆x
(∗)
k ,θ

(∗)
k), (∆x

(i)
k ,θ

(∗)
k) ∈M(∗)

k a H(∆x
(∗)
k ,θ

(∗)
k)−H(∆x

(i)
k ,θ

(∗)
k) ≥ 0.

by Lemma 2 which provides the result.

Lemma 5. For any k ∈ [0,K), let ∆x
(∗)
k ∈ Ωx, be the maximizer of H according to Lemma 2

and define N (∗)
k = {∆x(∗)

k ,Ωθ}. Then for (∆x
(∗)
k ,θ

(∗)
k), (∆x

(∗)
k ,θ

(i)
k) ∈ N (∗)

k , H(∆x
(∗)
k ,θ

(∗)
k) ≤

H(∆x
(∗)
k ,θ

(i)
k), where θ(∗)

k is a minimizer for H according to Lemma. 2.

Proof. By Lemma 2, for each k ∈ [0,K), there exists a maximizer ∆x
(∗)
k ∈ Ωx, such that

N (∗)
k = {∆x(∗)

k ,Ωθ}. Therefore by Lemma 3, H(∆x
(∗)
k ,θ

(i+1)
k) − H(∆x

(∗)
k ,θ

(i)
k) ≤ 0 for

(∆x
(∗)
k ,θ

(i+1)
k), (∆x

(∗)
k ,θ

(i)
k) ∈ N (∗)

k . Let θ(∗)
k ∈ Ωθ be the converging point according to Lemma 3.

Then, for (∆x
(∗)
k ,θ

(∗)
k), (∆x

(∗)
k ,θ

(i)
k) ∈M(∗)

k , H(∆x
(∗)
k ,θ

(∗)
k)−H(∆x

(∗)
k ,θ

(i)
k) ≤ 0 by Lemma 3

which provides the result.

Next, we prove that the union of the two neighborhoods for each kM(∗)
k ∪N

(∗)
k , is non-empty.

Lemma 6. For any k ∈ [0,K), let θ(∗)
k ∈ Ωθ, be the minimizer of H according to Lemma 3 and

defineM(∗)
k = {Ωx,θ(∗)

k }. Similarly, let ∆x
(∗)
k ∈ Ωx, be the maximizer of H according to Lemma 2

and define N (∗)
k = {∆x(∗)

k ,Ωθ}. Then,M(∗)
k ∪N

(∗)
k is nonempty.

Proof. LetM(∗)
k ∪ N

(∗)
k be empty. Then, for any (∆x

(i+1)
k ,θ

(.)
k), (∆x

(i)
k ,θ

(.)
k) ∈ M(∗)

k ∪ N
(∗)
k ,

H(∆x
(i+1)
k ,θ

(.)
k)−H(∆x

(i)
k ,θ

(.)
k) is undefined because the union is empty. This contradicts Lemma

5. Similarly, H(∆x
(.)
k ,θ

(i+1)
k)−H(∆x

(.)
k ,θ

(i)
k) for (∆x

(.)
k ,θ

(i+1)
k), (∆x

(.)
k ,θ

(i)
k) ∈M(∗)

k ∪N
(∗)
k

also contradicts Lemma 4. Therefore, by contradiction,Mk ∪Nk cannot be empty.

2.1 Final Results

We are now ready to present the main results. We show that there exists an equilibrium point (Theo-
rem 1) and that the equilibrium point is stable (Theorem 2).

Theorem 1 (Existence of an Equilibrium Point). For any k ∈ [0,K), let θ(∗)
k ∈ Ωθ, be the minimizer

of H according to Lemma 5 and define M(∗)
k = {Ωx,θ(∗)

k }. Similarly, let ∆x
(∗)
k ∈ Ωx, be the

maximizer of H according to Lemma 4 and define N (∗)
k = {∆x(∗)

k ,Ωθ}. Further, letM(∗)
k ∪N

(∗)
k

be nonempty according to Lemma. 6, then (∆x
(∗)
k ,θ

(∗)
k) ∈M(∗)

k ∪N
(∗)
k is a local equilibrium point.

7

Proof. By Lemma 5 we have at (∆x
(∗)
k ,θ

(∗)
k), (∆x

(∗)
k ,θ

(i)
k) ∈M(∗)

k ∪N
(∗)
k that

H(∆x
(∗)
k ,θ

(∗)
k) ≤ H(∆x

(∗)
k ,θ

(i)
k). (26)

Similarly, according to Lemma 4, at (∆x
(∗)
k ,θ

(∗)
k), (∆x

(i)
k ,θ

(∗)
k) ∈M(∗)

k ∪N
(∗)
k we have

H(∆x
(∗)
k ,θ

(∗)
k) ≥ H(∆x

(i)
k ,θ

(∗)
k). (27)

Putting these inequalities together, we get

H(∆x
(∗)
k ,θ

(i)
k) ≥ H(∆x

(∗)
k ,θ

(∗)
k) ≥ H(∆x

(i)
k ,θ

(∗)
k), (28)

which is the saddle point condition, and therefore (∆x
(∗)
k ,θ

(∗)
k) is a local equilibrium point in

M(∗)
k ∪N

(∗)
k .

According to the preceeding theorem, there is at least one equillibrium point for the game summarized
by H .

Theorem 2 (Stability of the Equilibrium Point). For any k ∈ [0,K), ∆x
(i)
k ∈

Ωx and θ
(i)
k ∈ Ωθ be the initial values for ∆x

(i)
k and θ

(i)
k respectively. Define

Mk = {Ωx,Ωθ} with H(∆x
(i)
k ,θ

(i)
k) given by Proposition 2. Let ∆x

(i+1)
k − ∆x

(i)
k =

α
(i)
k × (∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k))/‖∇

∆x
(i)
k

H(∆x
(i)
k ,θ

(.)
k)‖2) and θ

(i+1)
k − θ

(i)
k = −α(i)

k ×

∇
θ

(i)
k

H(∆x
(.)
k ,θ

(i)
k). Let the existence of an equilibrium point be given by Theorem 1, then as

a consequence of Lemma 2 and 3 (∆x
(∗)
k ,θ

(∗)
k) ∈Mk is a stable equilibrium point for H .

Proof. Consider now the order of plays by the two players. By Lemma 2, a game starting at
(∆x

(i)
k ,θ

(i)
k) ∈ Mk will reach (∆x

(∗)
k ,θ

(i)
k) which is a maximizer for H. Now, define Nk =

(∆x
(∗)
k ,Ωθ) ⊂Mk then a game starting at (∆x

(∗)
k ,θ

(i)
k) ∈ Nk will converge to (∆x

(∗)
k ,θ

(∗)
k) ∈ Nk

according to Lemma 3. Since, Nk ⊂Mk, our result follows.

3 Experimental Details

Much of this information is a repetition of details provided in [3, 11].

1. Incremental Domain Learning (IDL): Incremental domain refers to the scenario when each
new task introduces changes in the marginal distribution of the inputs. This scenario has
been extensively discussed in the domain adaptation literature, where this shift in domain is
typically referred to as “non-stationary data distribution" or domain shift. Overall, we aim
to transfer knowledge from the old task to a new task where each task can be different in the
sense of their marginal distribution.

2. Incremental Class Learning (ICL): In this scenario, each task contains an exclusive subset
of classes. The number of output nodes in a model equals the number of total classes in the
task sequence. For instance, tasks could be constructed by using exactly one class from the
MNIST data set where we aim to transfer knowledge from one class to another.

3. Incremental Task Learning (ITL): In this setup, the output spaces are disjoint between
tasks[for example, the previous task can be a classification problem of five classes, while
the new task can be a regression. This scenario is the most generic and allows for the tasks
to be defined arbitrarily. For each tasks, a model requires task-specific identifiert.

Split-MNIST For split-MNIST, the original MNIST-data set is split into five partitions where each
partition is a two-way classification. We pick 60000 images for training (6000 per digit) and 10000
images for test, i.e. (1000 per digit). For the incremental task learning in the split-MNIST experiment,
the ten digits are split into five two-class classification tasks (the model has five output heads, one for
each task) and the task identity (1 to 5) is given for test. For the incremental class learning setup, we
require the model to make a prediction over all classes (digits 0 to 9). For the incremental domain
learning, the model always predicts over two classes.

8

Permuted-MNIST For permuted-MNIST, we permute the pixels in the MNIST data to create tasks
where each task is a ten-way classification. The three CL scenarios that are generated for the permuted-
MNIST are similar to the Split-MNIST data set except for the idea that the different tasks are now
generated by applying random pixel permutations to the images. For incremental task learning, we
use a multi-output strategy, and each task is attached to a task identifier. For incremental domain and
class, we use a single output strategy and each task as one where one of the 10 digits are predicted. In
incremental class learning, for each new task 10 new classes are generated by permuting the MNIST
data set. For incremental task and domain, we use a total of 10 tasks whereas for incremental classes,
we generate a total of 100 tasks.

Network Architecture We keep our architecture identical to what is provided in [3, 11]. The loss
function is categorical cross-entropy for classification. All models were trained for 2 epochs per task
with a minibatch size of 128 using the Adam optimizer (β1 = 0.9, β2 = 0.999, learning rate= 0.001
) as the default. For BCL, the size of the buffer (i.e., a new task array) DN (k) and a task memory
array (samples from all the previous tasks) DP (k)) is kept equivalent to naive rehearsal and other
memory-driven approaches such as GEM and MER (16, 000 samples).

Comparison Methods – Baseline Strategies Additional details can be found from [3, 11]

1. A sequentially-trained neural network with different optimizers such as SGD, Adam [4],
and Adagrad [2].

2. A standard L2−regularized neural network where each task is shown sequentially.

3. Naive rehearsal strategy (experience replay) where a replay buffer is initialized and data
corresponding to all the previous tasks are stored. The buffer size is chosen to match the
space overhead of online EWC and SI.

Comparison Method-CL We compared the following CL methods:

1. EWC [5] / Online EWC [9] / SI [12]: For these methods, a regularization term is added
to the loss, with a hyperparameter used to control the regularization strength such that:
L(total) = L(current) + λL(regularization). λ is set through a hyperparameter.

2. LwF [6] / DGR [10] Here, we set the loss to be L(total) = αL(current)+(1α)L(replay)
where hyperparameter α is chosen according to how many tasks have been seen by the
model.

3. For RtF [11], MAS [1], GEM[7] and MER[8], we refer to the respective publication for
details.

Additional details about the experiments can be found in [3] as our paper retains their hyper-parameters
and the experimental settings.

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne Tuyte-

laars. Memory aware synapses: Learning what (not) to forget. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 139–154, 2018.

[2] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(7), 2011.

[3] Yen-Chang Hsu, Yen-Cheng Liu, Anita Ramasamy, and Zsolt Kira. Re-evaluating continual
learning scenarios: A categorization and case for strong baselines. In NeurIPS Continual
learning Workshop, 2018.

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[5] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al.
Overcoming catastrophic forgetting in neural networks. Proceedings of the National Academy
of Sciences, 114(13):3521–3526, 2017.

9

[6] Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947, 2017.

[7] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
In Advances in neural information processing systems, pages 6467–6476, 2017.

[8] Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Ger-
ald Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910, 2018.

[9] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-Barwinska,
Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress: A scalable framework
for continual learning. In International Conference on Machine Learning, pages 4528–4537.
PMLR, 2018.

[10] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep
generative replay. arXiv preprint arXiv:1705.08690, 2017.

[11] Gido M. van de Ven and Andreas S. Tolias. Generative replay with feedback connections as a
general strategy for continual learning, 2019.

[12] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. Proceedings of Machine Learning Research, 70:3987, 2017.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of
Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Of-
fice of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The
U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclu-
sive, irrevocable worldwide license in said article to reproduce, prepare derivative works,
distribute copies to the public, and perform publicly and display publicly, by or on be-
half of the Government. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan.
http://energy.gov/downloads/doe-public-access-plan

10

http://energy.gov/downloads/doe-public-access-plan

	Additional Results
	Main results
	Final Results

	Experimental Details

