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Abstract

Gaussian processes are machine learning models capable of learning unknown
functions in a way that represents uncertainty, thereby facilitating construction
of optimal decision-making systems. Motivated by a desire to deploy Gaussian
processes in novel areas of science, a rapidly-growing line of research has focused
on constructively extending these models to handle non-Euclidean domains, in-
cluding Riemannian manifolds, such as spheres and tori. We propose techniques
that generalize this class to model vector fields on Riemannian manifolds, which
are important in a number of application areas in the physical sciences. To do so,
we present a general recipe for constructing gauge independent kernels, which
induce Gaussian vector fields, i.e. vector-valued Gaussian processes coherent with
geometry, from scalar-valued Riemannian kernels. We extend standard Gaussian
process training methods, such as variational inference, to this setting. This enables
vector-valued Gaussian processes on Riemannian manifolds to be trained using
standard methods and makes them accessible to machine learning practitioners.

1 Introduction

Gaussian processes are an effective model class for learning unknown functions. They are particularly
attractive for use within data-efficient decision systems, including Bayesian optimization [3, 32, 39],
model-based reinforcement learning [34, 7], and active learning [21]. In these settings, Gaussian
processes can represent and propagate uncertainty, as well as encode inductive biases as prior
information in order to drive data efficiency. A key aspect of prior information is the geometry of
the domain on which the Gaussian process is defined, which often encodes key properties, such as
symmetry. Following the growing deployment of Gaussian processes, a number of recent works have
focused on how to define Gaussian processes on non-Euclidean domains in ways that reflect their
geometric structure [2, 1].

In many applications, such as climate science, quantities of interest are vector-valued. For example,
global wind velocity modeling must take into account both speed and direction, and is represented by a
vector field. On geometric domains, the mathematical properties of vector fields can differ noticeably
from their Euclidean counterparts: for instance, one can prove that every smooth vector field on a
sphere must vanish in at least one point [26]. Behavior such as this simultaneously highlights the
need to represent geometry correctly when modeling vector-valued data, and presents a number of
non-trivial technical challenges in constructing models that are mathematically sound.
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For a general implementation, see https://github.com/GPflow/GeometricKernels/.
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In particular, even the classical definition of a vector-valued Gaussian process—that is, a random
function with multivariate Gaussian marginals at any finite set of points—already fails to be a fully
satisfactory notion when considering smooth vector fields on a sphere. This is because tangent
vectors at distinct points live within different tangent spaces, and it is not clear how to construct
a cross-covariance between them that does not depend on a completely arbitrary choice of basis
vectors within each space. Constructions that are independent of this choice of basis are called gauge
independent, and recent work [45, 5, 15] in geometric machine learning has focused on satisfying
this key property for convolutional neural networks that deal with non-Euclidean data.

Our contributions include the following. We (a) present a differential-geometric formalism for
defining Gaussian vector fields on manifolds in a coordinate-free way, suitable for Gaussian process
practitioners with minimal familiarity with differential geometry, (b) present a universal and fully
constructive technique for defining prior Gaussian vector fields on Riemannian manifolds, which
we term the projected kernel construction, and (c) discuss how to adapt key components in the
computational Gaussian process toolkit, such as inducing point methods, to the vector field setting.

The structure of the paper is as follows. In Section 2, we define vector-valued Gaussian processes on
smooth manifolds. We start by reviewing the multi-output Gaussian process set-up, which is typically
used in machine learning. We then detail a differential-geometric formalism for defining vector-
valued Gaussian processes on smooth manifolds. In Section 3, we provide a concrete construction
for these Gaussian processes on Riemannian manifolds and discuss how they can be trained using
variational sparse approximations. Section 4 showcases Gaussian vector fields on two tasks, namely
weather imputation from satellite observations and learning the dynamics of a mechanical system.

2 Vector-valued Gaussian Processes on Smooth Manifolds

A vector-valued Gaussian process (GP) is a random function f : X → Rd such that, for any
finite set of points x ∈ Xn, the random variable f(x) ∈ Rn×d is jointly Gaussian. Every such
GP is characterized by its mean function µ : X → Rd and matrix-valued covariance kernel
k : X ×X → Rd×d, which is a positive-definite function in the matrix sense. These functions satisfy
E(f(x)) = µ(x) and Cov(f(x),f(x′)) = k(x,x′) for any x,x′ ∈ X . Here, dependence between
function values is encoded in the kernel’s variability along its input domain, and correlations between
different dimensions of the vector-valued output are encoded in the matrix that the kernel outputs.

Consider a function f with y = f(x) + ε, where ε ∼ N(0, σ2I) and training data (x,y). Placing
a GP prior f ∼ GP(0, k) on the unknown function results in a GP posterior, whose mean and
covariance are given by

E(f | y) = K(·)x(Kxx + σ2I)−1y Cov(f | y) = K(·,·) −K(·)x(Kxx + σ2I)−1Kx(·). (1)

Here, (·) denotes an arbitrary set of test locations, Kxx = k(x,x) is the kernel matrix, and
K(·)x = k(x, ·) is the cross-covariance matrix between function values evaluated at the training and
test inputs. The GP posterior can also be written as

(f | y)(·) = f(·) + K(·)x(Kxx + σ2I)−1(y − f(x)− ε), ε ∼ N(0, σ2I) (2)

where f(·) is the prior GP, and equality holds in distribution [47, 48]. These expressions form the
foundation upon which Gaussian-process-based methods in machine learning are built.

Recent works have studied techniques for working with the expressions (1) and (2) when the input
domain X is a Riemannian manifold, focusing both on defining general classes of kernels [2], and on
efficient computational techniques [47, 48]. In this setting, namely for f : X → R, defining kernels
already presents technical challenges: the seemingly-obvious first choice one might consider, namely
the geodesic squared exponential kernel, is ill-defined in general [13]. We build on these recent
developments to model vector fields on manifolds using GPs. We do not consider manifold-valued
generalizations of Gaussian processes, for instance f : R→ X: various constructions in this setting
are instead studied by Stroock [40], Émery [11], Mallasto and Feragen [29], and Mallasto et al. [30].
To begin, we review what a vector field on a manifold actually is.

2.1 Vector Fields on Manifolds

Let X be a d-dimensional smooth manifold with TxX denoting its tangent space at x. Let
TX = {(x, v) |x ∈ X, v ∈ TxX} be its tangent bundle, and let T ∗X = {(x, φ) |x ∈ X,φ ∈ T ∗xX}
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Figure 1: Illustration on S2. Here we illustrate two possible bases (also called frames), consisting of
green and orange basis vectors (center), that can be chosen locally on the manifold S2. The vector
field on S2 (right) can be produced by taking two scalar fields (left) in each respective color, and
combining them with the basis vectors (center) to form the vector field.

be its cotangent bundle—endow both spaces with the structure of smooth manifolds. Define the pro-
jection map projX : TX → X by projX(x, v) = x. A vector field on X is a map that assigns each
point in X to a tangent vector attached to that point. More formally, a vector field is a cross-section,
or simply a section, of the tangent bundle, which is a map f : X → TX , such that projX f(x) = x
for all x.1 A vector field is called smooth if this map f is smooth.

To represent a vector field on a manifold numerically, one must choose a basis in each tangent
space, which serves as a coordinate system for vectors in the tangent space. On many manifolds
it is impossible to choose these basis vectors in a way that they vary smoothly in space.2 This can
be handled by working with local coordinates, or with bases that are non-smooth. Any chosen set
of basis vectors is arbitrary, so objects constructed using them should not depend on this choice.
Constructions that satisfy this property are called gauge independent. This notion is illustrated in
Figure 1, and will play a key role in the sequel.

2.2 Gaussian Vector Fields

Upon reflecting on the above considerations in the context of GPs, the first issue one encounters is
that, for a random vector field f : X → TX , it is not clear what it means for finite-dimensional
marginal distributions to be multivariate Gaussian given that f takes its values in a bundle rather
than a vector space. The first step towards constructing Gaussian vector fields, therefore, involves
adapting the notion of finite-dimensional marginal distributions appropriately.

Definition 1. Let X be a smooth manifold. We say that a random vector field f is Gaussian if for any
finite set of locations x1, . . . , xn ∈ X , the random vector (f(x1), . . . , f(xn)) ∈ Tx1X⊕ . . .⊕TxnX
is Gaussian (either in the sense of duality or in any basis: see Appendix A for details).

This definition is near-identical to the Euclidean case: the only difference is that finite-dimensional
marginals are now supported in a direct sum of tangent spaces, instead of Rn×d. With this definition,
the standard multi-output GP properties, such as conditioning, carry over, virtually unmodified.
Definition 1 is a natural choice: if we embed our manifold into Euclidean space, the induced GP is a
vector-valued GP as defined in the beginning of Section 2.

1A vector field is not the same as a map f̃ : X → Rd: an output value f(x) ∈ TX formally consists of both
a copy of the input point x, and vector within the tangent space TxX at this point. This encodes the geometric
structure of the underlying manifold. The algebraic requirement projX f(x) = x for all x ensures that the
tangent vector chosen correctly corresponds to the point at which it is attached.

2If a smooth choice of basis vectors existed, it would define a smooth non-vanishing vector field. On the
sphere, by the hairy ball theorem, all smooth vector fields vanish in at least one point, so no such bases exist.
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Proposition 2. Let X be a manifold and emb : X → Rp be a smooth embedding. Let f be a
Gaussian vector field (as defined in Definition 1), and let femb : emb(X)→ Rp be its pushforward
along the embedding. Then femb is a vector-valued Gaussian process in the Euclidean sense.

All proofs in this work can be found in Appendix A. Having established the notion of a vector-valued
Gaussian process on a smooth manifold, we proceed to deduce what mathematical objects play the
role of a mean function and kernel, so that it is clear what ingredients are needed to construct and
determine such a process.

The former is clear: the mean of a Gaussian vector field should be an ordinary vector field, and will
determine the mean vector at all finite-dimensional marginals. The kernel, on the other hand, is less
obvious: because distinct tangent vectors live in different tanget spaces, it is unclear whether or not
a Gaussian vector field is characterized by an appropriate notion of a matrix-valued kernel, or by
something else. Now, we define the right notion for kernel in this setting.
Definition 3. We call a symmetric function k : T ∗X × T ∗X → R fiberwise bilinear if for all pairs
of points x, x′ ∈ X

k(λαx + µβx, γx′) = λk(αx, γx′) + µk(βx, γx′) (3)

holds for any αx, βx ∈ T ∗xX , γx′ ∈ T ∗x′X and λ, µ ∈ R, and positive semi-definite if for any set
of covectors αx1 , . . . , αxn ∈ T ∗X , we have

∑n
i=1

∑n
j=1 k(αxi , αxj ) ≥ 0. We call a symmetric

fiberwise bilinear positive semi-definite function a cross-covariance kernel.

This coordinate-free function should be viewed as analogous to ((x,v), (x′,v′)) 7→ vTKx,x′v
′ in

the Euclidean setting, where v,v′ multiply the matrix-valued kernel from both sides. Its coordinate
representation, which more closely matches the Euclidean case, will be explored in the sequel. To
show that this is indeed the right notion, we prove the following result.
Theorem 4. The system of marginal distributions of a Gaussian vector field on a smooth manifold
X is uniquely determined by a mean vector field µ : X → TX and a cross-covariance kernel
k : T ∗X × T ∗X → R. Moreover, this correspondence is one-to-one.

By virtue of defining and characterizing all Gaussian vector fields, Theorem 4 assures us the definition
of a kernel introduced is the correct mathematical notion. The constructions presented here are all
intrinsic or, in other words, coordinate-free, and do not involve the use of bases. To understand
how to perform numerical calculations with these kernels we proceed to study their coordinate
representations with respect to a specific choice of basis.

2.3 Matrix-valued Kernels

In Section 2.2, we defined what a Gaussian vector field on a manifold is. However, by nature of the
manifold setting, the resulting objects are more abstract than usual and do not describe how it can be
represented numerically. We now develop a point of view suitable for this task.

To this end, we introduce a frame F on X , also known as a gauge in physical literature, which
is a collection of (not necessarily smooth) vector fields e1, . . . , ed on X such that at each point
x ∈ X , the set of vectors e1(x), . . . , ed(x) forms a basis of TxX . The frame allows us to express
a vector field f on X as simply a vector-valued function f = (f1, . . . , fd) : X → Rd, such that
f(x) =

∑d
i=1 f

i(x)ei(x) for all x ∈ X . The corresponding coframe F ∗ is defined as a collection
e1, . . . , ed of covector fields (one-forms) on X such that

〈
ei(x)|ej(x)

〉
= δij for all x ∈ X , where

δij is the Kronecker delta. In the following proposition, we show that if f is a Gaussian vector field
on X (in the sense of Definition 1), then the corresponding vector representation f expressed in a
given frame is a vector-valued GP in the standard sense.
Proposition 5. Let f be a Gaussian vector field defined on X with cross-covariance kernel
k : T ∗X × T ∗X → R. Given a frame F = (e1, . . . , ed) on X , define f : X → Rd as above.
Then f is a vector-valued GP in the usual sense with kernel KF : X ×X → Rd×d given by

KF (x, x′) =

k(e1(x), e1(x′)) . . . k(e1(x), ed(x′))
...

. . .
...

k(ed(x), e1(x′)) . . . k(ed(x), ed(x′))

 , (4)
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where (ei), with raised indices, is the coframe corresponding to (ei). Conversely, given a vector-
valued GP f = (f1, . . . , fd) : X → Rd and a frame F = (e1, . . . , ed) on X , f(·) :=∑d
i=1 f

i(·)ei(·) defines a Gaussian vector field on X .

This result shows precisely how numerical representations of a Gaussian vector field depends on
the choice of frame. While this representation is not invariant under this choice, it is equivariant,
meaning that a transformation in the frame results in an appropriate transformation of the kernel. To
make this notion precise, we introduce a matrix subgroup G = GL(d,R), called the gauge group,
that acts on Rd by a standard matrix-vector multiplication. Given two frames F, F ′ on X , an abstract
vector fx ∈ TxX has two vector representations fx,f

′
x in the respective frames. We say that F ′ is

obtained from F by a gauge transformation with respect to a matrix field A : X → G ⊆ Rd×d, if

f ′x = A(x)fx (5)

holds for all x ∈ X , and we write F ′ = AF . Note that A(x) need not be smooth in x. We see
that the gauge transformation is therefore just a linear change of basis of the frame F at each point
for which one can identify vectors in TxX as elements in Rd. The corresponding gauge dependant
matrix-valued kernels must also respect this transformation rule, a statement of gauge independence.
Corollary 6. Let F be a frame on X and KF : X × X → Rd×d be the corresponding matrix
representation (4) of a cross-covariance kernel k : T ∗X ×T ∗X → R. This satisfies the equivariance
condition

KAF (x, x′) = A(x)KF (x, x′)A(x′)T , (6)
where A : X → G ⊆ Rd×d is a gauge transformation. All cross-covariance kernels in the sense of
Proposition 4 arise this way.

Hence, one way to define a Gaussian vector field on a manifold is to find a gauge independent kernel.
In summary, we have described Gaussian vector fields in a coordinate-free differential-geometric
language, and deduced enough properties to confirm the objects defined truly deserve to be called GPs.
In doing so, we have both introduced the necessary formalism to the GP community, and obtained
a recipe for defining kernels, through a simple condition atop standard matrix-valued kernels. To
proceed towards practical machine learning methods, we therefore study techniques for constructing
such kernels explicitly.

3 Model Construction and Bayesian Learning for Riemannian Manifolds

In Section 2, we introduced a notion of a Gaussian vector field. We now study how to use vector
fields for machine learning purposes. This entails two primary issues: (a) how to construct practically
useful kernels, and (b) once a kernel is constructed, how to train Gaussian processes.

To construct a Gaussian vector field prior, the preceding theory tells us that we need to specify a mean
vector field and a cross-covariance kernel. From the definition, it is not at all obvious how to specify
a natural kernel, and experience with the scalar-valued case—where the innocuous-looking geodesic
squared exponential kernel is generally not positive semi-definite on most Riemannian manifolds
[13]—suggests that the problem is delicate, i.e., simply guessing the kernel’s form is unlikely to
succeed. Our goal, therefore, is to introduce a general construction for building wide classes of
kernels from simple building blocks.

The same issues are present if we consider variational approximations to posterior GPs, such as
the inducing point framework of Titsias [43]: these are formulated using matrix-vector expressions
involving kernel matrices, and it is important for the approximate posterior covariance to be gauge
independent in order to lead to a valid approximate process. We proceed to address these issues.

3.1 Projected Kernels

Here, we introduce a general technique for defining cross-covariance kernels k : T ∗X × T ∗X → R
and for working with such functions numerically. Section 2 gives us a promising strategy to construct
a suitable kernel—namely, it suffices to find a gauge independent matrix-valued kernel. At first
glance, it is not obvious how to construct such a kernel in the manifold setting. On many manifolds,
such as the sphere, owing to the hairy ball theorem, every frame must be discontinuous: therefore,
constructing a continuous kernel in such a choice of frame appears difficult.
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Scalar processes Embedded process Projected process

Figure 2: Illustration of the construction process of the projected process. The manifold S2 is
embedded into R3. Three identical scalar GPs (left) are placed on the manifold. These three scalar
GPs are combined to construct a vector-valued GP in the ambient Euclidean space (center). This GP
is then projected onto the tangent space of S2 as a subspace of the tangent space of R3 (right).

To both get around these obstacles, and aid numerical implementation, we propose to isometrically
embed the manifold into Euclidean space.3 Doing so greatly simplifies these issues by virtue of
making it possible to represent the manifold using a single global coordinate system. On the other
hand, the main trade-off from this choice is that by its extrinsic nature, the construction can make
theoretical analysis more difficult. To proceed, we need two ingredients.

1. An isometric embedding emb : X → Rd′ of the manifold.

2. A vector-valued Gaussian process f ′ : X → Rd′ in the standard sense.4

A simple choice which reflects the geometry of the manifold is to take f ′ to be d′ independent
scalar-valued GPs on X .

By standard results in differential geometry, any smooth map φ : X → X ′ between two manifolds
induces a corresponding linear map on the tangent spaces dxφ : TxX → Tφ(x)X

′, which can
loosely be thought of as mapping φ to its first-order Taylor expansion at x. Thus, an embedding
emb : X → Rd′ , induces a map dxemb : TxX → Temb(x)Rd

′
. Now fixing a frame F on X , each

tangent space TxX can be identified with Rd, so without loss of generality, the map dxemb can
be expressed simply as a position-dependent matrix PT

x ∈ Rd′×d. Taking the transpose, we obtain
Px ∈ Rd×d′ , which we call the projection matrix. The desired Gaussian vector field on X , with
respect to F , is then constructed as f(x) = Pxf

′(x). This procedure is illustrated in Figure 2: there
we see that to get a vector field on an R3-embedded sphere, we may take a vector-valued function on
it and project its values to make vectors tangential to this sphere, thus obtaining a valid vector field.
Since the projection operator preserves smoothness and since we can take a smooth vector-valued GP
to begin with, it is clear that this approach may be used to build smooth vector fields.

We prove that (a) the resulting expression is, indeed, a kernel, and that (b) no expressivity is lost via
the construction because all cross-covariance kernels arise this way.

Proposition 7. Let (X, g) be a Riemannian manifold, emb : X → Rd′ be an isometric embedding
and F be a frame on X . We denote by P(·) : X → Rd×d′ the associated projection matrix
under F , and let f ′ : X → Rd′ be any vector-valued Gaussian process with matrix-valued kernel
κ : X × X → Rd′×d′ . Then, the vector-valued function f = Pf ′ defines a Gaussian vector
field f on X using the construction in Proposition 5, whose kernel under the frame F has matrix
representation

KF (x, x′) = Pxκ(x, x′)PT
x′ . (7)

3An embedding emb : X → Rd′ is called isometric if it preserves the metric tensor. By Nash’s Theorem
[26], such embeddings exist for any d-dimensional manifold, with an embedded dimension d′ ≤ 2d+ 1.

4We emphasize again that f ′ is not a Gaussian vector field because it is not a random section. In particular,
note that d′ > d for most embeddings.
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Figure 3: Random samples from Gaussian processes with gauge independent projected kernels, on
the torus and Klein bottle, respectively. The latter is a non-orientable manifold: the ability to handle
such cases highlights the generality of projected kernels.

Moreover, all cross-covariance kernels k : T ∗X×T ∗X → R arise this way. We call a kernel defined
this way a projected kernel.

To construct these kernels we require scalar-valued kernels on manifolds to use as a basic building
block. These are studied in the general Riemannian setting by Lindgren et al. [28] and Borovitskiy
et al. [2]: relying on these kernels is the only reason we require the Riemannian structure. It is also
possible to obtain such kernels using embeddings, following Lin et al. [27]. Similar techniques to
those we consider are used by Freeden and Schreiner [14] to construct vector-valued zonal kernels
on the sphere: in contrast, we work with arbitrary manifolds. The projection kernel idea is a very
general way to build kernels for vector fields by combining scalar kernels, but effective scalar kernels,
naturally, rely on Riemannian structure.5 Figure 3 shows random samples from Gaussian processes
constructed with the described kernels.

The projected kernel construction both makes it easy to define cross-covariance kernels on general
manifolds, and describes a straightforward way to implement them numerically by representing
the embedded manifold in coordinates and calculating the resulting matrix-vector expressions. The
constructed kernel depends on the embedding, but can be transformed appropriately if switching to
a different embedding. Embeddings, in turn, are available for most manifolds of practical interest,
and are obtained automatically for manifolds approximated numerically as meshes. Everything
described is constructive and fully compatible with the modern automatic-differentiation-based
machine learning toolkit, and most operations for constructing and/or sampling from specialized
priors [44, 22, 23], including on spaces such as the sphere where specific analytic tools are available
[6, 8, 10, 9]. With these kernels in hand, we thus proceed to study training methods.

3.2 Gauge Independent Variational Approximations

We now discuss variational inference for training GPs in the Riemannian vector field setting. Approx-
imations, such as the inducing-point framework by Titsias [43] and Hensman et al. [17], approximate
the posterior GP with another GP, termed the variational approximation. The latter is typically
constructed by specifying a multivariate Gaussian at a set of test locations with a parameterized mean
and kernel matrix. For example, Opper and Archambeau [31] consider N(m,S), where

m = K(·)z(Kzz + Σ)−1µ S = K(·,·) −K(·)z(Kzz + Σ)−1Kzz(Kzz + Σ)−1Kz(·). (8)

The variational parameters include a set of inducing locations z, a mean vector µ, and a block-
diagonal cross-covariance matrix Σ. Training proceeds by optimizing these parameters to minimize
the Kullback–Leibler divergence of the variational distribution from the true posterior, typically using
mini-batch stochastic gradient descent.

In the last decade, a wide and diverse range of inducing point approximations suited for many different
settings have been proposed [43, 31, 25, 44, 49]. The vast majority of them employ coordinate-

5The structure of a smooth manifold is not rigid enough to define natural kernels. For instance, the smooth
structure of the sphere is indistinguishable from the smooth structure of an ellipsoid or even of the dragon
manifold from Borovitskiy et al. [2], but their Riemannian structures differ considerably.
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Figure 4: Upper left: pendulum with friction state space. Lower left: Two rollouts used to train the
GP. Upper middle: State space plot of rollouts from a standard Euclidean GP condtioned on the
training data. Upper right: temporal plot of rollouts from a standard Euclidean vector GP. Solid line
is the true rollout, dashed line and shade is the mean and ± 1 std of the GP rollouts. Lower middle
and right: same for a geometric manifold vector field kernel on S1 × R.

dependent matrix-vector expressions. This raises the question, which of these constructions can be
adapted to define valid variational approximations in the vector field setting?

To proceed, one can choose a frame and formulate a given variational approximation using matrices
defined with respect to this frame. To ensure well-definedness, one must ensure that all these matrices,
such as the kernel matrix and the variational parameter Σ in (8), are gauge independent. These
considerations can be simplified adopting the pathwise view of GPs, and examining the random
variables directly. For example, the variational approximation of Opper and Archambeau [31] shown
previously in (8) can be reinterpreted pathwise as the GP

(f | y)(·) ≈ f(·) + K(·)z(Kzz + Σ)−1(µ− f(z)− ε) ε ∼ N(0,Σ) (9)

where we view the matrices K(·)z,Kzz,Σ as linear operators between direct sums of tangent spaces:
K(·)z : Tz1X ⊕ . . .⊕ TzmX → T(·)X and Kzz,Σ : Tz1X ⊕ . . .⊕ TzmX → Tz1X ⊕ . . .⊕ TzmX .
By virtue of being defined at the level of vector fields using components that are all intrinsically
valid, the posterior covariance of the resulting variational approximation is automatically gauge
independent. Hence, checking gauge independence is then equivalent to deducing the domains and
ranges of these operators from their coordinate representations, and checking if they are compatible.
This applies to any variational family that can be constructed in the given manner.

The vast majority of inducing point constructions can be interpreted in this manner and thus extend
readily to the Riemannian vector field setting by simply representing the necessary matrices in a
chosen frame. In particular, the classical approach of Titsias [43] is gauge independent.

4 Illustrated Examples

Here, we showcase a number of examples that illustrate potential use cases of the models developed.

4.1 Dynamical Systems Modeling

Here, we show how Gaussian vector fields can be used to learn the equations of motion of a physical
system—an important task in imitation learning, model-based reinforcement learning, and robotics.
GPs are an attractive model class in this area owing to their ability to represent and propagate
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uncertainty, which enables them to separate what is known about an environment from what is not,
thereby driving data-efficient exploration.

For a prototype physical system, we consider an ideal pendulum, whose configuration space is the
circle S1, representing the angle of the pendulum, with zero being at the bottom of the loop, and
whose position-momentum state-space is the cylinder S1 × R. We consider conservative dynamics
with additional friction applied at the pivot. Since this system is non-conservative, we cannot just
learn the Hamiltonian of the system, but must learn the vector field over the state space that defines
the dynamics of the system. The true dynamics of the system are given by the differential equations

H =
p2

2ml2
+mgl(1− cos(q))

dq

dt
=
∂H
∂p

dp

dt
= −∂H

∂q
− b

m
p, (10)

whereH is the Hamiltonian of the system defining the conservative part of the dynamics, q and p are
the position and momentum of the pendulum, m is the mass, l is the length, g is the gravitational
field strength and b is a friction parameter. Experimental details can be found in Appendix B.

To learn this model, we initialise the system at two start points, and evolve the system using leapfrog
integration. From these observations of position, we backward Euler integrate the momentum of the
system, and from these position-momentum trajectories we estimate observations of the dynamics
field. Using these observations, we condition a sparse GP. The result is an estimate of the system
dynamics with suitable uncertainty estimates. In order to compute rollouts of these dynamics, we use
pathwise sampling of this sparse GP [47, 48] for speed together with leapfrog integration.

Results can be seen in Figure 4. While the Euclidean GP performs reasonably well at the start of the
rollouts, once the trajectory crosses the discontinuity caused by looping the angle back around to
zero, the system starts to make incoherent predictions: this is due to the discontinuity arising from
wrap-around condition of the angle. The manifold vector-valued GP does not have this issue as the
learned and sampled dynamics fields are continuous throughout the state-space.

4.2 Weather Modeling

In this experiment, we show how vector-valued GPs on manifolds can be used in the context of
meteorology, where geometric information often plays an important role in accurately modeling
global weather fields [46, 38, 19]. Data assimilation in numerical weather forecasting refers to the
practice of using observed data to update predictions of the atmosphere closer to the truth. Uncertainty
plays a critical role here: it is not usually possible to observe the weather at all locations on the
globe simultaneously, and taking into account observation uncertainty is crucial in numerical weather
forecasting during the data assimilation step [24, 36]. In this section, we explore Gaussian processes
as a tool for carrying out global interpolation of wind fields, while simultaneously performing
uncertainty quantification, mirroring optimal interpolation techniques in data assimilation [20].

We consider a simplified setting, where the goal is to interpolate the wind velocity observed by the
Aeolus satellite [37], which uses LiDAR sensors to measure wind velocity directly. To mimic this
setting, we use an hour of the Aeolus satellite track during the period 2019/01/01 09:00-10:00 for the
input locations and the wind velocity data (10m above ground) from the ERA5 atmospheric reanalysis
data [18] interpolated at these locations, to simulate measurements taken from the Aeolus satellite.
We subtract the weekly historical average wind velocity from the observations, before training the GP
models, where the historical mean is computed from the hourly wind data (10 m above ground) from
the WeatherBench dataset [35], available from 1979–2018. Further details can be found in Appendix
B. We compare the results of a Matérn-3/2 manifold vector-valued GP regression model fitted on the
wind anomaly observations along the Aeolus trajectory, with the results from a Euclidean Matérn-3/2
multi-output GP trained on the same data, except projected onto a latitude-longitude map.

Results are shown in Figure 5, where the benefits of using a manifold vector-valued GP become
clear. When the satellite crosses the left/right boundary in the lat/lon projection, the outputs from the
Euclidean vector-valued GP give rise to a spurious discontinuity in the uncertainty along the solid
pink line. In addition, predictions become less certain in the Euclidean case as the satellite approaches
the poles, which is simply an artifact of the distortion caused by projecting the spherical data onto the
plane. By construction, the manifold vector-valued GP is able to avoid both of these issues, resulting
in a more realistic prediction with much more uniform uncertainty along the satellite trajectory from
pole to pole. In addition, the predictions from the manifold GP are more certain overall, due to the
useful structural bias embedded in the kernel.
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Figure 5: Top row: Euclidean GP trained on wind measurements along the chosen Aeolus satellite
trajectory, viewed as deviation from normal with respect to the historical average vector field. White
arrows are the satellite measurements, black arrows and ellipsoids are the posterior mean and cross-
covariance of the vector field, colors indicate the posterior standard deviation norm, and the solid red
line indicates the latitudinal boundary when the sphere is projected onto the plane using the lat/lon
projection. Bottom row: Same as above except using a manifold kernel on S2.

5 Conclusion

In this paper, we propose techniques that generalize Gaussian processes to model vector fields on
Riemannian manifolds. This is done by first providing a well-defined notion of such processes
on manifolds and then introducing an explicit method to construct them in a way that respects
the underlying geometry. By virtue of satisfying the key condition of gauge independence, our
construction is coordinate-free and thus meaningful on manifolds. In addition to this, we extend
standard Gaussian process training methods, such as variational inference, to this setting, and
verify that such methods are also compatible with gauge independence. This theoretical work gives
practitioners additional tools for stochastic modeling of vector fields on manifolds. As such, its
societal impact will be mainly determined by the applications that belong to the domain of future
work. We demonstrate our techniques on a series of examples in modeling dynamical systems and
weather science, and show that incorporating geometric structural bias into probabilistic modeling is
beneficial in these settings to obtain coherent predictions and uncertainties.
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