Supplement to: 'Statistical Regeneration Guarantees of the Wasserstein Autoencoder with Latent Space Consistency"

Anish Chakrabarty
Statistics and Mathematics Unit
Indian Statistical Institute, Kolkata

Swagatam Das
Electronics and Communication Sciences Unit
Indian Statistical Institute, Kolkata

A Appendix

Proof of lemma $(\sqrt{1})$. Here, $\mathscr{P}(\mathcal{C})$ denotes the set of probability measures defined on the common support \mathcal{C}. This is a slight abuse of the notation, since \mathcal{C} is not the underlying space, but a subset of the σ-algebra defined on it. Consequently,

$$
\mathcal{Y}(\mathscr{P}(\mathcal{C}))=\left\{\omega \in \mathcal{C}: f_{1}(\omega) \geq f_{2}(\omega) ; f_{1}, f_{2} \in \mathscr{P}(\mathcal{C})\right\}
$$

Let, $f, g \in \mathscr{P}(\mathcal{C})$. Observe that,

$$
\sup _{\omega \in \mathcal{C}}|f(\omega)-g(\omega)|=\|f-g\|_{T V} \geq\|f-g\|_{\mathcal{Y}(\mathscr{P}(\mathcal{C}))}
$$

due to the definition of TV.
Define, $A=\{\omega \in \mathcal{C}: f(\omega) \geq g(\omega)\} \in \mathcal{Y}(\mathscr{P}(\mathcal{C}))$. Now,

$$
\|f-g\|_{T V}=\frac{1}{2}\|f-g\|_{1}=|f(A)-g(A)| \leq\|f-g\|_{\mathcal{Y}(\mathscr{P}(\mathcal{C}))} .
$$

Proof of lemma (2). Since we only deal with measures supported on \mathcal{C}, our proof revolves around $\mathscr{P}(\mathcal{C})$. A similar argument will hold for all the measures, based on the σ-algebra corresponding to \mathcal{Z}. Let, $\gamma \in \mathscr{P}(\mathcal{C})$. Also, let $\left\{X_{i}\right\}_{i=1}^{n}$ denote an i.i.d. sample from γ. Define, $\hat{\gamma}_{n}(S)=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}(S)$, for $S \in \mathcal{C}$.
Using Dudley's chaining argument coupled with symmetrization, it can be shown that (Corollary 7.18 [1]) there exists an universal constant L such that,

$$
\mathbb{E}\left[\sup _{S \in \mathcal{Y}(\mathscr{P}(\mathcal{C}))}\left|\hat{\gamma}_{n}(S)-\gamma(S)\right|\right] \leq L \sqrt{\frac{\mathrm{VC-dim}[\mathcal{Y}(\mathscr{P}(\mathcal{C}))]}{n}}
$$

This constant L depends on the diameter of \mathcal{C} with respect to the $\left\|\|_{2}\right.$ norm. Now, by McDiarmid's inequality

$$
\mathbb{P}\left(\sup _{S \in \mathcal{Y}(\mathscr{P}(\mathcal{C}))}\left|\hat{\gamma}_{n}(S)-\gamma(S)\right|-\mathbb{E}\left[\sup _{S \in \mathcal{Y}(\mathscr{P}(\mathcal{C}))}\left|\hat{\gamma}_{n}(S)-\gamma(S)\right|\right] \geq \eta\right) \leq \exp \left(-c n \eta^{2}\right)
$$

where c is a positive constant. As such,

$$
\begin{aligned}
\mathbb{P}\left(\left\|\hat{\gamma}_{n}-\gamma\right\|_{\mathcal{Y}(\mathscr{P}(\mathcal{C}))} \geq L \sqrt{\frac{v}{n}}+\eta\right) \leq \exp \left(-c n \eta^{2}\right) \\
\Longleftrightarrow \mathbb{P}\left(\left\|\hat{\gamma}_{n}-\gamma\right\|_{\mathcal{Y}(\mathscr{P}(\mathcal{C}))} \leq L \sqrt{\frac{v}{n}}+\frac{1}{\sqrt{n}} \sqrt{\frac{1}{c} \ln \left(\frac{1}{\delta}\right)}\right) \geq 1-\delta,
\end{aligned}
$$

where $v=\mathrm{VC}-\operatorname{dim}[\mathcal{Y}(\mathscr{P}(\mathcal{C}))]$ and $\delta \in(0,1)$. Judicious choices of k_{1} and k_{2} proves the lemma.

Proof of lemma（4）．Since，Wasserstein distance is a metric on $\mathscr{P}(\mathcal{X})$ ，using triangle inequality we get

$$
\begin{aligned}
d_{\mathscr{L}_{c}^{1}}\left(\left(D \circ E^{*}\right)_{\#} \hat{\mu}_{n}, \mu\right) & \leq d_{\mathscr{L}_{c}^{1}}\left(\left(D \circ E^{*}\right)_{\# \mu_{n}}, \hat{\mu}_{n}\right)+d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right) \\
& \leq d_{\mathscr{L}_{c}^{1}}\left(\left(D \circ E^{*}\right)_{\# \mu_{n}}, D_{\# \rho} \rho\right)+d_{\mathscr{L}_{c}^{1}}\left(D_{\#} \rho, \hat{\mu}_{n}\right)+\mathcal{E}_{3} \\
& \leq d_{\mathscr{L}_{c}^{1}}\left(D_{\#} \rho, T_{\#} \rho\right)+d_{\mathscr{L}_{c}^{1}}\left(T_{\#} \rho, \hat{\mu}_{n}\right)+\mathcal{E}_{1}+\mathcal{E}_{3} \\
& =\mathcal{E}_{1}+\mathcal{E}_{2}+2 \mathcal{E}_{3} .
\end{aligned}
$$

Here，T is as suggested in lemma（3）．

Proof of lemma（5）．Theorem 1 of［2］ensures that，for $s>\delta_{1}^{*}(\mu)$

$$
\mathbb{E}\left[d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right)\right]=\mathcal{O}\left(n^{-\frac{1}{s}}\right)
$$

Denote，$W(\omega)=d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right)$ ，where $\omega \in \mathcal{X}^{n}$ ．Now，for $x_{1}, x_{2}, \ldots, x_{n}, x_{n}^{\prime} \in \mathcal{X}$

$$
\left|W\left(x_{1}, x_{2}, \ldots, x_{n}\right)-W\left(x_{1}, x_{2}, \ldots, x_{n}^{\prime}\right)\right| \leq \frac{1}{n} c\left(x_{n}, x_{n}^{\prime}\right) \leq \frac{B}{n}
$$

As such，$d_{\mathscr{L}_{c}^{1}}()$ satisfies the bounded difference inequality．Thus，using the McDiarmid＇s inequality we get

$$
\mathbb{P}\left(d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right)-\mathbb{E}\left[d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right)\right] \geq t\right) \leq \exp \left\{-\frac{2 n t^{2}}{B^{2}}\right\}
$$

$t>0$ i．e．，$\left\{d_{\mathscr{L}_{c}^{1}}\left(\hat{\mu}_{n}, \mu\right) \leq \mathcal{O}\left(n^{-\frac{1}{s}}\right)+t\right\}$ holds with probability at least $1-\exp \left(-\frac{2 n t^{2}}{B^{2}}\right)$ ．

Proof of Corollary（1）．Observe that，

$$
\begin{align*}
& \mathbb{P}\left(\left\|E_{\#} \hat{\mu}_{n}-\rho\right\|_{T V}-\lambda^{*}-c_{1} \sqrt{\frac{v}{n}} \geq \epsilon\right) \\
\leq & \mathbb{P}\left(\left\|E_{\#} \hat{\mu}_{n}-\widehat{\left(E_{\#} \mu\right)_{n}}\right\|_{T V}+\left\|\widehat{\left(E_{\#} \mu\right)_{n}}-\rho\right\|_{T V}-\lambda^{*}-c_{1} \sqrt{\frac{v}{n}} \geq \epsilon\right) \\
\leq & \mathbb{P}\left(\left\|E_{\#} \hat{\mu}_{n}-{\left.\widehat{\left(E_{\#} \mu\right.}\right)_{n}}\right\|_{T V} \geq \frac{\epsilon}{2}\right)+\mathbb{P}\left(\left\|{\widehat{\left(E_{\#} \mu\right)_{n}}}^{2}-\rho\right\|_{T V}-\lambda^{*}-c_{1} \sqrt{\frac{v}{n}} \geq \frac{\epsilon}{2}\right) \\
\leq & k \exp \left\{-\frac{n^{r} \epsilon^{2}}{4}\right\}+c_{3} \exp \left\{-\frac{n c^{\prime} \epsilon^{2}}{4}\right\}, \tag{1}
\end{align*}
$$

where $c^{\prime}=\frac{1}{c_{2}^{2}}$ and $v=\mathrm{VC}-\operatorname{dim}[\mathcal{Y}(\mathscr{P}(\mathcal{C}))]$ ，which is taken to be finite．Theorem 11 and Assumption 4（ii））together result in 1 ．Hence，for $r \geq 1, c^{*}=\min \left\{\frac{1}{4}, \frac{c^{\prime}}{4}\right\}$ and $k^{*}=2 \max \left\{k, c_{3}\right\}$ ，

$$
\mathbb{P}\left(\left\|E_{\#} \hat{\mu}_{n}-\rho\right\|_{T V}-\lambda^{*} \geq c_{1} \sqrt{\frac{v}{n}}+\epsilon\right) \leq k^{*} \exp \left\{-n c^{*} \epsilon^{2}\right\}
$$

i．e．，with probability at least $1-\delta$ ，

$$
\left\|E_{\#} \hat{\mu}_{n}-\rho\right\|_{T V}-\lambda^{*} \leq \mathcal{O}\left(n^{-\frac{1}{2}}\right)+\frac{1}{\sqrt{n}} \sqrt{\frac{1}{c^{*}} \ln \left(\frac{k^{*}}{\delta}\right)} .
$$

Remark（Regarding Proof of lemma（3））．The objective at hand is to find a $T: \mathcal{Z} \longrightarrow \mathcal{X}$ such that，

$$
T \in \underset{T: T ⿻ 二 丨}{ } \operatorname{argmin} \rho \mu(x, T(x)) d \rho(x) .
$$

Assumption（1）and（5）ensure that the density corresponding to μ is smooth in the sense of Hölder and is based on a convex \mathcal{X} ．p_{ρ} has also been taken to be smooth（2）．When $\mathcal{X}, \mathcal{Z} \subseteq \mathbb{R}^{d}$ ，a quadratic cost c implies that such a solution T exists（Brenier Potential）and moreover，satisfies the Monge－Ampère equation（Eq． 12.4 in［3］）．In this premise，the regularity results on T，provided by Caffarelli et al．［4］ exactly proves Lemma（3）．

References

[1] Ramon Van Handel. Probability in high dimensions. Technical report, 2016.
[2] Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of empirical measures in wasserstein distance, 2017, arXiv:1707.00087.
[3] Villani Cédric. Optimal transport : old and new. Grundlehren der mathematischen Wissenschaften. Springer, 2009.
[4] L. Caffarelli. The regularity of mappings with a convex potential. Journal of the American Mathematical Society, 5:99-104, 1992.

