
A Proofs1

A.1 Additional notation2

By abuse of notation, we denote by ρ and π̃ the probability measures with density with respect to the3

Lebesgue measure ρ and π̃ respectively.4

A.2 Proof of (3)5

The second expression of wk follows from JT−j (Tk(x)) = JTk−j (x)/JTk(x) which implies6

wk(x) = $kρ(Tk(x))/
∑

j∈Z
$jρ(Tk−j(x))JT−j (Tk(x)) ,

= $kρ(Tk(x))JTk(x)/
∑

j∈Z
$jρ(Tk−j(x))JTk−j (x) = $kρ−k(x)

/∑
i∈Z

$k+iρi(x) .

A.3 Proof of Theorem 17

The unbiasedness of Ẑ
$

X1:N follows directly from (2). Moreover, as Ẑ
$

X1:N is unbiased and E$T <∞,8

we can write9

Varρ[Ẑ
$

X/Z] = Eρ[(Ẑ
$

X/Z)2]− 1 = E$T − 1 . (S1)

As X1:N iid∼ ρ, Varρ[Ẑ
$

X1:N /Z] = N−1 Varρ[Ẑ
$

X/Z]. Finally, if M$
T < ∞, then Hoeffding’s10

inequality applies and we can write for any ε > 0,11

P(|Ẑ
$

X1:N /Z−1| > ε) ≤ 2 exp(−2Nε2/(M$
T )2) . (S2)

Writing δ = 2 exp(−2Nε2/(M$
T )2), we identify log(2/δ) = 2Nε2/(M$

T )2 and ε =12

M$
T

√
log(2/δ)/(2N). Plugging this expression of ε in (S2) concludes the proof.13

A.4 Proof of Theorem 214

We first present two auxiliary lemmas necessary to establish Theorem 2.15

Lemma S1. Let A,B be two integrable random variables satisfying |A/B| ≤M almost surely and16

denote a = E[A], b = E[B]. Then,17

|E[A/B]− a/b| ≤
√

Var(A/B) Var(B)

b
, (S3)

Var(A/B) ≤ E
[
|A/B − a/b|2

]
≤ 2

B2

(
E
[
|AN −A|2

]
+M2E

[
|BN −B|2

])
. (S4)

Proof. Write first, using the Cauchy-Schwarz inequality,18 ∣∣∣∣E [AB
]
− a

b

∣∣∣∣ =

∣∣∣∣E [AB
]
− E [A]

b

∣∣∣∣ =

∣∣∣∣E [A( 1

B
− 1

b

)]∣∣∣∣ ,
=

∣∣∣∣E [AB
(
b−B
b

)]∣∣∣∣ =

∣∣∣∣E [(AB − E
[
A

B

])(
B − b
b

)]∣∣∣∣ ,
≤
√

Var(A/B)
√

Var(B)

b
.

Moreover, using |A/B| ≤M yields19 ∣∣∣∣AB − a

b

∣∣∣∣ =

∣∣∣∣1b (A− a) +A

(
1

B
− 1

b

)∣∣∣∣ ≤ 1

b
|A− a|+ |A|

Bb
|B − b| ,

≤ 1

b
|A− a|+ M

b
|B − b| .

Therefore,

|A/B − a/b|2 ≤ 2

b2
(
|A− a|2 +M2|B − b|2

)
,

Using that E
[
|A/B − a/b|2

]
= Var(A/B) + |E[A/B]− a/b|2 concludes the proof.20
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We get the following lemma from [7, Lemma 4].21

Lemma S2. Assume that A and B are random variables and that there exist positive constants22

b,M,C,K such that23

(i) |A/B| ≤M , P-a.s. ,24

(ii) for all ε > 0 and all N ≥ 1, P (|B − b| > ε) ≤ K exp(−Rε2) ,25

(iii) for all ε > 0 and all N ≥ 1, P (|A| > ε) ≤ K exp
(
−Rε2/M2

)
,26

then,
P(|A/B| ≥ ε) ≤ 2K exp(−Rb2ε2/4M2) .

Proof. By the triangle inequality,27

|A/B| =
∣∣∣∣AB (b−B)b−1 + b−1A

∣∣∣∣ ,
≤ b−1 |A/B| |b−B|+ b−1 |A| ≤Mb−1 |b−B|+ b−1 |A| .

Therefore,28

{|A/B| ≥ ε} ⊆
{
|B − b| ≥ εb

2M

}
∪
{
|A| ≥ εb

2

}
.

Then, conditions (ii) and (iii) imply that29

P (|A/B| ≥ ε) ≤ P
(
|B − b| ≥ εb

2M

)
+ P

(
|A| ≥ εb

2

)
,

≤ 2K exp(−Rb2ε2/(4M2)) .

30

Proof of Theorem 2. Let g : Rd → R such that supx∈Rd |g| (x) ≤ 1 and denote π(g) =
∫
gdπ. We31

use Lemma S1 with A = AN and B = Ẑ
$

X1:N where32

AN =
1

N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))g(Tk(Xi)) , Ẑ
$

X1:N =
1

N

N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi)) .

(S5)
By construction, since supx∈Rd |g| (x) ≤ 1, almost surely AN/Ẑ

$

X1:N ≤ 1 and Var(Ẑ
$

X1:N ) =33

N−1Var(Ẑ
$

X1). Then, using (2) with a = E[AN ] = Zπ(g) and b = E[Ẑ
$

X1:N ] = Z, Lemma S134

implies35 ∣∣JNEO
$,N (g)− π(g)

∣∣ =
∣∣∣E[AN/Ẑ

$

X1:N ]− a/b
∣∣∣ ≤ N−1/2

√
Var(AN/Ẑ

$

X1:N )Var(Ẑ
$

X1) . (S6)

On the other hand,36

E
[
|AN − a|2

]
= N−1EX∼ρ

[{∑
k∈Z wk(X)L(Tk(X))g(Tk(X))− Zπ(g)

}2] ≤ N−1 Z2E$T .

These inequalities yield using Var(Ẑ
$

X1) ≤ E$T and Lemma S1 again:37

E
[
|JNEO
$,N (g)− π(g)|2

]
≤ 2

N
(E$T + Var(Ẑ

$

X1)) ≤ 4

N
E$T ,

|E
[
JNEO
$,N (g)− π(g)

]
| ≤

√
2(E$T + Var(Ẑ

$

X1))Var(Ẑ
$

X1)

N
≤ 2E$T

N
,

which concludes the proof.38

Define39

ÃN = N−1
N∑
i=1

∑
k∈Z

wk(Xi)L(Tk(Xi))
(
g(Tk(Xi))− π(g)

)
.
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With this notation, the proof of (9) relies on the application of Lemma S2 toA = ÃN andB = Ẑ
$

X1:N ,
since

JNEO
$,N (g)− π(g) = AN/Ẑ

$

X1:N .

As supx∈Rd |g| (x) ≤ 1, we get that ÃN/Ẑ
$

X1:N ≤ 2. By (2), E[Ẑ
$

X1:N ] = Z and Ẑ
$

X1:N =

N−1
∑N
i=1Wi with Wi =

∑
k∈Z wk(Xi)L(Tk(Xi)) ≤M$

T . Then, by Hoeffding’s inequality, for
all ε > 0,

P(|BN − Z | > ε) ≤ 2 exp(−2N(ε/M$
T )2) .

Similarly, AN is centered and AN = N−1
∑N
i=1 Ui with

Ui =
∑
k∈Z

wk(Xi)L(Tk(Xi)){g(Tk(Xi))− π(g)}

and |Ui| ≤ 2M$
T almost surely. By Hoeffding’s inequality, for all ε > 0,

P(|AN | > ε) ≤ 2 exp(−Nε2/(8(M$
T )2)) .

The assumptions of Lemma S2 are met so that

P(|JNEO
$,N (g)− π(g)| > ε) ≤ 4 exp(−ε2N Z2 /[32(M$

T )2]) ,

which concludes the proof.40

A.5 Proof of Lemma 341

As wk(x) = $kρ(Tk(x))/{ΩρT(Tk(x))}, by Jensen’s inequality,42

E$T =

∫ (∑
k∈Z

wk(x)L(Tk(x))/Z

)2

ρ(x)dx =

∫ (∑
k∈Z

$k

Ω

π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

≤
∫ ∑

k∈Z

$k

Ω

(
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx ,

≤ Ω−1
∑
k∈Z

$k

∫ (
π(Tk(x))

ρT(Tk(x))

)2

ρ(x)dx .

Using the change of variables y = Tk(x) yields, by (1),

E$T ≤ Ω−1
∑
k∈Z

$k

∫ (
π(y)

ρT(y)

)2

ρ(T−k(y))JT−k(y)dy ≤
∫ (

π(y)

ρT(y)

)2

ρT(y)dy .

A.6 Proofs of NEO MCMC sampler43

Proof of Theorem 4. Note first that by symmetry, we have44

P (y,A) = N−1

∫ N∑
i=1

δy(dxi)

N∏
j=1,j 6=i

ρ(xj)dxj
N∑
k=1

Ẑ
$

xk∑N
j=1 Ẑ

$

xj

1A(xk) . (S7)

We begin with the proof of reversibility of P with respect to π̃. Let f, g be nonnegative measurable45

functions. By definition of P ,46 ∫
π̃(dy)P (y,dy′)f(y)g(y′) =

1

N Z

∫ N∑
i=1

ρ(dy)Ẑ
$

y f(y)δy(dxi)

N∏
l=1,l 6=i

ρ(dxl)

N∑
k=1

Ẑ
$

xk∑N
j=1 Ẑ

$

xj

g(xk) ,

=
1

N Z

∫ N∑
i=1

Ẑ
$

xif(xi)

N∏
l=1

ρ(dxl)

N∑
k=1

Ẑ
$

xk∑N
j=1 Ẑ

$

xj

g(xk) ,

=
1

N Z

∫ N∏
l=1

ρ(dxl)

∑N
i=1 Ẑ

$

xif(xi)
∑N
k=1 Ẑ

$

xkg(xk)∑N
j=1 Ẑ

$

xj

,

=

∫
π̃(dy)P (y,dy′)f(y′)g(y) ,
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which shows that P is π̃-reversible. We now establish that P is π̃-irreducible. We have for y ∈ Rd,47

A ∈ B(Rd),48

P (y,A) =

∫
δy(dx1)

N∑
i=1

Ẑ
$

xi

N Ẑ
$

x1:N

1A(xi)

N∏
j=2

ρ(dxj)

=

∫
Ẑ
$

y

Ẑ
$

y +
∑N
j=2 Ẑ

$

xj

1A(x)

N∏
j=2

ρ(dxj) +

∫ N∑
i=2

Ẑ
$

xi

Ẑ
$

y +
∑N
j=2 Ẑ

$

xj

1A(xi)

N∏
j=2

ρ(dxj)

≥
N∑
i=2

∫
Ẑ
$

xi

Ẑ
$

y + Ẑ
$

xi +
∑N
j=2,j 6=i Ẑ

$

xj

1A(xi)

N∏
j=2

ρ(dxj)

≥
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑ
$

y + Ẑ
$

xi +
∑N
j=2,j 6=i Ẑ

$

xj

N∏
j=2,j 6=i

ρ(dxj) .

Since the function f : z 7→ (z + a)−1 is convex on R+ for a > 0, we get for i ∈ {2, . . . , N},49

∫
Z

Ẑ
$

y + Ẑ
$

xi +
∑N
j=2,j 6=i Ẑ

$

xj

N∏
j=2,j 6=i

ρ(dxj) ≥ Z

Ẑ
$

y + Ẑ
$

xi +
∫ ∑N

j=2,j 6=i Ẑ
$

xj

∏N
j=2,j 6=i ρ(dxj)

≥ Z

Ẑ
$

y + Ẑ
$

xi + Z(N − 2)
. (S8)

Therefore, for A ∈ B(Rd) satisfying π̃(A) > 0, we get P (y,A) > 0 for any y ∈ Rd since Ẑ
$

x <∞50

for any x ∈ Rd. By definition, P is π̃-irreducible.51

We show that P is Harris recurrent using [19, Corollary 2]. To this end, since P is π̃-52

irreducible, it is sufficient to show that P is a Metropolis type kernel. Define α(x1, x2) = (N −53

1)
∫ ∏N

j=3 ρ(dxj)Ẑ
$

x2/
∑N
j=1 Ẑ

$

xj for x1, x2 ∈ Rd and ρ2:N (dx2:N ) = {
∏N
j=2 ρ2:N (xj)}dx2:N .54

Then, by (12), we get with this notation, for y ∈ Rd, A ∈ B(Rd),55

P (y,A)

=

∫
δy(dx1)ρ2:N (dx2:N )

N∑
i=2

Ẑ
$

xi

N Ẑ
$

x1:N

1A(xi) +

∫
δy(dx1)ρ2:N (dx2:N )

Ẑ
$

x1

N Ẑ
$

x1:N

1A(x1)

=

N∑
i=2

∫
δy(dx1)ρ2:N (dx2:N )

Ẑ
$

xi

N Ẑ
$

x1:N

1A(xi) +

∫
δy(dx1)ρ2:N (dx2:N )

Ẑ
$

x1

N Ẑ
$

x1:N

1A(x1)

=

N∑
i=2

∫
δy(dx1)ρ(dxi)

∫ N∏
j=2,j 6=i

ρ(xj)dxj
Ẑ
$

xi1A(xi)

N Ẑ
$

x1:N

+

∫
δy(dx1)ρ2:N (dx2:N )

Ẑ
$

x11A(x1)

N Ẑ
$

x1:N

=

N∑
i=2

∫
α(y, xi)

(N − 1)
1A(xi)ρ(dxi) +

∫
δy(dx1)ρ2:N (dx2:N )

{
1−

N∑
i=2

Ẑ
$

xi

N Ẑ
$

x1:N

}
1A(x1)

=

∫
A

α(y, y′)ρ(y′)dy′ +

(
1−

∫
α(y, y′)ρ(y′)dy′

)
δy(A) . (S9)

With the terminology of [19, Corollary 2], P is Metropolis type kernel and therefore is Harris56

recurrent.57

Note that Algorithm 2 defines a Markov chain {Yi, Ui}i∈N taking for U0 an arbitrary initial point58

with Markov kernel denoted by P̃ . By abuse of notation, we denote by {Yi, Ui}i∈N the canonical59

process on the canonical space (Rd × Rd)N endowed with the corresponding σ-field and denote60

by Py,u the distribution associated with the Markov chain with kernel P̃ and initial distribution61

δy ⊗ δu. Denote for any y ∈ Rd by Py the marginal distribution of Py,u with respect to {Yi}i∈N,62

i.e. Py(A) = P(y,u)({Yi}i∈N ∈ A) for u ∈ Rd, noting that by definition, P(y,u)(A× (Rd)N) does not63
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depend on u. In addition, under Py, {Yi}i∈N is a Markov chain associated with P . Therefore, since64

P is π̃-irreducible and Harris recurrent, we get by [8, Theorem 11.3.1] and [19, Theorem 2, 3] for65

any y ∈ Rd, limk→∞ ‖δyP k − π̃‖TV = 0 and for any bounded and measurable function g,66

n−1
n∑
k=1

g(Yk) = π̃(g) , Py-almost surely . (S10)

We now turn to proving the properties regarding Q. For any B ∈ B(Rd), using (2), we obtain67 ∫
π̃(y)Q(y,B)dy = Z−1

∫
ρ(y)

∑
k∈Z

wk(y)L(Tk(y))1B(Tk(y))dy = π(B) .

Using for all y ∈ Rd, limn→∞ ‖Pn(y, ·)− π̃‖TV = 0, we get limn→∞ ‖PnQ(y, ·)− π‖TV = 0. It68

remains to show the stated Law of Large Numbers. Let y, u ∈ Rd and g be a bounded measurable69

function. Define for any i ∈ N∗, Ũi = g(Ui) − Qg(Yi). By definition, for any i ∈ N∗,
∣∣∣Ũi∣∣∣ ≤70

2 supx∈Rd |g(x)| and E(y,u)[Ũi|Fi−1] = 0, where {Fk}k∈N is the canonical filtration. Therefore,71

{Ũi}i∈N∗ are {Fk}k∈N-martingale increments and {Sk =
∑k
i=1 Ũi}k∈N is a {Fk}k∈N-martingale.72

Using [10, Theorem 2.18], we get73

lim
n→∞

{Sn/n} = 0 , P(y,u)-almost surely . (S11)

The proof is completed using that limn→∞{n−1
∑n
i=1Qg(Yi)} = π̃(Qg) = π(g), Py-almost surely74

by (S10) and therefore by definition, P(y,u)-almost surely.75

Proof of Theorem 5. We have for (x,A) ∈ Rd × B(Rd),76

P (y,A) ≥
N∑
i=2

∫
π̃(dxi)1A(xi)

∫
Z

Ẑ
$

y + Ẑ
$

xi +
∑N
j=2,j 6=i Ẑ

$

xj

N∏
j=2,j 6=i

ρ(dxj) .

Moreover, as for any x ∈ Rd, Ẑ
$

x /Z ≤M$
T ,77 ∫

Z

Ẑ
$

y + Ẑ
$

xi +
∑N
j=2,j 6=i Ẑ

$

xj

N∏
j=2,j 6=i

ρ(dxj) ≥ Z

Ẑ
$

y + Ẑ
$

xi + Z(N − 2)
≥ 1

2M$
T +N − 2

.

We finally obtain the inequality78

P (x,A) ≥ π̃(A)× N − 1

2M$
T +N − 2

= εN π̃(A) . (S12)

The proof for P is concluded from [8, Theorem 18.2.4].79

As ‖P k(y, ·)−π̃‖TV ≤ κkN , for any bounded function f , ‖f‖∞ ≤ 1, we have |P kf(y)−π̃(f)| ≤ κkN ,80

by definition of the Total Variation Distance. Then, writing f = Qg for any bounded function g,81

‖g‖∞ ≤ 1, we have ‖f‖∞ ≤ 1 and82

|P kf(y)− π̃(f)| = |P kQg(y)− π̃Q(g)| = |P kQg(y)− π(g)| ≤ κkN . (S13)

83

Write now P the Markov kernel extending to correlated proposals: for y ∈ Rd and A ∈ B(Rd),84

P (y,A) = N−1

∫ N∑
i=1

δy(dxi)ri(x
i,dx1:n\{i})

N∑
k=1

Ẑ
$

xk

N Ẑ
$

x1:N

1A(xk) , (S14)

where the Markov kernels Ri are defined by Ri(xi,dx1:N\{i}) = ri(x
i, x1:N\{i})dx1:N\{i} and ri85

by (15).86

Theorem S3. P is π̃-invariant.87
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Proof. Define the Nd-dimensional probability measure ρ̄N (dx1:N ) = ρ(dx1)R1(x1,dx2:n). Let88

A ∈ B(Rd). Then, we have89

π̃P (A) = N−1

∫
π̃(dy)

∫ N∑
i=1

δy(dxi)Ri(x
i,dx1:n\{i})

N∑
k=1

Ẑ
$

xk

N Ẑ
$

x1:N

1A(xk)

= (N Z)−1

∫ N∑
i=1

ρ(dxi)Ẑ
$

xiRi(x
i,dx1:n\{i})

N∑
k=1

Ẑ
$

xk

N Ẑ
$

x1:N

1A(xk)

= (N Z)−1

∫
ρ̄N (dx1:N )

N∑
i=1

Ẑ
$

xi

N∑
k=1

Ẑ
$

xk

N Ẑ
$

x1:N

1A(xk)

= (N Z)−1

∫ N∑
k=1

Ẑ
$

xk ρ̄N (dx1:N )1A(xk)

= (N Z)−1

∫ N∑
k=1

Ẑ
$

xkρ(dxk)1A(xk) = π̃(A) .

90

B Continuous-time limit of NEO and NEIS91

B.1 Proof for the continuous-time limit92

Consider h̄ > 0 and a family {Th : h ∈
(
0, h̄
]
} of C1-diffeomorphisms. ForN ∈ N∗ and a bounded93

and continuous f : Rd → R, write94

INEO
$,N,h(f) = N−1

N∑
i=1

∑
k∈Z

wk,h(Xi)f(Tkh(Xi)) , (S15)

where {Xi}Ni=1
iid∼ ρ and for some weight function $c : R → R+ with bounded support (see H3),95

k ∈ Z and h > 0, setting $k,h = $c(kh),96

wk,h(x) = $k,hρ−k(x)
/∑

i∈Z
$k+i,hρi(x) . (S16)

We show in this section the convergence of the sequence of NEO-IS estimators {INEO
$,N,h(f) : h ∈97 (

0, h̄
]
} as h ↓ 0 to its continuous counterpart, the version (16) of NEIS [16], with weight function98

$, in the case where for any h ∈
(
0, h̄
]
, Th corresponds to one step of a discretization scheme with99

stepsize h of the ODE100

ẋt = b(xt) , (S17)

where b : Rd → Rd is a drift function. We are particularly interested in the case where (S17)101

corresponds to the conformal Hamilonian dynamics (10) and {Th : h ∈
(
0, h̄
]
} to its conformal102

symplectic Euler discretization: for all (q, p) ∈ R2d,103

Th(q, p) = (q + hM−1{e−hγp− h∇U(q)}, e−hγp− h∇U(q)) . (S18)

We make the following conditions on b, ρ, $c and {Th : h ∈
(
0, h̄
]
}.104

H1. The function b is continuously differentiable and Lb-Lipschitz.105

Under H1, consider (φt)t≥0 the differential flow associated with (S17), i.e. φt(x) = xt where (xt)t∈R106

is the solution of (S17) starting from x. Note that H1 implies that (t, x) 7→ φt(x) is continuously107

differentiable on R× Rd, see [11, Theorem 4.1 Chapter V].108

H1 is satisfied in the case of the conformal Hamiltonian dynamics if the potential U is continuously109

differentiable and with Lipschitz gradient, that is there exists LU ∈ R∗+ such that for any x1, x2 ∈ Rd,110

‖∇U(x1)−∇U(x2)‖ ≤ LU‖x1 − x2‖.111

6



H2. For any h ∈
(
0, h̄
]
, Th : Rd → Rd is a C1-diffeomorphism. In addition, it holds:112

(i) there exist C ≥ 0 and δ ∈ (0, 1] such that for any x ∈ Rd,

‖Th(x)− (x+ hb(x))‖ ≤ Ch1+δ(1 + ‖x‖) ;

(ii) for any x ∈ Rd and T ∈ R∗+,

lim
h↓0

max
k∈[−bT/hc:bT/hc]

‖Jφkh
(x)− JTk

h
(x)‖ = 0 .

Note that H2 is automatically satisfied for the conformal symplectic Euler discretization (S18)113

of the conformal Hamiltonian dynamics. Indeed, in that case div b(φt(x)) = γd, and therefore114

Jφt
(x) = eγdt for t ∈ R, and for any h > 0, k ∈ Z, JTk

h
(x) = eγdhk; see [9].115

Define116

support($c) = {t ∈ R : $c(t) 6= 0} . (S19)
H3. (i) ρ is continuous and positive on Rd117

(ii) $c is piecewise continuous on R, its support support($c) is bounded and
sup(s,t)∈A$

$c(t)/$c(t+ s) = m <∞ where

A$ = {(s, t) ∈ R2; t ∈ support($c), (s+ t) ∈ support($c)} .

(iii) Moreover, for any x ∈ Rd, we have ρcT(x) =
∫
$c(t)ρ(φt(x))Jφt

(x)dt > 0.118

Note that H3 implies that supt∈R |$c(t)| < +∞. H3 is automatically satisfied for example in the119

case $c = 1[−T1,T2] for T1, T2 ≥ 0.120

Theorem S4. Assume H1, H2, H3. For any x ∈ Rd and f : Rd → R continuous and bounded,121

lim
h↓0

∣∣∣∣∣∑
k∈Z

wk,h(x)f(Tkh(x))−
∫ ∞
−∞

wc
t (x)f(φt(x))dt

∣∣∣∣∣ = 0 ,

where {wk,h}k∈Z and wc
t are defined in (S16) and (17) respectively, i.e. for x ∈ Rd and t ∈ R,122

wc
t (x) = $c(t)ρ(φt(x))Jφt(x)

/∫ ∞
−∞

$c(s+ t)ρ(φs(x))Jφs(x)ds . (S20)

Proof. Let f be a bounded continuous function, x ∈ Rd. Setting123

gk,h(x) = ρ(Tkh(x))$c(kh)JTk
h
(x)f(Tkh(x))

h∆k,h(x) = h
∑
i∈Z

ρ(Tih(x))$c((k + i)h)JTi
h(x) ,

we have that124 ∑
k≥0

hgk,h(x)

h∆k,h(x)
=

∫ T$

0

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt+

∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt ,

as gk,h(x) = 0 when k > bT$/hc. Therefore, we can consider the following decomposition,125 ∣∣∣∣∣∣
∑
k≥0

ρ(Tkh(x))$c(kh)JTk
h
(x)f(Tkh(x))∑

i∈Z ρ(Tih(x))$c((k + i)h)JTi
h(x)

−
∫ T$

0

$c(t)ρ(φt(x))Jφt(x)f(φt(x))dt∫
$c(t+ s)ρ(φs(x))Jφs

(x)ds

∣∣∣∣∣∣ ≤ A+B

with126

A =

∣∣∣∣∣
∫ T$

0

1

h∆bt/hc,h(x)

{
gbt/hc,h(x)−$c(t)ρ(φt(x))Jφt

(x)f(φt(x))
}

dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ hbT$/hc+h

T$

1

h∆bt/hc,h(x)
gbt/hc,h(x)dt

∣∣∣∣∣ ,
7



and127

B =

∫ T$

0

∣∣∣∣$c(t)ρ(φt(x))Jφt
(x)f(φt(x))dt

h∆bt/hc,h(x)
− $c(t)ρ(φt(x))Jφt

(x)f(φt(x))∫
$c(t+ s)ρ(φs(x))Jφs(x)ds

∣∣∣∣dt ,
We bound those terms separately. First of all, under H3-(ii), for any k such that kh ∈ [0, T$], we have128

h∆k,h(x) ≥ hm−1∆0,h(x). Second, as limh↓0 h∆0,h(x) =
∫ T$

0
ρ(φs(x))Jφs(x)$c(s)ds > 0,129

there exists some h̃ > 0 and c > 0 such that for all k ∈ Z, h < h̃ implies130 ∫ T$

0

$c(t)ρ(φt(x))Jφt
(x)dt > c , h∆k,h(x) ≥ hm−1∆0,h(x) > c . (S21)

Then, for h < h̃,131

A ≤ c−1

∫ T$

0

|gbt/hc,h(x)−$c(t)ρ(φt(x))Jφt
(x)f(φt(x))|dt

+ c−1

∫ hbT$/hc+h

T$

∣∣gbt/hc,h(x)
∣∣dt .

By H1 and H3, the function t → $c(t)ρ(φt(x))Jφt
(x)f(φt(x)) is continuous on the compact132

[0, 2T$] and thus is bounded. Therefore, for any h ∈
(
0, h̄
)
,133

sup
t∈[0,2T$]

|$c(t)ρ(φt(x))Jφt
(x)f(φt(x))| ≤ sup

t∈R
|$c| sup

x∈Rd

|f(x)| sup
t∈[0,2T$]

|ρ(φt(x))Jφt
(x)| <∞ .

(S22)
Under H2, (S22) and Lemma S8 imply that134

sup
t∈[0,hbT$/hc+h)

gbt/hc,h(x)

≤ sup
t∈R
|$c(t)| sup

x∈Rd

|f(x)| sup
t∈[0,hbT$/hc+h)

ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x) <∞ ,

Then, limh↓0
∫ hbT$/hc+h
T$

∣∣gbt/hc,h(x)
∣∣dt = 0. Finally, Lemma S9 implies that limh↓0A = 0.135

Moreover, setting for t ∈ [0, T$],136

∆B
t,h(x) (S23)

=

∫
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x) −$c(s+ t)ρ(φs(x))Jφs

(x))|1A$
(s, t)ds

+

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|1A$

(s, t)ds ,

we have for h < h̃, by (S21) and H3-(ii),137

B =

∫ T$

0

∣∣∣∣$c(t)ρ(φt(x))Jφt
(x)f(φt(x))

h∆bt/hc,h(x)
− $c(t)ρ(φt(x))Jφt

(x)f(φt(x))∫
$c(s+ t)ρ(φs(x))Jφs

(x)ds

∣∣∣∣dt
≤
∫ T$

0

$c(t)ρ(φt(x))Jφt
(x)f(φt(x))

h∆bt/hc,h(x)
∫
$c(s+ t)ρ(φs(x))Jφs

(x)ds
∆B
t,h(x)dt

≤ mc−2

∫ T$

0

$c(t)ρ(φt(x))Jφt(x)f(φt(x))∆B
t,h(x)dt

≤ mc−2 sup
t∈R
|$c(t)| sup

x∈Rd

|f(x)| sup
t∈[0,T$]

|ρ(φs(x))Jφs
(x)|

∫ T$

0

∆B
t,h(x)dt . (S24)

By H1 and H3, the function s→ ρ(φs(x))Jφs(x) is continuous on the interval [−T$, T$] and thus138

is bounded. Therefore, for any h ∈
(
0, h̄
)
,139

sup
(s,t)∈A$

|$c(h(bt/hc+ bs/hc))ρ(φhbs/hc(x))Jφhbs/hc(x)|

≤ sup
(s,t)∈A$

|$c(s+ t)ρ(φs(x))Jφs
(x)| < T$ sup

s∈R
|$c(s)| sup

s∈[−T$,T$]

|ρ(φs(x))Jφs
(x)| <∞ .

(S25)
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This implies that140

lim
h↓0

∫ h(bT$/hc−bt/hc+1)

T$−hbt/hc
|ρ(φhbs/hc(x))$c(h(bs/hc+ bt/hc))Jφhbs/hc(x)|ds = 0 .

Moreover, for any t ∈ [0, T$], the function

s 7→ |$c(h(bt/hc+ bs/hc))ρ(φhbs/hc(x))Jφhbs/hc(x)−$c(t+ s)ρ(φs(x))Jφs
(x)|1A$

(s, t)

converges pointwise to 0 for almost all s ∈ R when h ↓ 0 using H1, H3 and the continuity of
s 7→ φs(x). The Lebesgue dominated convergence theorem applies and by (S23), for all t ∈ [0, T$],

lim
h↓0

∆B
t,h(x) = 0 .

Moreover, using h∆k,h(x) = h
∑
i∈Z ρ(Tih(x))$c((k + i)h)JTi

h(x) and (S25),141

sup
t∈[0,T$]

sup
h∈(0,h̄)

∆B
t,h(x) <∞ .

The Lebesgue dominated convergence theorem and (S24) show that limh↓0B = 0 which concludes142

the proof.143

B.1.1 Supporting Lemmas144

For f ∈ C1(Rd,Rd), define Jf (x) the Jacobian matrix of f evaluated at x and the divergence145

operator by div f(x) = tr[Jf (x)].146

Lemma S5. Let b be a C1 vector field in Rd and (φt)t∈R be the flow of the ODE (S17). For any
t ∈ R, the Jacobian of φt is given by

Jφt
(x) = exp(

∫ t
0

div b(φs(x))ds) .

Proof. First, for t ∈ R and x ∈ R, write A(t, x) = Jφt
(x) the Jacobian matrix of φt evaluated147

at x. By Jacobi’s formula, ˙detA(t, x) = tr[adj(A(t, x)) · Ȧ(t, x)], where tr[M ] denotes the trace148

of a matrix M and adj(M) its adjugate, i.e. the transpose of the cofactor matrix of M such that149

adj(M)M = det(M) Id. Since for all t and x, Ȧ(t, x) = Jb◦φt
(x) = Jb(φt(x)) ·A(t, x), then150

J̇φt
(x) = tr[adj(A(t, x)) · Jb(φt(x)) ·A(t, x)] = tr[Jb(φt(x))]Jφt

(x) . (S26)

Integrating this ODE yields Jφt
(x) = exp(

∫ t
0

div b(φs(x))ds).151

Lemma S6. Assume H1. Then, there exists C > 0 such that for any x ∈ Rd, t ∈ R, k ∈ Z, h > 0,152

‖φt(x)‖ ≤ CeC|t|(‖x‖+ 1) ,

‖Tkh(x)‖ ≤ CeC|kh|(‖x‖+ 1) .

This lemma follows from Gronwall’s inequality and H1.153

Lemma S7. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, h ∈
(
0, h̄
)
,154

‖Th(x)− φh(x)‖ ≤ C{1 + ‖x‖}‖h1+δ . (S27)

Proof. Under H1 and H2-(i), we have155

‖Th(x)− φh(x)‖ ≤ ‖x+ hb(x)− φh(x)‖+ CFh
1+δ(1 + ‖x‖) ,

and as φh(x) = x+
∫ h

0
b(φs(x))ds,156

‖x+ hb(x)− φh(x)‖ = ‖hb(x)−
∫ h

0
b(φs(x))‖ ≤ hLb sups∈[0,h] ‖φs(x)− x‖

≤ Lbh2{Lb sup
s∈[0,h]

φs(x) + ‖b(0)‖} . (S28)

The proof is completed using Lemma S6.157

9



Lemma S8. Assume H1 and H2-(i). There exists C > 0 such that for any x ∈ Rd, k ∈ N, h ∈
(
0, h̄
)
,158

kh ≤ T$,159

‖Tkh(x)− φkh(x)‖ ≤ CekhC(1 + ‖x‖)hδ . (S29)

Proof. Using Lemma S7, H1 and H2-(i), there exist C1, C2, C3 > 0 such that for any x ∈ Rd, k ∈160

N, h ∈
(
0, h̄
)
, kh ≤ T$,161

‖Tk+1
h (x)− φ(k+1)h(x)‖ ≤ ‖Tk+1

h (x)− Th ◦φkh(x)‖+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
≤ (1 + hLb)‖Tkh(x)− φkh(x)‖

+ h1+δC1{2 + ‖Tkh(x)‖+ ‖φkh(x)‖}+ ‖Th ◦φkh(x)− φ(k+1)h(x)‖
≤ (1 + hLb)‖Tkh(x)− φkh(x)‖+ h1+δ2C1C2e

C2T${1 + ‖x‖}+ C3{1 + ‖φkh(x)‖}h1+δ

≤ (1 + hLb)‖Tkh(x)− φkh(x)‖
+ h1+δ2C1C2e

C2T${1 + ‖x‖}+ C3{1 + C2(1 + ‖x‖)}h1+δeC2T$

≤ (1 + hLb)‖Tkh(x)− φkh(x)‖+AT {1 + ‖x‖}h1+δ ,

with AT = (2C1C2 + C3(1 + C2))eC2T$ . A straightforward induction yields162

‖Tkh(x)− φkh(x)‖ ≤ (1 + hLb)
k

Lb
AT (1 + ‖x‖)hδ .

163

Lemma S9. Assume H1, H2, H3 . For any x ∈ Rd, and f : Rd → Rd bounded and continuous,164

lim
h↓0

∫ T$

0

∣∣∣$c(h bt/hc)ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)ρ(φt(x))Jφt

(x)f(φt(x))
∣∣∣dt = 0 .

Proof. Let x ∈ Rd. Consider the following decomposition, for any h < h̄,165 ∫ T$

0

∣∣∣$c(h bt/hc)ρ(T
bt/hc
h (x))J

T
bt/hc
h

(x)f(T
bt/hc
h (x))−$c(t)ρ(φt(x))Jφt

(x)f(φt(x))
∣∣∣dt

≤ h
T$

∑
k∈Z$

c(kh)|ρ(Tkh(x))JTk
h
(x)f(Tkh(x))− ρ(φkh(x))Jφkh

(x)f(φkh(x))|

+
∫ T$

0
|$c(t)ρ(φt(x))Jφt

(x)f(φt(x))−$c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|dt .

The first term converges to 0 by Lemma S8 and H2-(ii) as $c(kh) = 0 for kh > T$. By H1 and H166

3, the function t→ $c(t)ρ(φt(x))Jφt(x)f(φt(x)) is continuous on the compact [0, T$] and thus is167

bounded. Therefore, for any h ∈
(
0, h̄
)
,168

sup
t∈[0,T$]

|$c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x))|

≤ sup
t∈R
|$c| sup

x∈Rd

|f(x)| sup
t∈[0,T$]

|ρ(φt(x))Jφt
(x)| <∞ . (S30)

Moreover, t 7→ $c(h bt/hc)ρ(φhbt/hc(x))Jφhbt/hc(x)f(φhbt/hc(x)) converges pointwise when169

h ↓ 0 to t → $c(t)ρ(φt(x))Jφt
(x)f(φt(x)) by continuity, using H1 and H3. The Lebesgue170

dominated convergence theorem applies and the second term goes to 0 as h ↓ 0.171

B.2 NEIS algorithm after [16]172

Non Equilibrium Importance Sampling (NEIS) has been introduced in the pioneering work of [16].173

NEIS relies on the flow of the ODE ẋt = b(xt) and the introduction of a set O ⊂ Rd. As in174

Appendix B, we assume H1 holds and denote by (φt)t∈R the flow of this ODE.175

Define for x ∈ O, the exit times τ+(x) ≥ 0 (resp. τ−(x) ≤ 0) satisfying176

τ+(x) = inf{t ≥ 0 : φt(x) /∈ O} , τ−(x) = inf{t ≤ 0 : φt(x) /∈ O} . (S31)

The validity of NEIS relies on the following assumption.177
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H4. The average time of an orbit in O is finite, i.e.178

Zτ =

∫
O

(τ+(x)− τ−(x))ρ(x)dx <∞ . (S32)

Under H4, we can define the proposal distribution179

ρT(x) = Z−1
τ

∫
O

1[τ−(x),τ+(x)](t)ρ(φt(x))Jφt(x)dt . (S33)

Under H4, [16, Equation (8)] derive the following estimator of ρ(f), closely related to (16), in the180

case $ ≡ 1, on the restricted set O ⊂ Rd :181

INEIS
N (f) =

1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)

wt(X
i)f(φt(X

i))dt (S34)

wt(x) =
ρ(φt(x))Jφt(x)∫ τ+(x)

τ−(x)
ρ(φt(x))Jφt(x)dt

. (S35)

Note that in practice, in order for H4 to be verified, one typically requires that O be bounded, as182

discussed in [16].183

Following [16], consider a d-dimensional system with position q ∈ Rd, momentum p ∈ Rd and184

Hamiltonian H(p, q) = (1/2)‖p‖2 + U(q) where U(q) is a potential assumed to be bounded from185

below. Denote by V (E) the volume of the phase-space below some threshold energy E,186

V (E) =

∫
1{H(p,q)≤E}dpdq . (S36)

To calculate (S36), we set x = (p, q), define O = {x;H(x) ≤ Emax} for some Emax <∞, and use187

the dissipative Langevin dynamics with b(x) = (p,−∇U(q)− γp), i.e.188

q̇ = p , ṗ = −∇U(q)− γp ,

for some friction coefficient γ > 0. With this choice, Jφt(x) = e−dγt. Taking ρ to be the189

uniform distribution on the (bounded) set O, write the estimator for E ≤ Emax, V (E)/V (Emax) =190 ∫
1{H(p,q)≤E}ρ(p, q)dpdq, where ρ(p, q) = 1O(p, q)/V (Emax), we get191

V (E)/V (Emax) =
1

N

N∑
i=1

∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)1{H(φt(Xi))≤E}dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

∫ τ+(Xi)

τE(Xi)
Jφt(Xi)dt∫ τ+(Xi)

τ−(Xi)
Jφt(Xi)dt

=
1

N

N∑
i=1

e−dγ(τE(Xi)−τ−(Xi)) , (S37)

where τE(x) denotes the (possibly infinite) time for a trajectory initiated at x = (p, q) to reach the192

energy E ≤ Emax.193

Finally, to estimate the normalizing constant, [16] discretize the energy levels {E0, . . . , EP } and194

write their estimator as195

Ẑ
NEIS

X1:N =
1

N

N∑
i=1

P∑
`=1

e−dγ(τE
` (Xi)−τ−(Xi))(E` − E`−1) , (S38)

using an approximation of the identity196

Z =

∫
O

∫ ∞
0

1{L(x)>L}ρ(x)dLdx =

∫ ∞
0

PX∼ρ(L(X) > L)dL ,

which is at the core of nested sampling [5].197
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B.3 NEO with exit times198

Consider O ⊂ Rd and let T be a C1-diffeomorphism on Rd. We introduce here an estimator based199

on the forward and backward orbits in O associated with T. Define the exit times τ+ : Rd → N and200

τ− : Rd → N−, given, for all x ∈ Rd, by201

τ+(x) = inf{k ≥ 1 : Tk(x) 6∈ O} , (S39)

τ−(x) = sup{k ≤ −1 : Tk(x) 6∈ O} , (S40)

with the convention inf ∅ = +∞ and sup ∅ = −∞, and set202

I = {(x, k) ∈ O× Z : k ∈ [τ−(x) + 1 : τ+(x)− 1]} . (S41)

For any k ∈ Z, define ρk : Rd → R+ by203

ρk(x) = ρ(T−k(x))JT−k(x)1I(x,−k) . (S42)

The density ρk is the push-forward of 1I(x, k)ρ(x) by Tk, i.e. for any k ∈ Z and any bounded204

function g : Rd → R,205 ∫
O

g(y)ρk(y)dy =

∫
O

g(Tk(x))1I(x, k)ρ(x)dx . (S43)

Consider the following assumption:206

H5. The nonnegative sequence ($k)k∈Z satisfies $0 > 0 and207

Z$T =

∫
O

∑
k∈Z

$kρk(x)dx =

∫
O

∑
k∈Z

$kρ(Tk(x))JTk(x)1I(x, k)dx <∞ . (S44)

Consider the pdf208

ρT(x) =
1

Z$T

∑
k∈Z

$kρk(x) , (S45)

where Z$T is the normalizing constant. This is a non-equilibrium distribution, since ρT is not209

invariant by T in general. Using ρT as an importance distribution to obtain an unbiased estimator of210 ∫
f(x)ρ(x)dx is feasible since as $0 > 0, supx∈O ρ(x)/ρT(x) ≤ ZT /$0 <∞, hence211 ∫

O

f(x)ρ(x)dx =

∫
O

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx .

From (S43), the right hand side can be computed using the following key result.212

Theorem S10. For any f : Rd → R measurable bounded function, we have213 ∫
O

f(x)ρ(x)dx =

∫
O

∑
k∈Z

f(Tk(x))wk(x)ρ(x)dx , (S46)

where, for any x ∈ Rd and k ∈ Z,214

wk(x) = $kρ−k(x)
/∑

j∈Z
$j+kρj(x) . (S47)

Proof. Let f : Rd → R be a measurable bounded function. By (S43), writing g ← fρ/ρT,215 ∫
O

f(x)ρ(x)dx =

∫
O

(
f(x)

ρ(x)

ρT(x)

)
ρT(x)dx

=

∫
O

∑
k∈Z

(
f(Tk(x))

$kρ(Tk(x))1I(x, k)

Z$T ρT(Tk(x))

)
ρ(x)dx .

We now need to prove:216

$kρ(Tk(x))1I(x, k)

Z$T ρT(Tk(x))
=

$kρ(Tk(x))1I(x, k)

1I(x, k)
∑
i∈Z$iρi(T

k(x))
=

$kρ−k(x)∑
j∈Z$j+kρj(x)

= wk(x) ,
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with the convention 0/0 = 0. We thus need to show that for any x ∈ O, k ∈ Z,217

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

1I(x, k)

JTk(x)

∑
j∈Z

$j+kρj(x) .

Using the identity JT−i+k(x) = JT−i(Tk(x))JTk(x), we obtain218

1I(x, k)
∑
i∈Z

$iρi(T
k(x)) =

∑
i∈Z

1I(x, k)$iρ(T−i(Tk(x)))JT−i(Tk(x))1I(T
k(x),−i)

=
1

JTk(x)

∑
i∈Z

1I(x, k)$iρ(T−i+k(x))JT−i+k(x)1I(T
k(x),−i)

=
1

JTk(x)

∑
j∈Z

$j+kρ(T−j(x))JT−j (x)1I(T
k(x),−j − k)1I(x, k)

Note that if (x, k) ∈ I, we have (x,−j) ∈ I if and only if (Tk(x),−j − k) ∈ I by definition of I219

(S41). The proof is concluded by noting that:220

1I(T
k(x)),−j − k)1I(x, k) = 1I(x,−j)1I(x, k) .

221

C Iterated SIR222

Let us recall the principle of the Sampling Importance Resampling method (SIR; Rubin [17], Smith223

& Gelfand [18]) whose goal is to approximately sample from the target distribution π using samples224

drawn from a proposal distribution ρ.225

In SIR, a N -i.i.d. sample X1:N is first generated from the proposal distribution ρ. A sample X∗ is226

approximately drawn from the target π by choosing randomly a value in X1:N with probabilities227

proportional to the importance weights {L(Xi)}Ni=1, where L(x) = π(x)/ρ(x). Note that the228

importance weights are required to be known only up to a constant factor.229

For SIR, as N →∞, the sample X∗ is asymptotically distributed according to π; see [18].230

A subsequent algorithm is the iterated SIR (i-SIR) [2]. Here, N is not necessarily large (N ≥ 2),
the whole process of sampling a set of proposals, computing the importance weights, and picking
a candidate, is iterated. At the n-th step of i-SIR, the active set of N proposals X1:N

n and the
index In ∈ [N ] of the conditioning proposal are kept. First i-SIR updates the active set by setting
XIn
n+1 = XIn

n (keep the conditioning proposal) and then draw independently X1:N\{In}
n+1 from ρ.

Then it selects the next proposal index In+1 ∈ [N ] by sampling with probability proportional to
{w̃(Xi

n+1)}Ni=1. As shown in [2], this algorithm defines a partially collapsed Gibbs sampler (PCG)
of the augmented distribution

π̄(x1:N , i) =
1

N
π(xi)

∏
j 6=i

ρ(xj) =
1

N
w̃(xi)

N∏
j=1

ρ(xj) .

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is positive on231

the support of π. If in addition the importance weights are bounded, the Gibbs sampler can be shown232

to be uniformly geometrically ergodic [14, 3]. It follows that the distribution of the conditioning233

proposalX∗n = XIn
n converges to π as the iteration index n goes to infinity. Indeed, for any integrable234

function f on Rd, with (X1:N , I) ∼ π̄,235

E[f(XI)] =

∫ N∑
i=1

f(xi)π̄(x1:N , i)dx1:N = N−1
N∑
i=1

∫
f(xi)π(xi)dxi =

∫
f(x)π(x)dx .

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing proper236

mixing properties becomes more and more difficult. A way to circumvent this problem is to use237

dependent proposals, allowing in particular local moves around the conditioning orbit. To implement238
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this idea, for each i ∈ [N ], we define a proposal transition, ri(xi;x1:N\{i}) which defines the239

the conditional distribution of X1:N\{i} given Xi = xi. The key property validating i-SIR with240

dependent proposals is that all one-dimensional marginal distributions are equal to ρ, which requires241

that for each i, j ∈ [N ],242

ρ(xi)ri(x
i;x1:N\{i}) = ρ(xj)rj(x

j ;x1:N\{j}) (S48)

The (unconditional) joint distribution of the particles is therefore defined as243

ρN
(
x1:N

)
= ρ(x1)r1(x1;x1:N\{1}) . (S49)

The resulting modification of the i-SIR algorithm is straightforward: X1:N\{In} is sampled jointly244

from the conditional distribution rIn(XIn
n , ·) rather than independently from ρ.245

D Additional Experiments246

D.1 Normalizing constant estimation247

We consider here the problem of the estimation of the normalizing constant of Cauchy mixtures. The248

Cauchy distribution with scale σ has a pdf defined by Cauchy(x;µ, σ) = [πσ(1 + {(x− µ)/σ}2]−1.249

The target distribution is a product of mixtures of two Cauchy distributions,250

π(x) =

n∏
i=1

1

2
[Cauchy (xi;µ, σ) + Cauchy (xi;−µ, σ)] , µ = 5, σ = 1 .

NEO-IS is compared with IS estimator using the same proposal ρ. We also compare NEO-IS to251

Neural IS [15] with a Cauchy as base distribution.

NEO IS NIS0
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Figure S1: Boxplots of 500 independent estimations of the normalizing constant of the Cauchy
mixture in dimension d = 10, 15 (top, bottom). The true value is given by the red line. The figure
displays the median (solid lines), the interquartile range, and the mean (dashed lines) over the 500
runs

252

Finally, we compare NEO-IS with NEIS1. We consider here MG25 in dimension 5 and 10, where all253

the covariances of the Gaussian distributions are diagonal and equal to 0.005 Id. NEIS and NEO-IS254

are run for the same computational time. We add an IS scheme as a baseline for comparison. All255

algorithms (NEO-IS, NEIS, IS) are run for 7.20s and 11.30s wall clock time respectively for d = 5256

and d = 10. For NEO-IS, we use a conformal transform with h = 0.1, K = 10 and γ = 1. For257

NEIS, we choose γ = 1 and consider a stepsize h = 10−4 corresponding to an optimal trade-off258

between the discretization bias inherent to NEISand its computational budget. We can observe that259

NEO-IS always outperforms NEIS, which suffers from a non-negligeable bias if the stepsize h is not260

chosen small enough.261

D.2 Gibbs inpainting262

We display here additional results for the Gibbs inpainting experiment presented in Section 5. We263

emphasize that the starting images are chosen at random in the test set.264

1The code from [16] we run is available at https://gitlab.com/rotskoff/trajectory_estimators/
-/tree/master.
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Figure S2: NEO v. NEIS. 25 GM with σ2 = 0.005, d = 5. 500 runs each.

Figure S3: Forward orbits of NEO-MCMC.

E NEO and VAEs265

Denote by pθ(x, z) the joint distribution of the observation z ∈ Rp and the latent variable x ∈266

Rd. The marginal likelihood is given, for z ∈ Rp by pθ(z) =
∫
pθ(x, z)dx. Given a training267

set D = {zi}Mi=1, the objective is to estimate θ by maximizing the likelihood, i.e. maximizing268

log pθ(D) =
∑M
i=1 log pθ(zi). We show two experiments in the following, first the evaluation of269

independently trained VAEs, and then the derivation and learning of a VAE based on NEO, and270

NEO-VAE.271

E.1 Log-likelihood estimation272

We present here first the evaluation of the log-likelihood of a trained VAE on the dynamically
binarized MNIST dataset. The models we compare share the same architecture: the inference network
qφ is given by a convolutional network with 2 convolutional layers and one linear layer, which outputs
the parameters µφ(x), σφ(x) ∈ Rd of a factorized Gaussian distribution, while the generative model
pθ(·|z) is given by another symmetrical convolutional network gθ. This outputs the parameters for
the factorized Bernoulli distribution (for MNIST dataset), that is

pθ(z|x) =

N∏
i=1

Ber
(
z(i)|

(
gθ(x)

)(i))
.

We here follow the experimental setting of [20]. Given a test set T = {zi}MTi=1 , we estimate273 ∑MT
i=1 log pθ∗(zi). We also estimate similarly the log-likelihood of an Importance Weighted Auto274

Encoder (IWAE) [4]. Following [20], we compare IS, AIS, and NEO-IS. As previously, AIS, IS,275

and NEO-IS are given a similar computational budget, choosing here K = 12, N = 5 · 103. For276

NEO, we choose γ = 1. and h = 0.2. Similarly, the stepsize of HMC transitions in AIS is h = 0.1277

in order to achieve an acceptance ratio of around 0.6 in the HMC transitions. We report in Table 1278

the log-likelihood computed on the test set for VAE, IWAE with latent dimension in {16, 32}. For279
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Figure S4: Additional examples for the Gibbs inpainting task for CelebA dataset. From top to bottom:
i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to reconstruct, and
output every 5 iterations of the Markov chain.

Model VAE, d = 32 VAE, d = 16 IWAE, d = 32 IWAE, d = 16
IS -90.17 -90.44 -88.76 -90.13

AIS -89.67 -89.97 -88.30 -89.61
NEO-IS -88.81 -89.17 -87.46 -88.99

Table 1: Evaluation of the log-likelihood (normalizing constant) of different Variational Auto En-
coders.

the same computational budget, NEO-IS yields consistently better values for the estimation of the280

log-likelihood of the VAE.281

E.2 Definition of a NEO-VAE282

Variational inference (VI) provides us with a tool to simultaneously approximate the intractable283

posterior pθ(x|z) and maximize the marginal likelihood pθ(D) in the parameter θ. This is achieved284

by introducing a parametric family {qφ(x|z), φ ∈ Φ} to approximate the posterior pθ(x|z) and max-285

imizing the Evidence Lower Bound (ELBO) (see [12]) LELBO(D, θ, φ) =
∑M
i=1 LELBO(zi, θ, φ)286
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where287

LELBO(z, θ, φ) =

∫
log

(
pθ(x, z)

qφ(x | z)

)
qφ(x | z)dx (S50)

= log pθ(z)−KL(qφ(· | z)‖pθ(· | z)) ,
and KL is the Kullback–Leibler divergence. In the sequel, we set ρ(x) = qφ(x | z) and L(x) =288

pθ(x, z)/qφ(x | z). In such a case, π(x) = ρ(x)L(x)/Z = pθ(x | z) and Z = pθ(z) (in these289

notations, the dependence in the observation z is implicit).290

We follow the the auxiliary variational inference framework (AVI) provided by [1]. We consider291

a joint distribution p̄θ(x, u, z) which is such that pθ(z) =
∫
pθ(x, u, z)dxdu where u ∈ U is an292

auxiliary variable (the auxiliary variable can both have discrete and continuous components; when u293

has discrete components the integrals should be replaced by a sum). Then as the usual VI approach,294

we consider a parametric family {q̄φ(x, u|z), φ ∈ Φ}. Introducing auxiliary variables loses the295

tractability of (S50) but they allow for their own ELBO as suggested in [1, 13] by minimizing296

KL(q̄φ(· | z)‖p̄θ(· | z)) =

∫
q̄φ(x, u|z) log

(
p̄θ(x, u, z)

q̄φ(x, u|z)

)
dxdu . (S51)

The auxiliary variable u is naturally associated with the extended target p̄ defined similar to Remark 2,297

298

p̄N ([x, x1:N\{i}], i) = π̌(x1:N , i) =
Ẑ
$

x

N Z
ρN (x1:N ) (S52)

with (x, u) = ([x, x1:N\{i}], i), a shorthand notation for a N -tuple x1:N with xi = x, and, with ri299

defined in (15),300

ρN (x1:N ) = ρ(x1)r1(x1, x2:N ) = ρ(xj)rj(x
j , x1:N\{j}) , j ∈ {1, . . . , N} , (S53)

generally for Markov transitions {rj}j∈[N ]. We might write simply in the following

ρN (x1:N ) =

N∏
i=1

ρ(xi) .

An extended proposal playing the role of q̄φ(x, u|z) is derived from the NEO-MCMC sampler, i.e.301

q̄N ([x, x1:N\{i}], i) =
Ẑ
$

x

N Ẑ
$

x1:N

ρN (x1:N ) . (S54)

where Ẑ
$

x1:N is the NEO estimator (4) of the normalizing constant. Note that, by construction,302

N∑
i=1

q̄N (x1:N , i) = ρN (x1:N ) (S55)

showing that this joint proposal can be sampled by drawing the proposals x1:N ∼ ρN , then sampling303

the path index i ∈ [N ] with probability proportional to (Ẑ
$

xi)Ni=1 (with Ẑ
$

x defined in (4)). The ratio304

of (S52) over (S54) is305

p̄N (x1:N , i)
/
q̄N (x1:N , i) = Ẑ

$

x1:N

/
Z . (S56)

Thus, we write the augmented ELBO (S51)306

LNEO =

∫
ρN (x1:N ) log Ẑ

$

x1:N dx1:N = log Z−KL(q̄N |p̄N ) , (S57)

where we have used (S55) and that the ratio p̄N (x1:N , i)
/
q̄N (x1:N , i) does not depend on the path307

index i. When $k = δk,0, where δi,j is the Kronecker symbol, and ρN (x1:N ) =
∏N
j=1 ρ(xj), we308

exactly retrieve the Importance Weighted AutoEncoder (IWAE); see e.g. [4] and in particular the309

interpretation in [6].310

Choosing the conformal Hamiltonian introduced in Section 2 allows for a family of invertible flows311

that depends on the parameter θ which itself is directly linked to the target distribution. Table 2312

displays the estimated NLL of all models provided by IS and the NEO method. It is interesting to313

note here again that NEO improves the training of the VAE when the dimension of the latent space is314

small to moderate.315
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Table 2: Negative Log Likelihood estimates for VAE models for different latent space dimensions.
d = 4 d = 8 d = 16 d = 50

model IS NEO IS NEO IS NEO IS NEO

VAE 115.01 113.49 97.96 97.64 90.52 90.42 88.22 88.36
IWAE, N = 5 113.33 111.83 97.19 96.61 89.34 89.05 87.49 87.27
IWAE, N = 30 111.92 110.36 96.81 95.94 88.99 88.64 86.97 86.93

NEO VAE, K = 3 109.14 107.47 94.50 94.26 89.03 88.92 88.14 88.16
NEO VAE, K = 10 110.02 107.90 94.63 94.22 89.71 88.68 88.25 86.95
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