A Proofs

A. 1 Additional notation

By abuse of notation, we denote by ρ and $\tilde{\pi}$ the probability measures with density with respect to the Lebesgue measure ρ and $\tilde{\pi}$ respectively.

A. 2 Proof of (3)

6 The second expression of w_{k} follows from $\mathbf{J}_{\mathrm{T}^{-j}}\left(\mathrm{~T}^{k}(x)\right)=\mathbf{J}_{\mathrm{T}^{k-j}}(x) / \mathbf{J}_{\mathrm{T}^{k}}(x)$ which implies

$$
\begin{aligned}
& w_{k}(x)=\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) / \sum_{j \in \mathbb{Z}} \varpi_{j} \rho\left(\mathrm{~T}^{k-j}(x)\right) \mathbf{J}_{\mathrm{T}^{-j}}\left(\mathrm{~T}^{k}(x)\right) \\
& =\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) \mathbf{J}_{\mathrm{T}^{k}}(x) / \sum_{j \in \mathbb{Z}} \varpi_{j} \rho\left(\mathrm{~T}^{k-j}(x)\right) \mathbf{J}_{\mathrm{T}^{k-j}}(x)=\varpi_{k} \rho_{-k}(x) / \sum_{i \in \mathbb{Z}} \varpi_{k+i} \rho_{i}(x)
\end{aligned}
$$

A. 3 Proof of Theorem 1

The unbiasedness of $\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}$ follows directly from (2). Moreover, as $\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}$ is unbiased and $E_{\mathrm{T}}^{\varpi}<\infty$, we can write

$$
\begin{equation*}
\operatorname{Var}_{\rho}\left[\widehat{\mathrm{Z}}_{X}^{\varpi} / \mathrm{Z}\right]=\mathbb{E}_{\rho}\left[\left(\widehat{\mathrm{Z}}_{X}^{\varpi} / \mathrm{Z}\right)^{2}\right]-1=E_{\mathrm{T}}^{\varpi}-1 \tag{S1}
\end{equation*}
$$

As $X^{1: N} \stackrel{\text { iid }}{\sim} \rho, \operatorname{Var}_{\rho}\left[\widehat{\mathrm{Z}}_{X^{1: N}}^{\infty} / \mathrm{Z}\right]=N^{-1} \operatorname{Var}_{\rho}\left[\widehat{\mathrm{Z}}_{X}^{\varpi} / \mathrm{Z}\right]$. Finally, if $M_{\mathrm{T}}^{\varpi}<\infty$, then Hoeffding's inequality applies and we can write for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(\left|\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi} / \mathrm{Z}-1\right|>\epsilon\right) \leq 2 \exp \left(-2 N \epsilon^{2} /\left(M_{\mathrm{T}}^{\varpi}\right)^{2}\right) \tag{S2}
\end{equation*}
$$

A. 4 Proof of Theorem 2

We first present two auxiliary lemmas necessary to establish Theorem 2.
Lemma S1. Let A, B be two integrable random variables satisfying $|A / B| \leq M$ almost surely and denote $a=\mathbb{E}[A], b=\mathbb{E}[B]$. Then,

$$
\begin{align*}
|\mathbb{E}[A / B]-a / b| & \leq \frac{\sqrt{\operatorname{Var}(A / B) \operatorname{Var}(B)}}{b} \tag{S3}\\
\operatorname{Var}(A / B) & \leq \mathbb{E}\left[|A / B-a / b|^{2}\right] \leq \frac{2}{B^{2}}\left(\mathbb{E}\left[\left|A_{N}-A\right|^{2}\right]+M^{2} \mathbb{E}\left[\left|B_{N}-B\right|^{2}\right]\right) \tag{S4}
\end{align*}
$$

Moreover, using $|A / B| \leq M$ yields

$$
\begin{aligned}
\left|\frac{A}{B}-\frac{a}{b}\right|=\left|\frac{1}{b}(A-a)+A\left(\frac{1}{B}-\frac{1}{b}\right)\right| & \leq \frac{1}{b}|A-a|+\frac{|A|}{B b}|B-b| \\
& \leq \frac{1}{b}|A-a|+\frac{M}{b}|B-b|
\end{aligned}
$$

Therefore,

$$
|A / B-a / b|^{2} \leq \frac{2}{b^{2}}\left(|A-a|^{2}+M^{2}|B-b|^{2}\right)
$$

20 Using that $\mathbb{E}\left[|A / B-a / b|^{2}\right]=\operatorname{Var}(A / B)+|\mathbb{E}[A / B]-a / b|^{2}$ concludes the proof.

We get the following lemma from [7, Lemma 4].
Lemma S2. Assume that A and B are random variables and that there exist positive constants b, M, C, K such that
(i) $|A / B| \leq M, \mathbb{P}$-a.s.,
(ii) for all $\epsilon>0$ and all $N \geq 1, \mathbb{P}(|B-b|>\epsilon) \leq K \exp \left(-R \epsilon^{2}\right)$,
(iii) for all $\epsilon>0$ and all $N \geq 1, \mathbb{P}(|A|>\epsilon) \leq K \exp \left(-R \epsilon^{2} / M^{2}\right)$,
then,

$$
\mathbb{P}(|A / B| \geq \epsilon) \leq 2 K \exp \left(-R b^{2} \epsilon^{2} / 4 M^{2}\right)
$$

Proof. By the triangle inequality,

$$
\begin{aligned}
|A / B| & =\left|\frac{A}{B}(b-B) b^{-1}+b^{-1} A\right| \\
& \leq b^{-1}|A / B||b-B|+b^{-1}|A| \leq M b^{-1}|b-B|+b^{-1}|A| .
\end{aligned}
$$

Therefore,

$$
\{|A / B| \geq \epsilon\} \subseteq\left\{|B-b| \geq \frac{\epsilon b}{2 M}\right\} \cup\left\{|A| \geq \frac{\epsilon b}{2}\right\}
$$

Then, conditions (ii) and (iii) imply that

$$
\begin{aligned}
\mathbb{P}(|A / B| \geq \epsilon) & \leq \mathbb{P}\left(|B-b| \geq \frac{\epsilon b}{2 M}\right)+\mathbb{P}\left(|A| \geq \frac{\epsilon b}{2}\right) \\
& \leq 2 K \exp \left(-R b^{2} \epsilon^{2} /\left(4 M^{2}\right)\right)
\end{aligned}
$$

Proof of Theorem 2. Let $g: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\sup _{x \in \mathbb{R}^{d}}|g|(x) \leq 1$ and denote $\pi(g)=\int g \mathrm{~d} \pi$. We use Lemma S 1 with $A=A_{N}$ and $B=\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}$ where

$$
\begin{equation*}
A_{N}=\frac{1}{N} \sum_{i=1}^{N} \sum_{k \in \mathbb{Z}} w_{k}\left(X^{i}\right) \mathrm{L}\left(\mathrm{~T}^{k}\left(X^{i}\right)\right) g\left(\mathrm{~T}^{k}\left(X^{i}\right)\right), \widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}=\frac{1}{N} \sum_{i=1}^{N} \sum_{k \in \mathbb{Z}} w_{k}\left(X^{i}\right) \mathrm{L}\left(\mathrm{~T}^{k}\left(X^{i}\right)\right) . \tag{S5}
\end{equation*}
$$

By construction, since $\sup _{x \in \mathbb{R}^{d}}|g|(x) \leq 1$, almost surely $A_{N} / \widehat{Z}_{X^{1: N}}^{\varpi} \leq 1$ and $\operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}\right)=$ $N^{-1} \operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right)$. Then, using (2) with $a=\mathbb{E}\left[A_{N}\right]=\mathrm{Z} \pi(g)$ and $b=\mathbb{E}\left[\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}\right]=\mathrm{Z}$, Lemma S1 implies

$$
\begin{equation*}
\left|J_{\varpi, N}^{\mathrm{NEO}}(g)-\pi(g)\right|=\left|\mathbb{E}\left[A_{N} / \widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}\right]-a / b\right| \leq N^{-1 / 2} \sqrt{\operatorname{Var}\left(A_{N} / \widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}\right) \operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right)} . \tag{S6}
\end{equation*}
$$

On the other hand,

$$
\mathbb{E}\left[\left|A_{N}-a\right|^{2}\right]=N^{-1} \mathbb{E}_{X \sim \rho}\left[\left\{\sum_{k \in \mathbb{Z}} w_{k}(X) \mathrm{L}\left(\mathrm{~T}^{k}(X)\right) g\left(\mathrm{~T}^{k}(X)\right)-\mathrm{Z} \pi(g)\right\}^{2}\right] \leq N^{-1} \mathrm{Z}^{2} E_{\mathrm{T}}^{\varpi}
$$

These inequalities yield using $\operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right) \leq E_{\mathrm{T}}^{\varpi}$ and Lemma S1 again:

$$
\begin{aligned}
& \mathbb{E}\left[\left|J_{\varpi, N}^{\mathrm{NEO}}(g)-\pi(g)\right|^{2}\right] \leq \frac{2}{N}\left(E_{\mathrm{T}}^{\varpi}+\operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right)\right) \leq \frac{4}{N} E_{\mathrm{T}}^{\varpi} \\
& \left|\mathbb{E}\left[J_{\varpi, N}^{\mathrm{NEO}}(g)-\pi(g)\right]\right| \leq \frac{\sqrt{2\left(E_{\mathrm{T}}^{\varpi}+\operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right)\right) \operatorname{Var}\left(\widehat{\mathrm{Z}}_{X^{1}}^{\varpi}\right)}}{N} \leq \frac{2 E_{\mathrm{T}}^{\varpi}}{N}
\end{aligned}
$$

which concludes the proof.
Define

$$
\tilde{A}_{N}=N^{-1} \sum_{i=1}^{N} \sum_{k \in \mathbb{Z}} w_{k}\left(X^{i}\right) \mathrm{L}\left(\mathrm{~T}^{k}\left(X^{i}\right)\right)\left(g\left(\mathrm{~T}^{k}\left(X^{i}\right)\right)-\pi(g)\right)
$$

With this notation, the proof of (9) relies on the application of Lemma S 2 to $A=\tilde{A}_{N}$ and $B=\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}$, since

$$
J_{\varpi, N}^{\mathrm{NEO}}(g)-\pi(g)=A_{N} / \widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}
$$

As $\sup _{x \in \mathbb{R}^{d}}|g|(x) \leq 1$, we get that $\tilde{A}_{N} / \widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi} \leq 2$. By (2), $\mathbb{E}\left[\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}\right]=\mathrm{Z}$ and $\widehat{\mathrm{Z}}_{X^{1: N}}^{\varpi}=$ $N^{-1} \sum_{i=1}^{N} W_{i}$ with $W_{i}=\sum_{k \in \mathbb{Z}} w_{k}\left(X^{i}\right) \mathrm{L}\left(\mathrm{T}^{k}\left(X^{i}\right)\right) \leq M_{\mathrm{T}}^{\varpi}$. Then, by Hoeffding's inequality, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|B_{N}-\mathrm{Z}\right|>\varepsilon\right) \leq 2 \exp \left(-2 N\left(\varepsilon / M_{\mathrm{T}}^{\varpi}\right)^{2}\right)
$$

Similarly, A_{N} is centered and $A_{N}=N^{-1} \sum_{i=1}^{N} U_{i}$ with

$$
U_{i}=\sum_{k \in \mathbb{Z}} w_{k}\left(X^{i}\right) \mathrm{L}\left(\mathrm{~T}^{k}\left(X^{i}\right)\right)\left\{g\left(\mathrm{~T}^{k}\left(X^{i}\right)\right)-\pi(g)\right\}
$$

and $\left|U_{i}\right| \leq 2 M_{\mathrm{T}}^{\varpi}$ almost surely. By Hoeffding's inequality, for all $\varepsilon>0$,

$$
\mathbb{P}\left(\left|A_{N}\right|>\epsilon\right) \leq 2 \exp \left(-N \varepsilon^{2} /\left(8\left(M_{\mathrm{T}}^{\varpi}\right)^{2}\right)\right)
$$

The assumptions of Lemma S2 are met so that

$$
\mathbb{P}\left(\left|J_{\varpi, N}^{\mathrm{NEO}}(g)-\pi(g)\right|>\varepsilon\right) \leq 4 \exp \left(-\varepsilon^{2} N \mathrm{Z}^{2} /\left[32\left(M_{\mathrm{T}}^{\varpi}\right)^{2}\right]\right)
$$

A. 5 Proof of Lemma 3

2 As $w_{k}(x)=\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) /\left\{\Omega \rho_{\mathrm{T}}\left(\mathrm{T}^{k}(x)\right)\right\}$, by Jensen's inequality,

$$
\begin{aligned}
E_{\mathrm{T}}^{\varpi}=\int\left(\sum_{k \in \mathbb{Z}} w_{k}(x) \mathrm{L}\left(\mathrm{~T}^{k}(x)\right) / \mathrm{Z}\right)^{2} \rho(x) \mathrm{d} x & =\int\left(\sum_{k \in \mathbb{Z}} \frac{\varpi_{k}}{\Omega} \frac{\pi\left(\mathrm{~T}^{k}(x)\right)}{\rho_{\mathrm{T}}\left(\mathrm{~T}^{k}(x)\right)}\right)^{2} \rho(x) \mathrm{d} x, \\
& \leq \int \sum_{k \in \mathbb{Z}} \frac{\varpi_{k}}{\Omega}\left(\frac{\pi\left(\mathrm{~T}^{k}(x)\right)}{\rho_{\mathrm{T}}\left(\mathrm{~T}^{k}(x)\right)}\right)^{2} \rho(x) \mathrm{d} x, \\
& \leq \Omega^{-1} \sum_{k \in \mathbb{Z}} \varpi_{k} \int\left(\frac{\pi\left(\mathrm{~T}^{k}(x)\right)}{\rho_{\mathrm{T}}\left(\mathrm{~T}^{k}(x)\right)}\right)^{2} \rho(x) \mathrm{d} x .
\end{aligned}
$$

Using the change of variables $y=\mathrm{T}^{k}(x)$ yields, by (1),

$$
E_{\mathrm{T}}^{\varpi} \leq \Omega^{-1} \sum_{k \in \mathbb{Z}} \varpi_{k} \int\left(\frac{\pi(y)}{\rho_{\mathrm{T}}(y)}\right)^{2} \rho\left(\mathrm{~T}^{-k}(y)\right) \mathbf{J}_{\mathrm{T}^{-k}}(y) \mathrm{d} y \leq \int\left(\frac{\pi(y)}{\rho_{\mathrm{T}}(y)}\right)^{2} \rho_{\mathrm{T}}(y) \mathrm{d} y
$$

A. 6 Proofs of NEO MCMC sampler

4 Proof of Theorem 4. Note first that by symmetry, we have

$$
\begin{equation*}
P(y, \mathrm{~A})=N^{-1} \int \sum_{i=1}^{N} \delta_{y}\left(\mathrm{~d} x^{i}\right) \prod_{j=1, j \neq i}^{N} \rho\left(x^{j}\right) \mathrm{d} x^{j} \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\varpi}}{\sum_{j=1}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) . \tag{S7}
\end{equation*}
$$

$$
\begin{aligned}
& \text { functions. By definition of } P \text {, } \\
& \begin{aligned}
\int \tilde{\pi}(\mathrm{d} y) P\left(y, \mathrm{~d} y^{\prime}\right) f(y) g\left(y^{\prime}\right) & =\frac{1}{N \mathrm{Z}} \int \sum_{i=1}^{N} \rho(\mathrm{~d} y) \widehat{\mathrm{Z}}_{y}^{\varpi} f(y) \delta_{y}\left(\mathrm{~d} x^{i}\right) \prod_{l=1, l \neq i}^{N} \rho\left(\mathrm{~d} x^{l}\right) \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\infty}}{\sum_{j=1}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} g\left(x^{k}\right), \\
& =\frac{1}{N \mathrm{Z}} \int \sum_{i=1}^{N} \widehat{\mathrm{Z}}_{x^{i}}^{\infty} f\left(x^{i}\right) \prod_{l=1}^{N} \rho\left(\mathrm{~d} x^{l}\right) \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\infty}}{\sum_{j=1}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} g\left(x^{k}\right), \\
& =\frac{1}{N \mathrm{Z}} \int \prod_{l=1}^{N} \rho\left(\mathrm{~d} x^{l}\right) \frac{\sum_{i=1}^{N} \widehat{\mathrm{Z}}_{x^{i}}^{\infty} f\left(x^{i}\right) \sum_{k=1}^{N} \widehat{\mathrm{Z}}_{x^{k}}^{\infty} g\left(x^{k}\right)}{\sum_{j=1}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \\
& =\int \tilde{\pi}(\mathrm{d} y) P\left(y, \mathrm{~d} y^{\prime}\right) f\left(y^{\prime}\right) g(y),
\end{aligned}
\end{aligned}
$$

which shows that P is $\tilde{\pi}$-reversible. We now establish that P is $\tilde{\pi}$-irreducible. We have for $y \in \mathbb{R}^{d}$, $\mathrm{A} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{aligned}
P(y, \mathrm{~A}) & =\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \sum_{i=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right) \prod_{j=2}^{N} \rho\left(\mathrm{~d} x^{j}\right) \\
& =\int \frac{\widehat{\mathrm{Z}}_{y}^{\varpi}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\sum_{j=2}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \mathbb{1}_{\mathrm{A}}(x) \prod_{j=2}^{N} \rho\left(\mathrm{~d} x^{j}\right)+\int \sum_{i=2}^{N} \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{\widehat{\mathrm{Z}}_{y}^{\varpi}}+\sum_{j=2}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi} \\
\mathbb{1}_{\mathrm{A}} & \left(x^{i}\right) \prod_{j=2}^{N} \rho\left(\mathrm{~d} x^{j}\right) \\
& \geq \sum_{i=2}^{N} \int \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right) \prod_{j=2}^{N} \rho\left(\mathrm{~d} x^{j}\right) \\
& \geq \sum_{i=2}^{N} \int \tilde{\pi}\left(\mathrm{~d} x^{i}\right) \mathbb{1}_{\mathrm{A}}\left(x^{i}\right) \int \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \prod_{j=2, j \neq i}^{N} \rho\left(\mathrm{~d} x^{j}\right) .
\end{aligned}
$$

Since the function $f: z \mapsto(z+a)^{-1}$ is convex on \mathbb{R}_{+}for $a>0$, we get for $i \in\{2, \ldots, N\}$,

$$
\begin{array}{r}
\int \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \prod_{j=2, j \neq i}^{N} \rho\left(\mathrm{~d} x^{j}\right) \geq \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+} \begin{array}{r}
\int \sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi} \prod_{j=2, j \neq i}^{N} \rho\left(\mathrm{~d} x^{j}\right) \\
\geq \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\mathrm{Z}(N-2)} .
\end{array} \text { (S8)}
\end{array}
$$

Therefore, for $\mathrm{A} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$ satisfying $\tilde{\pi}(\mathrm{A})>0$, we get $P(y, \mathrm{~A})>0$ for any $y \in \mathbb{R}^{d}$ since $\widehat{\mathrm{Z}}_{x}^{\varpi}<\infty$ for any $x \in \mathbb{R}^{d}$. By definition, P is $\tilde{\pi}$-irreducible.
We show that P is Harris recurrent using [19, Corollary 2]. To this end, since P is $\tilde{\pi}$ irreducible, it is sufficient to show that P is a Metropolis type kernel. Define $\alpha\left(x^{1}, x^{2}\right)=(N-$ 1) $\int \prod_{j=3}^{N} \rho\left(\mathrm{~d} x^{j}\right) \widehat{\mathrm{Z}}_{x^{2}}^{\varpi} / \sum_{j=1}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}$ for $x^{1}, x^{2} \in \mathbb{R}^{d}$ and $\rho_{2: N}\left(\mathrm{~d} x^{2: N}\right)=\left\{\prod_{j=2}^{N} \rho_{2: N}\left(x^{j}\right)\right\} \mathrm{d} x^{2: N}$. Then, by (12), we get with this notation, for $y \in \mathbb{R}^{d}, \mathrm{~A} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{align*}
& P(y, \mathrm{~A}) \\
& =\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right) \sum_{i=2}^{N} \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right)+\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right) \frac{\widehat{\mathrm{Z}}_{x^{1}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{1}\right) \\
& =\sum_{i=2}^{N} \int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right) \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{N \widehat{Z}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right)+\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right) \frac{\widehat{\mathrm{Z}}_{x^{1}}^{\varpi}}{N \widehat{Z}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{1}\right) \\
& =\sum_{i=2}^{N} \int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho\left(\mathrm{d} x^{i}\right) \int \prod_{j=2, j \neq i}^{N} \rho\left(x^{j}\right) \mathrm{d} x^{j} \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right)}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}}+\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right) \frac{\widehat{\mathrm{Z}}_{x^{1}}^{\varpi} \mathbb{1}_{\mathrm{A}}\left(x^{1}\right)}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \\
& =\sum_{i=2}^{N} \int \frac{\alpha\left(y, x^{i}\right)}{(N-1)} \mathbb{1}_{\mathrm{A}}\left(x^{i}\right) \rho\left(\mathrm{d} x^{i}\right)+\int \delta_{y}\left(\mathrm{~d} x^{1}\right) \rho_{2: N}\left(\mathrm{~d} x^{2: N}\right)\left\{1-\sum_{i=2}^{N} \frac{\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}}\right\} \mathbb{1}_{\mathrm{A}}\left(x^{1}\right) \\
& =\int_{\mathrm{A}} \alpha\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}+\left(1-\int \alpha\left(y, y^{\prime}\right) \rho\left(y^{\prime}\right) \mathrm{d} y^{\prime}\right) \delta_{y}(\mathrm{~A}) . \tag{S9}
\end{align*}
$$

With the terminology of [19, Corollary 2], P is Metropolis type kernel and therefore is Harris recurrent.

Note that Algorithm 2 defines a Markov chain $\left\{Y_{i}, U_{i}\right\}_{i \in \mathbb{N}}$ taking for U_{0} an arbitrary initial point with Markov kernel denoted by \tilde{P}. By abuse of notation, we denote by $\left\{Y_{i}, U_{i}\right\}_{i \in \mathbb{N}}$ the canonical process on the canonical space $\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)^{\mathbb{N}}$ endowed with the corresponding σ-field and denote by $\mathbb{P}_{y, u}$ the distribution associated with the Markov chain with kernel \tilde{P} and initial distribution $\delta_{y} \otimes \delta_{u}$. Denote for any $y \in \mathbb{R}^{d}$ by \mathbb{P}_{y} the marginal distribution of $\mathbb{P}_{y, u}$ with respect to $\left\{Y_{i}\right\}_{i \in \mathbb{N}}$, i.e. $\mathbb{P}_{y}(\mathrm{~A})=\mathbb{P}_{(y, u)}\left(\left\{Y_{i}\right\}_{i \in \mathbb{N}} \in \mathrm{~A}\right)$ for $u \in \mathbb{R}^{d}$, noting that by definition, $\mathbb{P}_{(y, u)}\left(\mathrm{A} \times\left(\mathbb{R}^{d}\right)^{\mathbb{N}}\right)$ does not
depend on u. In addition, under $\mathbb{P}_{y},\left\{Y_{i}\right\}_{i \in \mathbb{N}}$ is a Markov chain associated with P. Therefore, since P is $\tilde{\pi}$-irreducible and Harris recurrent, we get by [8, Theorem 11.3.1] and [19, Theorem 2, 3] for any $y \in \mathbb{R}^{d}, \lim _{k \rightarrow \infty}\left\|\delta_{y} P^{k}-\tilde{\pi}\right\|_{\mathrm{TV}}=0$ and for any bounded and measurable function g,

$$
\begin{equation*}
n^{-1} \sum_{k=1}^{n} g\left(Y_{k}\right)=\tilde{\pi}(g), \quad \quad \mathbb{P}_{y} \text {-almost surely } \tag{S10}
\end{equation*}
$$

We now turn to proving the properties regarding Q. For any $\mathrm{B} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$, using (2), we obtain

$$
\int \tilde{\pi}(y) Q(y, \mathrm{~B}) \mathrm{d} y=\mathrm{Z}^{-1} \int \rho(y) \sum_{k \in \mathbb{Z}} w_{k}(y) \mathrm{L}\left(\mathrm{~T}^{k}(y)\right) \mathbb{1}_{\mathrm{B}}\left(\mathrm{~T}^{k}(y)\right) \mathrm{d} y=\pi(\mathrm{B})
$$

Using for all $y \in \mathbb{R}^{d}, \lim _{n \rightarrow \infty}\left\|P^{n}(y, \cdot)-\tilde{\pi}\right\|_{\mathrm{TV}}=0$, we get $\lim _{n \rightarrow \infty}\left\|P^{n} Q(y, \cdot)-\pi\right\|_{\mathrm{TV}}=0$. It remains to show the stated Law of Large Numbers. Let $y, u \in \mathbb{R}^{d}$ and g be a bounded measurable function. Define for any $i \in \mathbb{N}^{*}, \tilde{U}_{i}=g\left(U_{i}\right)-Q g\left(Y_{i}\right)$. By definition, for any $i \in \mathbb{N}^{*},\left|\tilde{U}_{i}\right| \leq$ $2 \sup _{x \in \mathbb{R}^{d}}|g(x)|$ and $\mathbb{E}_{(y, u)}\left[\tilde{U}_{i} \mid \mathcal{F}_{i-1}\right]=0$, where $\left\{\mathcal{F}_{k}\right\}_{k \in \mathbb{N}}$ is the canonical filtration. Therefore, $\left\{\tilde{U}_{i}\right\}_{i \in \mathbb{N}^{*}}$ are $\left\{\mathcal{F}_{k}\right\}_{k \in \mathbb{N}^{-}}$martingale increments and $\left\{S_{k}=\sum_{i=1}^{k} \tilde{U}_{i}\right\}_{k \in \mathbb{N}}$ is a $\left\{\mathcal{F}_{k}\right\}_{k \in \mathbb{N}^{-}}$-martingale. Using [10, Theorem 2.18], we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\{S_{n} / n\right\}=0, \quad \mathbb{P}_{(y, u)} \text {-almost surely } \tag{S11}
\end{equation*}
$$

The proof is completed using that $\lim _{n \rightarrow \infty}\left\{n^{-1} \sum_{i=1}^{n} Q g\left(Y_{i}\right)\right\}=\tilde{\pi}(Q g)=\pi(g), \mathbb{P}_{y}$-almost surely by (S10) and therefore by definition, $\mathbb{P}_{(y, u)}$-almost surely.

Proof of Theorem 5. We have for $(x, \mathrm{~A}) \in \mathbb{R}^{d} \times \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
P(y, \mathrm{~A}) \geq \sum_{i=2}^{N} \int \tilde{\pi}\left(\mathrm{~d} x^{i}\right) \mathbb{1}_{\mathrm{A}}\left(x^{i}\right) \int \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \prod_{j=2, j \neq i}^{N} \rho\left(\mathrm{~d} x^{j}\right) .
$$

Moreover, as for any $x \in \mathbb{R}^{d}, \widehat{\mathrm{Z}}_{x}^{\varpi} / \mathrm{Z} \leq M_{\mathrm{T}}^{\varpi}$,

$$
\int \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\sum_{j=2, j \neq i}^{N} \widehat{\mathrm{Z}}_{x^{j}}^{\varpi}} \prod_{j=2, j \neq i}^{N} \rho\left(\mathrm{~d} x^{j}\right) \geq \frac{\mathrm{Z}}{\widehat{\mathrm{Z}}_{y}^{\varpi}+\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}+\mathrm{Z}(N-2)} \geq \frac{1}{2 M_{\mathrm{T}}^{\varpi}+N-2} .
$$

We finally obtain the inequality

$$
\begin{equation*}
P(x, \mathrm{~A}) \geq \tilde{\pi}(\mathrm{A}) \times \frac{N-1}{2 M_{\mathrm{T}}^{\varpi}+N-2}=\epsilon_{N} \tilde{\pi}(\mathrm{~A}) \tag{S12}
\end{equation*}
$$

The proof for P is concluded from [8, Theorem 18.2.4].
As $\left\|P^{k}(y, \cdot)-\tilde{\pi}\right\|_{\mathrm{TV}} \leq \kappa_{N}^{k}$, for any bounded function $f,\|f\|_{\infty} \leq 1$, we have $\left|P^{k} f(y)-\tilde{\pi}(f)\right| \leq \kappa_{N}^{k}$, by definition of the Total Variation Distance. Then, writing $f=Q g$ for any bounded function g, $\|g\|_{\infty} \leq 1$, we have $\|f\|_{\infty} \leq 1$ and

$$
\begin{equation*}
\left|P^{k} f(y)-\tilde{\pi}(f)\right|=\left|P^{k} Q g(y)-\tilde{\pi} Q(g)\right|=\left|P^{k} Q g(y)-\pi(g)\right| \leq \kappa_{N}^{k} \tag{S13}
\end{equation*}
$$

Write now P the Markov kernel extending to correlated proposals: for $y \in \mathbb{R}^{d}$ and $\mathrm{A} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$,

$$
\begin{equation*}
P(y, \mathrm{~A})=N^{-1} \int \sum_{i=1}^{N} \delta_{y}\left(\mathrm{~d} x^{i}\right) r_{i}\left(x^{i}, \mathrm{~d} x^{1: n \backslash\{i\}}\right) \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) \tag{S14}
\end{equation*}
$$

where the Markov kernels R_{i} are defined by $R_{i}\left(x^{i}, \mathrm{~d} x^{1: N \backslash\{i\}}\right)=r_{i}\left(x^{i}, x^{1: N \backslash\{i\}}\right) \mathrm{d} x^{1: N \backslash\{i\}}$ and r_{i} by (15).
Theorem S3. P is $\tilde{\pi}$-invariant.

Proof. Define the $N d$-dimensional probability measure $\bar{\rho}_{N}\left(\mathrm{~d} x^{1: N}\right)=\rho\left(\mathrm{d} x^{1}\right) R_{1}\left(x^{1}, \mathrm{~d} x^{2: n}\right)$. Let $\mathrm{A} \in \mathcal{B}\left(\mathbb{R}^{d}\right)$. Then, we have

$$
\begin{aligned}
\tilde{\pi} P(\mathrm{~A}) & =N^{-1} \int \tilde{\pi}(\mathrm{~d} y) \int \sum_{i=1}^{N} \delta_{y}\left(\mathrm{~d} x^{i}\right) R_{i}\left(x^{i}, \mathrm{~d} x^{1: n \backslash\{i\}}\right) \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) \\
& =(N \mathrm{Z})^{-1} \int \sum_{i=1}^{N} \rho\left(\mathrm{~d} x^{i}\right) \widehat{\mathrm{Z}}_{x^{i}}^{\varpi} R_{i}\left(x^{i}, \mathrm{~d} x^{1: n \backslash\{i\}}\right) \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) \\
& =(N \mathrm{Z})^{-1} \int \bar{\rho}_{N}\left(\mathrm{~d} x^{1: N}\right) \sum_{i=1}^{N} \widehat{\mathrm{Z}}_{x^{i}}^{\varpi} \sum_{k=1}^{N} \frac{\widehat{\mathrm{Z}}_{x^{k}}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) \\
& =(N \mathrm{Z})^{-1} \int \sum_{k=1}^{N} \widehat{\mathrm{Z}}_{x^{k}}^{\varpi} \bar{\rho}_{N}\left(\mathrm{~d} x^{1: N}\right) \mathbb{1}_{\mathrm{A}}\left(x^{k}\right) \\
& =(N \mathrm{Z})^{-1} \int \sum_{k=1}^{N} \widehat{\mathrm{Z}}_{x^{k}}^{\varpi} \rho\left(\mathrm{d} x^{k}\right) \mathbb{1}_{\mathrm{A}}\left(x^{k}\right)=\tilde{\pi}(\mathrm{A}) .
\end{aligned}
$$

B Continuous-time limit of NEO and NEIS

B. 1 Proof for the continuous-time limit

Consider $\bar{h}>0$ and a family $\left\{\mathrm{T}_{h}: h \in(0, \bar{h}]\right\}$ of C^{1}-diffeomorphisms. For $N \in \mathbb{N}^{*}$ and a bounded and continuous $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$, write

$$
\begin{equation*}
I_{\varpi, N, h}^{\mathrm{NEO}}(f)=N^{-1} \sum_{i=1}^{N} \sum_{k \in \mathbb{Z}} w_{k, h}\left(X^{i}\right) f\left(\mathrm{~T}_{h}^{k}\left(X^{i}\right)\right), \tag{S15}
\end{equation*}
$$

where $\left\{X_{i}\right\}_{i=1}^{N} \stackrel{\text { iid }}{\sim} \rho$ and for some weight function $\varpi^{\mathrm{c}}: \mathbb{R} \rightarrow \mathbb{R}_{+}$with bounded support (see H3), $k \in \mathbb{Z}$ and $h>0$, setting $\varpi_{k, h}=\varpi^{\mathrm{c}}(k h)$,

$$
\begin{equation*}
w_{k, h}(x)=\varpi_{k, h} \rho_{-k}(x) / \sum_{i \in \mathbb{Z}} \varpi_{k+i, h} \rho_{i}(x) \tag{S16}
\end{equation*}
$$

We show in this section the convergence of the sequence of NEO-IS estimators $\left\{I_{\varpi, N, h}^{\mathrm{NEO}}(f): h \in\right.$ $(0, \bar{h}]\}$ as $h \downarrow 0$ to its continuous counterpart, the version (16) of NEIS [16], with weight function ϖ, in the case where for any $h \in(0, \bar{h}], \mathrm{T}_{h}$ corresponds to one step of a discretization scheme with stepsize h of the ODE

$$
\begin{equation*}
\dot{x}_{t}=b\left(x_{t}\right), \tag{S17}
\end{equation*}
$$

where $b: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is a drift function. We are particularly interested in the case where (S17) corresponds to the conformal Hamilonian dynamics (10) and $\left\{\mathrm{T}_{h}: h \in(0, \bar{h}]\right\}$ to its conformal symplectic Euler discretization: for all $(q, p) \in \mathbb{R}^{2 d}$,

$$
\begin{equation*}
\mathrm{T}_{h}(q, p)=\left(q+h \mathrm{M}^{-1}\left\{\mathrm{e}^{-h \gamma} p-h \nabla U(q)\right\}, \mathrm{e}^{-h \gamma} p-h \nabla U(q)\right) \tag{S18}
\end{equation*}
$$

We make the following conditions on $b, \rho, \varpi^{\mathrm{c}}$ and $\left\{\mathrm{T}_{h}: h \in(0, \bar{h}]\right\}$.
H1. The function b is continuously differentiable and L_{b}-Lipschitz.
Under \mathbf{H} 1, consider $\left(\phi_{t}\right)_{t>0}$ the differential flow associated with (S17), i.e. $\phi_{t}(x)=x_{t}$ where $\left(x_{t}\right)_{t \in \mathbb{R}}$ is the solution of (S17) starting from x. Note that $\mathbf{H} 1$ implies that $(t, x) \mapsto \phi_{t}(x)$ is continuously differentiable on $\mathbb{R} \times \mathbb{R}^{d}$, see [11, Theorem 4.1 Chapter V].
$\mathbf{H} 1$ is satisfied in the case of the conformal Hamiltonian dynamics if the potential U is continuously differentiable and with Lipschitz gradient, that is there exists $L_{U} \in \mathbb{R}_{+}^{*}$ such that for any $x_{1}, x_{2} \in \mathbb{R}^{d}$, $\left\|\nabla U\left(x_{1}\right)-\nabla U\left(x_{2}\right)\right\| \leq L_{U}\left\|x_{1}-x_{2}\right\|$.
(i) there exist $C \geq 0$ and $\delta \in(0,1]$ such that for any $x \in \mathbb{R}^{d}$,

$$
\left\|\mathrm{T}_{h}(x)-(x+h b(x))\right\| \leq C h^{1+\delta}(1+\|x\|) ;
$$

(ii) for any $x \in \mathbb{R}^{d}$ and $T \in \mathbb{R}_{+}^{*}$,

$$
\lim _{h \downarrow 0} \max _{k \in[-\lfloor T / h\rfloor:\lfloor T / h\rfloor]}\left\|\mathbf{J}_{\phi_{k h}}(x)-\mathbf{J}_{\mathrm{T}_{h}^{k}}(x)\right\|=0 .
$$

we have that

$$
\sum_{k \geq 0} \frac{h g_{k, h}(x)}{h \Delta_{k, h}(x)}=\int_{0}^{T_{\varpi}} \frac{1}{h \Delta_{\lfloor t / h\rfloor, h}(x)} g_{\lfloor t / h\rfloor, h}(x) \mathrm{d} t+\int_{T_{\varpi}}^{h\left\lfloor T_{\varpi} / h\right\rfloor+h} \frac{1}{h \Delta_{\lfloor t / h\rfloor, h}(x)} g_{\lfloor t / h\rfloor, h}(x) \mathrm{d} t
$$

Note that $\mathbf{H} 2$ is automatically satisfied for the conformal symplectic Euler discretization (S18) of the conformal Hamiltonian dynamics. Indeed, in that case $\operatorname{div} b\left(\phi_{t}(x)\right)=\gamma d$, and therefore $\mathbf{J}_{\phi_{t}}(x)=e^{\gamma d t}$ for $t \in \mathbb{R}$, and for any $h>0, k \in \mathbb{Z}, \mathbf{J}_{\mathrm{T}_{h}^{k}}(x)=e^{\gamma d h k}$; see [9].

Define

$$
\begin{equation*}
\operatorname{support}\left(\varpi^{\mathrm{c}}\right)=\left\{t \in \mathbb{R}: \varpi^{\mathrm{c}}(t) \neq 0\right\} \tag{S19}
\end{equation*}
$$

H3. (i) ρ is continuous and positive on \mathbb{R}^{d}
(ii) ϖ^{c} is piecewise continuous on \mathbb{R}, its support $\operatorname{support}\left(\varpi^{\mathrm{c}}\right)$ is bounded and $\sup _{(s, t) \in \mathrm{A}_{\varpi}} \varpi^{\mathrm{c}}(t) / \varpi^{\mathrm{c}}(t+s)=m<\infty$ where

$$
\mathrm{A}_{\varpi}=\left\{(s, t) \in \mathbb{R}^{2} ; t \in \operatorname{support}\left(\varpi^{\mathrm{c}}\right),(s+t) \in \operatorname{support}\left(\varpi^{\mathrm{c}}\right)\right\}
$$

(iii) Moreover, for any $x \in \mathbb{R}^{d}$, we have $\rho_{\mathrm{T}}^{c}(x)=\int \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) \mathrm{d} t>0$.

Note that $\mathbf{H} 3$ implies that $\sup _{t \in \mathbb{R}}\left|\varpi^{\mathrm{c}}(t)\right|<+\infty$. H3 is automatically satisfied for example in the case $\varpi^{\mathrm{c}}=\mathbb{1}_{\left[-T_{1}, T_{2}\right]}$ for $T_{1}, T_{2} \geq 0$.
Theorem S4. Assume $\boldsymbol{H} 1, \boldsymbol{H} 2, \boldsymbol{H} 3$. For any $x \in \mathbb{R}^{d}$ and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ continuous and bounded,

$$
\lim _{h \downarrow 0}\left|\sum_{k \in \mathbb{Z}} w_{k, h}(x) f\left(\mathrm{~T}_{h}^{k}(x)\right)-\int_{-\infty}^{\infty} w_{t}^{\mathrm{c}}(x) f\left(\phi_{t}(x)\right) \mathrm{d} t\right|=0,
$$

where $\left\{w_{k, h}\right\}_{k \in \mathbb{Z}}$ and w_{t}^{c} are defined in (S16) and (17) respectively, i.e. for $x \in \mathbb{R}^{d}$ and $t \in \mathbb{R}$,

$$
\begin{equation*}
w_{t}^{\mathrm{c}}(x)=\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) / \int_{-\infty}^{\infty} \varpi^{\mathrm{c}}(s+t) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \mathrm{d} s \tag{S20}
\end{equation*}
$$

Proof. Let f be a bounded continuous function, $x \in \mathbb{R}^{d}$. Setting

$$
\begin{aligned}
& g_{k, h}(x)=\rho\left(\mathrm{T}_{h}^{k}(x)\right) \varpi^{\mathrm{c}}(k h) \mathbf{J}_{h}^{k}(x) f\left(\mathrm{~T}_{h}^{k}(x)\right) \\
& h \Delta_{k, h}(x)=h \sum_{i \in \mathbb{Z}} \rho\left(\mathrm{~T}_{h}^{i}(x)\right) \varpi^{\mathrm{c}}((k+i) h) \mathbf{J}_{\mathrm{T}_{h}^{i}(x)}
\end{aligned}
$$

as $g_{k, h}(x)=0$ when $k>\left\lfloor T_{\varpi} / h\right\rfloor$. Therefore, we can consider the following decomposition,

$$
\left|\sum_{k \geq 0} \frac{\rho\left(\mathrm{~T}_{h}^{k}(x)\right) \varpi^{\mathrm{c}}(k h) \mathbf{J}_{\mathrm{T}_{h}^{k}}(x) f\left(\mathrm{~T}_{h}^{k}(x)\right)}{\sum_{i \in \mathbb{Z}} \rho\left(\mathrm{~T}_{h}^{i}(x)\right) \varpi^{\mathrm{c}}((k+i) h) \mathbf{J}_{\mathrm{T}_{h}^{i}(x)}}-\int_{0}^{T_{\varpi}} \frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right) \mathrm{d} t}{\int \varpi^{\mathrm{c}}(t+s) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \mathrm{d} s}\right| \leq A+B
$$

with

$$
\begin{aligned}
& A=\left|\int_{0}^{T_{\varpi}} \frac{1}{h \Delta_{\lfloor t / h\rfloor, h}(x)}\left\{g_{\lfloor t / h\rfloor, h}(x)-\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)\right\} \mathrm{d} t\right| \\
&+\left|\int_{T_{\varpi}}^{h\left\lfloor T_{\varpi} / h\right\rfloor+h} \frac{1}{h \Delta_{\lfloor t / h\rfloor, h}(x)} g_{\lfloor t / h\rfloor, h}(x) \mathrm{d} t\right|
\end{aligned}
$$

and

$$
B=\int_{0}^{T_{\varpi}}\left|\frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right) \mathrm{d} t}{h \Delta_{\lfloor t / h\rfloor, h}(x)}-\frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)}{\int \varpi^{\mathrm{c}}(t+s) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \mathrm{d} s}\right| \mathrm{d} t
$$

We bound those terms separately. First of all, under $\mathbf{H} 3$-(ii), for any k such that $k h \in\left[0, T_{\varpi}\right]$, we have $h \Delta_{k, h}(x) \geq h m^{-1} \Delta_{0, h}(x)$. Second, as $\lim _{h \downarrow 0} h \Delta_{0, h}(x)=\int_{0}^{T_{\varpi}} \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \varpi^{\mathrm{c}}(s) \mathrm{d} s>0$, there exists some $\tilde{h}>0$ and $c>0$ such that for all $k \in \mathbb{Z}, h<\tilde{h}$ implies

$$
\begin{equation*}
\int_{0}^{T_{\varpi}} \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) \mathrm{d} t>c, \quad h \Delta_{k, h}(x) \geq h m^{-1} \Delta_{0, h}(x)>c . \tag{S21}
\end{equation*}
$$

Then, for $h<\tilde{h}$,

$$
\begin{aligned}
A \leq c^{-1} \int_{0}^{T_{\varpi}}\left|g_{\lfloor t / h\rfloor, h}(x)-\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)\right| \mathrm{d} t
\end{aligned} \quad \begin{aligned}
& \quad+c^{-1} \int_{T_{\varpi}}^{h\left\lfloor T_{\varpi} / h\right\rfloor+h}\left|g_{\lfloor t / h\rfloor, h}(x)\right| \mathrm{d} t
\end{aligned}
$$

By $\mathbf{H} 1$ and $\mathbf{H} 3$, the function $t \rightarrow \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)$ is continuous on the compact $\left[0,2 T_{\varpi}\right]$ and thus is bounded. Therefore, for any $h \in(0, \bar{h})$,

$$
\begin{equation*}
\sup _{t \in\left[0,2 T_{\varpi}\right]}\left|\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)\right| \leq \sup _{t \in \mathbb{R}}\left|\varpi^{\mathrm{c}}\right| \sup _{x \in \mathbb{R}^{d}}|f(x)| \sup _{t \in\left[0,2 T_{\varpi}\right]}\left|\rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x)\right|<\infty . \tag{S22}
\end{equation*}
$$

Under H2, (S22) and Lemma S8 imply that

$$
\begin{aligned}
\sup _{t \in\left[0, h\left\lfloor T_{\varpi} / h\right\rfloor+h\right)} & g_{\lfloor t / h\rfloor, h}(x) \\
& \leq \sup _{t \in \mathbb{R}}\left|\varpi^{\mathrm{c}}(t)\right| \sup _{x \in \mathbb{R}^{d}}|f(x)| \sup _{t \in\left[0, h\left\lfloor T_{\varpi} / h\right\rfloor+h\right)} \rho\left(\mathrm{T}_{h}^{\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\mathrm{T}_{h}^{\lfloor t / h\rfloor}}(x)<\infty,
\end{aligned}
$$

Then, $\lim _{h \downarrow 0} \int_{T_{\varpi}}^{h\left\lfloor T_{\varpi} / h\right\rfloor+h}\left|g_{\lfloor t / h\rfloor, h}(x)\right| \mathrm{d} t=0$. Finally, Lemma S9 implies that $\lim _{h \downarrow 0} A=0$.
Moreover, setting for $t \in\left[0, T_{\varpi}\right]$,

$$
\begin{align*}
& \Delta_{t, h}^{B}(x) \tag{S23}\\
= & \left.\int \rho\left(\phi_{h\lfloor s / h\rfloor}(x)\right) \varpi^{\mathrm{c}}(h(\lfloor s / h\rfloor+\lfloor t / h\rfloor)) \mathbf{J}_{\phi_{h\lfloor s / h\rfloor}(x)}-\varpi^{\mathrm{c}}(s+t) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)\right) \mid \mathbb{1}_{\mathrm{A}_{\varpi}}(s, t) \mathrm{d} s \\
& +\int_{T_{\varpi}-h\lfloor t / h\rfloor}^{h\left(\left\lfloor T_{\varpi} / h\right\rfloor-\lfloor t / h\rfloor+1\right)}\left|\rho\left(\phi_{h\lfloor s / h\rfloor}(x)\right) \varpi^{\mathrm{c}}(h(\lfloor s / h\rfloor+\lfloor t / h\rfloor)) \mathbf{J}_{\phi_{h\lfloor s / h\rfloor}(x)}\right| \mathbb{1}_{\mathrm{A}_{\varpi}}(s, t) \mathrm{d} s,
\end{align*}
$$

we have for $h<\tilde{h}$, by (S21) and H3-(ii),

$$
\begin{align*}
B= & \int_{0}^{T_{\varpi}}\left|\frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)}{h \Delta_{\lfloor t / h\rfloor, h}(x)}-\frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)}{\int \varpi^{\mathrm{c}}(s+t) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \mathrm{d} s}\right| \mathrm{d} t \\
& \leq \int_{0}^{T_{\varpi}} \frac{\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)}{h \Delta_{\lfloor t / h\rfloor, h}(x) \int \varpi^{\mathrm{c}}(s+t) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x) \mathrm{d} s} \Delta_{t, h}^{B}(x) \mathrm{d} t \\
& \leq m c^{-2} \int_{0}^{T_{\varpi}} \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right) \Delta_{t, h}^{B}(x) \mathrm{d} t \\
& \leq m c^{-2} \sup _{t \in \mathbb{R}}\left|\varpi^{\mathrm{c}}(t)\right| \sup _{x \in \mathbb{R}^{d}}|f(x)| \sup _{t \in\left[0, T_{\varpi}\right]}\left|\rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)\right| \int_{0}^{T_{\varpi}} \Delta_{t, h}^{B}(x) \mathrm{d} t . \tag{S24}
\end{align*}
$$

By $\mathbf{H} 1$ and $\mathbf{H} 3$, the function $s \rightarrow \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)$ is continuous on the interval [$-T_{\varpi}, T_{\varpi}$] and thus is bounded. Therefore, for any $h \in(0, \bar{h})$,

$$
\begin{align*}
& \sup _{(s, t) \in \mathrm{A}_{\varpi}}\left|\varpi^{\mathrm{c}}(h(\lfloor t / h\rfloor+\lfloor s / h\rfloor)) \rho\left(\phi_{h\lfloor s / h\rfloor}(x)\right) \mathbf{J}_{\phi_{h\lfloor s / h\rfloor}}(x)\right| \\
\leq & \sup _{(s, t) \in \mathrm{A}_{\varpi}}\left|\varpi^{\mathrm{c}}(s+t) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)\right|<T_{\varpi} \sup _{s \in \mathbb{R}}\left|\varpi^{\mathrm{c}}(s)\right| \sup _{s \in\left[-T_{\varpi}, T_{\varpi}\right]}\left|\rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)\right|<\infty . \tag{S25}
\end{align*}
$$

This implies that

$$
\lim _{h \downarrow 0} \int_{T_{\varpi}-h\lfloor t / h\rfloor}^{h\left(\left\lfloor T_{\varpi} / h\right\rfloor-\lfloor t / h\rfloor+1\right)}\left|\rho\left(\phi_{h\lfloor s / h\rfloor}(x)\right) \varpi^{\mathrm{c}}(h(\lfloor s / h\rfloor+\lfloor t / h\rfloor)) \mathbf{J}_{\phi_{h\lfloor s / h\rfloor}(x)}\right| \mathrm{d} s=0 .
$$

Moreover, for any $t \in\left[0, T_{\varpi}\right]$, the function

$$
s \mapsto\left|\varpi^{\mathrm{c}}(h(\lfloor t / h\rfloor+\lfloor s / h\rfloor)) \rho\left(\phi_{h\lfloor s / h\rfloor}(x)\right) \mathbf{J}_{\phi_{h\lfloor s / h\rfloor}}(x)-\varpi^{\mathrm{c}}(t+s) \rho\left(\phi_{s}(x)\right) \mathbf{J}_{\phi_{s}}(x)\right| \mathbb{1}_{\mathrm{A}_{\varpi}}(s, t)
$$

converges pointwise to 0 for almost all $s \in \mathbb{R}$ when $h \downarrow 0$ using $\mathbf{H} 1, \mathbf{H} 3$ and the continuity of $s \mapsto \phi_{s}(x)$. The Lebesgue dominated convergence theorem applies and by (S23), for all $t \in\left[0, T_{\varpi}\right]$,

$$
\lim _{h \downarrow 0} \Delta_{t, h}^{B}(x)=0
$$

The Lebesgue dominated convergence theorem and (S24) show that $\lim _{h \downarrow 0} B=0$ which concludes the proof.

B.1.1 Supporting Lemmas

For $f \in \mathrm{C}^{1}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, define $\mathfrak{J}_{f}(x)$ the Jacobian matrix of f evaluated at x and the divergence operator by $\operatorname{div} f(x)=\operatorname{tr}\left[\mathfrak{J}_{f}(x)\right]$.
Lemma S5. Let b be a C^{1} vector field in \mathbb{R}^{d} and $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ be the flow of the ODE (S17). For any $t \in \mathbb{R}$, the Jacobian of ϕ_{t} is given by

$$
\mathbf{J}_{\phi_{t}}(x)=\exp \left(\int_{0}^{t} \operatorname{div} b\left(\phi_{s}(x)\right) \mathrm{d} s\right)
$$

Proof. First, for $t \in \mathbb{R}$ and $x \in \mathbb{R}$, write $A(t, x)=\mathfrak{J}_{\phi_{t}}(x)$ the Jacobian matrix of ϕ_{t} evaluated at x. By Jacobi's formula, $\operatorname{det} A(t, x)=\operatorname{tr}[\operatorname{adj}(A(t, x)) \cdot \dot{A}(t, x)]$, where $\operatorname{tr}[M]$ denotes the trace of a matrix M and $\operatorname{adj}(M)$ its adjugate, i.e. the transpose of the cofactor matrix of M such that $\operatorname{adj}(M) M=\operatorname{det}(M)$ Id. Since for all t and $x, \dot{A}(t, x)=\mathfrak{J}_{b \circ \phi_{t}}(x)=\mathfrak{J}_{b}\left(\phi_{t}(x)\right) \cdot A(t, x)$, then

$$
\begin{equation*}
\dot{\mathbf{J}}_{\phi_{t}}(x)=\operatorname{tr}\left[\operatorname{adj}(A(t, x)) \cdot \mathfrak{J}_{b}\left(\phi_{t}(x)\right) \cdot A(t, x)\right]=\operatorname{tr}\left[\mathfrak{J}_{b}\left(\phi_{t}(x)\right)\right] \mathbf{J}_{\phi_{t}}(x) . \tag{S26}
\end{equation*}
$$

Integrating this ODE yields $\mathbf{J}_{\phi_{t}}(x)=\exp \left(\int_{0}^{t} \operatorname{div} b\left(\phi_{s}(x)\right) \mathrm{d} s\right)$.
Lemma S6. Assume H1. Then, there exists $C>0$ such that for any $x \in \mathbb{R}^{d}, t \in \mathbb{R}, k \in \mathbb{Z}, h>0$,

$$
\begin{aligned}
& \left\|\phi_{t}(x)\right\| \leq C e^{C|t|}(\|x\|+1) \\
& \left\|\mathrm{T}_{h}^{k}(x)\right\| \leq C e^{C|k h|}(\|x\|+1)
\end{aligned}
$$

This lemma follows from Gronwall's inequality and $\mathbf{H} 1$.
Lemma S7. Assume $\boldsymbol{H} 1$ and $\boldsymbol{H} 2$-(i). There exists $C>0$ such that for any $x \in \mathbb{R}^{d}, h \in(0, \bar{h})$,

$$
\begin{equation*}
\left\|\mathrm{T}_{h}(x)-\phi_{h}(x)\right\| \leq C\{1+\|x\|\} \| h^{1+\delta} \tag{S27}
\end{equation*}
$$

Proof. Under H1 and H2-(i), we have

$$
\left\|\mathrm{T}_{h}(x)-\phi_{h}(x)\right\| \leq\left\|x+h b(x)-\phi_{h}(x)\right\|+C_{F} h^{1+\delta}(1+\|x\|)
$$

and as $\phi_{h}(x)=x+\int_{0}^{h} b\left(\phi_{s}(x)\right) \mathrm{d} s$,

$$
\begin{align*}
\left\|x+h b(x)-\phi_{h}(x)\right\|=\left\|h b(x)-\int_{0}^{h} b\left(\phi_{s}(x)\right)\right\| \leq & h L_{b} \sup _{s \in[0, h]}\left\|\phi_{s}(x)-x\right\| \\
& \leq L_{b} h^{2}\left\{L_{b} \sup _{s \in[0, h]} \phi_{s}(x)+\|b(0)\|\right\} \tag{S28}
\end{align*}
$$

The proof is completed using Lemma S6.

Lemma S8. Assume $\boldsymbol{H} 1$ and $\boldsymbol{H} 2$-(i). There exists $C>0$ such that for any $x \in \mathbb{R}^{d}, k \in \mathbb{N}, h \in(0, \bar{h})$, $k h \leq T_{\varpi}$,

$$
\begin{equation*}
\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\| \leq C e^{k h C}(1+\|x\|) h^{\delta} \tag{S29}
\end{equation*}
$$

Proof. Using Lemma S7, H1 and H2-(i), there exist $C_{1}, C_{2}, C_{3}>0$ such that for any $x \in \mathbb{R}^{d}, k \in$ $\mathbb{N}, h \in(0, \bar{h}), k h \leq T_{\varpi}$,

$$
\begin{aligned}
& \left\|\mathrm{T}_{h}^{k+1}(x)-\phi_{(k+1) h}(x)\right\| \leq\left\|\mathrm{T}_{h}^{k+1}(x)-\mathrm{T}_{h} \circ \phi_{k h}(x)\right\|+\left\|\mathrm{T}_{h} \circ \phi_{k h}(x)-\phi_{(k+1) h}(x)\right\| \\
& \begin{array}{c}
\leq\left(1+h L_{b}\right)\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\| \\
\quad+h^{1+\delta} C_{1}\left\{2+\left\|\mathrm{T}_{h}^{k}(x)\right\|+\left\|\phi_{k h}(x)\right\|\right\}+\left\|\mathrm{T}_{h} \circ \phi_{k h}(x)-\phi_{(k+1) h}(x)\right\| \\
\leq\left(1+h L_{b}\right)\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\|+h^{1+\delta} 2 C_{1} C_{2} e^{C_{2} T_{\varpi}}\{1+\|x\|\}+C_{3}\left\{1+\left\|\phi_{k h}(x)\right\|\right\} h^{1+\delta} \\
\leq\left(1+h L_{b}\right)\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\| \\
\quad+h^{1+\delta} 2 C_{1} C_{2} e^{C_{2} T_{\varpi}}\{1+\|x\|\}+C_{3}\left\{1+C_{2}(1+\|x\|)\right\} h^{1+\delta} e^{C_{2} T_{\varpi}} \\
\leq\left(1+h L_{b}\right)\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\|+A_{T}\{1+\|x\|\} h^{1+\delta},
\end{array}
\end{aligned}
$$

with $A_{T}=\left(2 C_{1} C_{2}+C_{3}\left(1+C_{2}\right)\right) e^{C_{2} T_{\varpi}}$. A straightforward induction yields

$$
\left\|\mathrm{T}_{h}^{k}(x)-\phi_{k h}(x)\right\| \leq \frac{\left(1+h L_{b}\right)^{k}}{L_{b}} A_{T}(1+\|x\|) h^{\delta} .
$$

Lemma S9. Assume $\boldsymbol{H} 1, \boldsymbol{H} 2, \boldsymbol{H} 3$. For any $x \in \mathbb{R}^{d}$, and $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ bounded and continuous,
$\lim _{h \downarrow 0} \int_{0}^{T_{\varpi}}\left|\varpi^{\mathrm{c}}(h\lfloor t / h\rfloor) \rho\left(\mathrm{T}_{h}^{\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\mathrm{T}_{h}^{\lfloor t / h\rfloor}}(x) f\left(\mathrm{~T}_{h}^{\lfloor t / h\rfloor}(x)\right)-\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)\right| \mathrm{d} t=0$.
Proof. Let $x \in \mathbb{R}^{d}$. Consider the following decomposition, for any $h<\bar{h}$,

$$
\begin{aligned}
& \int_{0}^{T_{\varpi}}\left|\varpi^{\mathrm{c}}(h\lfloor t / h\rfloor) \rho\left(\mathrm{T}_{h}^{\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\mathrm{T}_{h}^{\lfloor t / h\rfloor}}(x) f\left(\mathrm{~T}_{h}^{\lfloor t / h\rfloor}(x)\right)-\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)\right| \mathrm{d} t \\
& \leq \frac{h}{T_{\varpi}} \sum_{k \in \mathbb{Z}} \varpi^{\mathrm{c}}(k h)\left|\rho\left(\mathrm{T}_{h}^{k}(x)\right) \mathbf{J}_{\mathrm{T}_{h}^{k}}(x) f\left(\mathrm{~T}_{h}^{k}(x)\right)-\rho\left(\phi_{k h}(x)\right) \mathbf{J}_{\phi_{k h}}(x) f\left(\phi_{k h}(x)\right)\right| \\
& +\int_{0}^{T_{\varpi \varpi}}\left|\varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)-\varpi^{\mathrm{c}}(h\lfloor t / h\rfloor) \rho\left(\phi_{h\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\phi_{h\lfloor t / h\rfloor}}(x) f\left(\phi_{h\lfloor t / h\rfloor}(x)\right)\right| \mathrm{d} t .
\end{aligned}
$$

The first term converges to 0 by Lemma S8 and $\mathbf{H} 2$-(ii) as $\varpi^{\mathrm{c}}(k h)=0$ for $k h>T_{\varpi}$. By $\mathbf{H} 1$ and \mathbf{H} 3, the function $t \rightarrow \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)$ is continuous on the compact $\left[0, T_{\varpi}\right]$ and thus is bounded. Therefore, for any $h \in(0, \bar{h})$,

$$
\begin{align*}
& \sup _{t \in\left[0, T_{\varpi}\right]}\left|\varpi^{\mathrm{c}}(h\lfloor t / h\rfloor) \rho\left(\phi_{h\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\phi_{h\lfloor t / h\rfloor}}(x) f\left(\phi_{h\lfloor t / h\rfloor}(x)\right)\right| \\
& \leq \sup _{t \in \mathbb{R}}\left|\varpi^{\mathrm{c}}\right| \sup _{x \in \mathbb{R}^{d}}|f(x)| \sup _{t \in\left[0, T_{\varpi}\right]}\left|\rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x)\right|<\infty . \tag{S30}
\end{align*}
$$

Moreover, $t \mapsto \varpi^{\mathrm{c}}(h\lfloor t / h\rfloor) \rho\left(\phi_{h\lfloor t / h\rfloor}(x)\right) \mathbf{J}_{\phi_{h\lfloor t / h\rfloor}}(x) f\left(\phi_{h\lfloor t / h\rfloor}(x)\right)$ converges pointwise when $h \downarrow 0$ to $t \rightarrow \varpi^{\mathrm{c}}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) f\left(\phi_{t}(x)\right)$ by continuity, using $\mathbf{H} 1$ and $\mathbf{H} 3$. The Lebesgue dominated convergence theorem applies and the second term goes to 0 as $h \downarrow 0$.

B. 2 NEIS algorithm after [16]

Non Equilibrium Importance Sampling (NEIS) has been introduced in the pioneering work of [16]. NEIS relies on the flow of the ODE $\dot{x}_{t}=b\left(x_{t}\right)$ and the introduction of a set $\mathrm{O} \subset \mathbb{R}^{d}$. As in Appendix B, we assume $\mathbf{H} 1$ holds and denote by $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ the flow of this ODE.
Define for $x \in \mathrm{O}$, the exit times $\tau^{+}(x) \geq 0$ (resp. $\tau^{-}(x) \leq 0$) satisfying

$$
\begin{equation*}
\tau^{+}(x)=\inf \left\{t \geq 0: \phi_{t}(x) \notin \mathrm{O}\right\}, \tau^{-}(x)=\inf \left\{t \leq 0: \phi_{t}(x) \notin \mathrm{O}\right\} \tag{S31}
\end{equation*}
$$

177 The validity of NEIS relies on the following assumption.

H4. The average time of an orbit in O is finite, i.e.

$$
\begin{equation*}
\mathrm{Z}_{\tau}=\int_{\mathrm{O}}\left(\tau^{+}(x)-\tau^{-}(x)\right) \rho(x) \mathrm{d} x<\infty \tag{S32}
\end{equation*}
$$

Under $\mathbf{H} 4$, we can define the proposal distribution

$$
\begin{equation*}
\rho_{\mathrm{T}}(x)=\mathrm{Z}_{\tau}^{-1} \int_{\mathrm{O}} \mathbb{1}_{\left[\tau^{-}(x), \tau^{+}(x)\right]}(t) \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}}(x) \mathrm{d} t \tag{S33}
\end{equation*}
$$

Under H4, [16, Equation (8)] derive the following estimator of $\rho(f)$, closely related to (16), in the case $\varpi \equiv 1$, on the restricted set $O \subset \mathbb{R}^{d}$:

$$
\begin{align*}
I_{N}^{\mathrm{NEIS}}(f) & =\frac{1}{N} \sum_{i=1}^{N} \int_{\tau^{-}\left(X^{i}\right)}^{\tau^{+}\left(X^{i}\right)} w_{t}\left(X^{i}\right) f\left(\phi_{t}\left(X^{i}\right)\right) \mathrm{d} t \tag{S34}\\
w_{t}(x) & =\frac{\rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}(x)}}{\int_{\tau^{-}(x)}^{\tau^{+}(x)} \rho\left(\phi_{t}(x)\right) \mathbf{J}_{\phi_{t}(x)} \mathrm{d} t} \tag{S35}
\end{align*}
$$

Note that in practice, in order for $\mathbf{H} 4$ to be verified, one typically requires that O be bounded, as discussed in [16].

Following [16], consider a d-dimensional system with position $q \in \mathbb{R}^{d}$, momentum $p \in \mathbb{R}^{d}$ and Hamiltonian $H(p, q)=(1 / 2)\|p\|^{2}+U(q)$ where $U(q)$ is a potential assumed to be bounded from below. Denote by $V(E)$ the volume of the phase-space below some threshold energy E,

$$
\begin{equation*}
V(E)=\int \mathbb{1}_{\{H(p, q) \leq E\}} \mathrm{d} p \mathrm{~d} q \tag{S36}
\end{equation*}
$$

To calculate (S36), we set $x=(p, q)$, define $\mathrm{O}=\left\{x ; H(x) \leq E_{\max }\right\}$ for some $E_{\max }<\infty$, and use the dissipative Langevin dynamics with $b(x)=(p,-\nabla U(q)-\gamma p)$, i.e.

$$
\dot{q}=p, \quad \dot{p}=-\nabla U(q)-\gamma p,
$$

for some friction coefficient $\gamma>0$. With this choice, $\mathbf{J}_{\phi_{t}}(x)=\mathrm{e}^{-d \gamma t}$. Taking ρ to be the uniform distribution on the (bounded) set O , write the estimator for $E \leq E_{\max }, V(E) / V\left(E_{\max }\right)=$ $\int \mathbb{1}_{\{H(p, q) \leq E\}} \rho(p, q) \mathrm{d} p \mathrm{~d} q$, where $\rho(p, q)=\mathbb{1}_{\mathrm{O}}(p, q) / V\left(E_{\max }\right)$, we get

$$
\begin{align*}
V(E) / V\left(E_{\max }\right) & =\frac{1}{N} \sum_{i=1}^{N} \frac{\int_{\tau^{-}\left(X^{i}\right)}^{\tau^{+}\left(X^{i}\right)} \mathbf{J}_{\phi_{t}\left(X^{i}\right)} \mathbb{1}_{\left\{H\left(\phi_{t}\left(X^{i}\right)\right) \leq E\right\}} \mathrm{d} t}{\int_{\tau^{-}\left(X^{i}\right)}^{\tau^{+}\left(X^{i}\right)} \mathbf{J}_{\phi_{t}\left(X^{i}\right)} \mathrm{d} t} \\
& =\frac{1}{N} \sum_{i=1}^{N} \frac{\int_{\tau^{E}\left(X^{i}\right)}^{\tau^{+}\left(X^{i}\right)} \mathbf{J}_{\phi_{t}\left(X^{i}\right)} \mathrm{d} t}{\int_{\tau^{-}\left(X^{i}\right)}^{\tau^{+}\left(X^{i}\right)} \mathbf{J}_{\phi_{t}\left(X^{i}\right)} \mathrm{d} t}=\frac{1}{N} \sum_{i=1}^{N} \mathrm{e}^{-d \gamma\left(\tau^{E}\left(X^{i}\right)-\tau^{-}\left(X^{i}\right)\right)}, \tag{S37}
\end{align*}
$$

where $\tau^{E}(x)$ denotes the (possibly infinite) time for a trajectory initiated at $x=(p, q)$ to reach the energy $E \leq E_{\max }$.

Finally, to estimate the normalizing constant, [16] discretize the energy levels $\left\{E_{0}, \ldots, E_{P}\right\}$ and write their estimator as

$$
\begin{equation*}
\widehat{\mathrm{Z}}_{X^{1: N}}^{\mathrm{NEIS}}=\frac{1}{N} \sum_{i=1}^{N} \sum_{\ell=1}^{P} \mathrm{e}^{-d \gamma\left(\tau_{\ell}^{E}\left(X^{i}\right)-\tau^{-}\left(X^{i}\right)\right)}\left(E_{\ell}-E_{\ell-1}\right), \tag{S38}
\end{equation*}
$$

using an approximation of the identity

$$
\mathrm{Z}=\int_{\mathrm{O}} \int_{0}^{\infty} \mathbb{1}_{\{\mathrm{L}(x)>L\}} \rho(x) \mathrm{d} L \mathrm{~d} x=\int_{0}^{\infty} \mathbb{P}_{X \sim \rho}(\mathrm{~L}(X)>L) \mathrm{d} L,
$$

which is at the core of nested sampling [5].
where, for any $x \in \mathbb{R}^{d}$ and $k \in \mathbb{Z}$,

$$
\begin{equation*}
w_{k}(x)=\varpi_{k} \rho_{-k}(x) / \sum_{j \in \mathbb{Z}} \varpi_{j+k} \rho_{j}(x) . \tag{S47}
\end{equation*}
$$

Proof. Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a measurable bounded function. By (S43), writing $g \leftarrow f \rho / \rho_{\mathrm{T}}$,

$$
\begin{aligned}
\int_{\mathrm{O}} f(x) \rho(x) \mathrm{d} x=\int_{\mathrm{O}}\left(f(x) \frac{\rho(x)}{\rho_{\mathrm{T}}(x)}\right) & \rho_{\mathrm{T}}(x) \mathrm{d} x \\
& =\int_{\mathrm{O}} \sum_{k \in \mathbb{Z}}\left(f\left(\mathrm{~T}^{k}(x)\right) \frac{\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) \mathbb{1}_{\mathrm{I}}(x, k)}{\mathrm{Z}_{\mathrm{T}}^{\varpi} \rho_{\mathrm{T}}\left(\mathrm{~T}^{k}(x)\right)}\right) \rho(x) \mathrm{d} x .
\end{aligned}
$$

We now need to prove

$$
\frac{\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) \mathbb{1}_{\mathrm{I}}(x, k)}{\mathrm{Z}_{\mathrm{T}}^{\varpi} \rho_{\mathrm{T}}\left(\mathrm{~T}^{k}(x)\right)}=\frac{\varpi_{k} \rho\left(\mathrm{~T}^{k}(x)\right) \mathbb{1}_{\mathrm{I}}(x, k)}{\mathbb{1}_{\mathrm{I}}(x, k) \sum_{i \in \mathbb{Z}} \varpi_{i} \rho_{i}\left(\mathrm{~T}^{k}(x)\right)}=\frac{\varpi_{k} \rho_{-k}(x)}{\sum_{j \in \mathbb{Z}} \varpi_{j+k} \rho_{j}(x)}=w_{k}(x),
$$

with the convention $0 / 0=0$. We thus need to show that for any $x \in O, k \in \mathbb{Z}$,

$$
\mathbb{1}_{\mathrm{I}}(x, k) \sum_{i \in \mathbb{Z}} \varpi_{i} \rho_{i}\left(\mathrm{~T}^{k}(x)\right)=\frac{\mathbb{1}_{\mathrm{I}}(x, k)}{\mathbf{J}_{\mathrm{T}^{k}}(x)} \sum_{j \in \mathbb{Z}} \varpi_{j+k} \rho_{j}(x) .
$$

Using the identity $\mathbf{J}_{\mathrm{T}^{-i+k}}(x)=\mathbf{J}_{\mathrm{T}^{-i}}\left(\mathrm{~T}^{k}(x)\right) \mathbf{J}_{\mathrm{T}^{k}}(x)$, we obtain

$$
\begin{aligned}
\mathbb{1}_{\mathrm{I}}(x, k) \sum_{i \in \mathbb{Z}} \varpi_{i} \rho_{i}\left(\mathrm{~T}^{k}(x)\right) & =\sum_{i \in \mathbb{Z}} \mathbb{1}_{\mathrm{I}}(x, k) \varpi_{i} \rho\left(\mathrm{~T}^{-i}\left(\mathrm{~T}^{k}(x)\right)\right) \mathbf{J}_{\mathrm{T}^{-i}}\left(\mathrm{~T}^{k}(x)\right) \mathbb{1}_{\mathrm{I}}\left(\mathrm{~T}^{k}(x),-i\right) \\
& =\frac{1}{\mathbf{J}_{\mathrm{T}^{k}}(x)} \sum_{i \in \mathbb{Z}} \mathbb{1}_{\mathrm{I}}(x, k) \varpi_{i} \rho\left(\mathrm{~T}^{-i+k}(x)\right) \mathbf{J}_{\mathrm{T}^{-i+k}}(x) \mathbb{1}_{\mathrm{I}}\left(\mathrm{~T}^{k}(x),-i\right) \\
& =\frac{1}{\mathbf{J}_{\mathrm{T}^{k}}(x)} \sum_{j \in \mathbb{Z}} \varpi_{j+k} \rho\left(\mathrm{~T}^{-j}(x)\right) \mathbf{J}_{\mathrm{T}^{-j}}(x) \mathbb{1}_{\mathrm{I}}\left(\mathrm{~T}^{k}(x),-j-k\right) \mathbb{1}_{\mathrm{I}}(x, k)
\end{aligned}
$$

Note that if $(x, k) \in \mathrm{I}$, we have $(x,-j) \in \mathrm{I}$ if and only if $\left(\mathrm{T}^{k}(x),-j-k\right) \in \mathrm{I}$ by definition of I (S41). The proof is concluded by noting that:

$$
\left.\mathbb{1}_{\mathrm{I}}\left(\mathrm{~T}^{k}(x)\right),-j-k\right) \mathbb{1}_{\mathrm{I}}(x, k)=\mathbb{1}_{\mathrm{I}}(x,-j) \mathbb{1}_{\mathrm{I}}(x, k)
$$

C Iterated SIR

Let us recall the principle of the Sampling Importance Resampling method (SIR; Rubin [17], Smith \& Gelfand [18]) whose goal is to approximately sample from the target distribution π using samples drawn from a proposal distribution ρ.
In SIR, a N-i.i.d. sample $X^{1: N}$ is first generated from the proposal distribution ρ. A sample X^{*} is approximately drawn from the target π by choosing randomly a value in $X^{1: N}$ with probabilities proportional to the importance weights $\left\{\mathrm{L}\left(X^{i}\right)\right\}_{i=1}^{N}$, where $\mathrm{L}(x)=\pi(x) / \rho(x)$. Note that the importance weights are required to be known only up to a constant factor.
For SIR, as $N \rightarrow \infty$, the sample X^{*} is asymptotically distributed according to π; see [18].
A subsequent algorithm is the iterated SIR (i-SIR) [2]. Here, N is not necessarily large ($N \geq 2$), the whole process of sampling a set of proposals, computing the importance weights, and picking a candidate, is iterated. At the n-th step of i-SIR, the active set of N proposals $X_{n}^{1: N}$ and the index $I_{n} \in[N]$ of the conditioning proposal are kept. First i-SIR updates the active set by setting $X_{n+1}^{I_{n}}=X_{n}^{I_{n}}$ (keep the conditioning proposal) and then draw independently $X_{n+1}^{\left.1: N \backslash I_{n}\right\}}$ from ρ. Then it selects the next proposal index $I_{n+1} \in[N]$ by sampling with probability proportional to $\left\{\tilde{w}\left(X_{n+1}^{i}\right)\right\}_{i=1}^{N}$. As shown in [2], this algorithm defines a partially collapsed Gibbs sampler (PCG) of the augmented distribution

$$
\overline{\boldsymbol{\pi}}\left(x^{1: N}, i\right)=\frac{1}{N} \pi\left(x^{i}\right) \prod_{j \neq i} \rho\left(x^{j}\right)=\frac{1}{N} \tilde{w}\left(x^{i}\right) \prod_{j=1}^{N} \rho\left(x^{j}\right) .
$$

The PCG sampler can be shown to be ergodic provided that ρ and π are continuous and ρ is positive on the support of π. If in addition the importance weights are bounded, the Gibbs sampler can be shown to be uniformly geometrically ergodic [14, 3]. It follows that the distribution of the conditioning proposal $X_{n}^{*}=X_{n}^{I_{n}}$ converges to π as the iteration index n goes to infinity. Indeed, for any integrable function f on \mathbb{R}^{d}, with $\left(X_{1: N}, I\right) \sim \overline{\boldsymbol{\pi}}$,

$$
\mathbb{E}\left[f\left(X^{I}\right)\right]=\int \sum_{i=1}^{N} f\left(x^{i}\right) \overline{\boldsymbol{\pi}}\left(x^{1: N}, i\right) \mathrm{d} x^{1: N}=N^{-1} \sum_{i=1}^{N} \int f\left(x^{i}\right) \pi\left(x^{i}\right) \mathrm{d} x_{i}=\int f(x) \pi(x) \mathrm{d} x .
$$

When the state space dimension d increases, designing a proposal distribution ρ guaranteeing proper mixing properties becomes more and more difficult. A way to circumvent this problem is to use dependent proposals, allowing in particular local moves around the conditioning orbit. To implement
this idea, for each $i \in[N]$, we define a proposal transition, $r_{i}\left(x^{i} ; x^{1: N \backslash\{i\}}\right)$ which defines the the conditional distribution of $X^{1: N \backslash\{i\}}$ given $X^{i}=x^{i}$. The key property validating i-SIR with dependent proposals is that all one-dimensional marginal distributions are equal to ρ, which requires that for each $i, j \in[N]$,

$$
\begin{equation*}
\rho\left(x^{i}\right) r_{i}\left(x^{i} ; x^{1: N \backslash\{i\}}\right)=\rho\left(x^{j}\right) r_{j}\left(x^{j} ; x^{1: N \backslash\{j\}}\right) \tag{S48}
\end{equation*}
$$

The (unconditional) joint distribution of the particles is therefore defined as

$$
\begin{equation*}
\rho_{N}\left(x^{1: N}\right)=\rho\left(x^{1}\right) r_{1}\left(x^{1} ; x^{1: N \backslash\{1\}}\right) . \tag{S49}
\end{equation*}
$$

The resulting modification of the i-SIR algorithm is straightforward: $X^{1: N \backslash\left\{I_{n}\right\}}$ is sampled jointly from the conditional distribution $r_{I_{n}}\left(X_{n}^{I_{n}}, \cdot\right)$ rather than independently from ρ.

D Additional Experiments

D. 1 Normalizing constant estimation

We consider here the problem of the estimation of the normalizing constant of Cauchy mixtures. The Cauchy distribution with scale σ has a pdf defined by Cauchy $(x ; \mu, \sigma)=\left[\pi \sigma\left(1+\{(x-\mu) / \sigma\}^{2}\right]^{-1}\right.$. The target distribution is a product of mixtures of two Cauchy distributions,

$$
\pi(x)=\prod_{i=1}^{n} \frac{1}{2}\left[\text { Cauchy }\left(x_{i} ; \mu, \sigma\right)+\text { Cauchy }\left(x_{i} ;-\mu, \sigma\right)\right], \quad \mu=5, \sigma=1
$$

NEO-IS is compared with IS estimator using the same proposal ρ. We also compare NEO-IS to Neural IS [15] with a Cauchy as base distribution.

Figure S1: Boxplots of 500 independent estimations of the normalizing constant of the Cauchy mixture in dimension $d=10,15$ (top, bottom). The true value is given by the red line. The figure displays the median (solid lines), the interquartile range, and the mean (dashed lines) over the 500 runs

Finally, we compare NEO-IS with NEIS ${ }^{1}$. We consider here MG25 in dimension 5 and 10, where all the covariances of the Gaussian distributions are diagonal and equal to 0.005 Id. NEIS and NEO-IS are run for the same computational time. We add an IS scheme as a baseline for comparison. All algorithms (NEO-IS, NEIS, IS) are run for 7.20s and 11.30s wall clock time respectively for $d=5$ and $d=10$. For NEO-IS, we use a conformal transform with $h=0.1, K=10$ and $\gamma=1$. For NEIS, we choose $\gamma=1$ and consider a stepsize $h=10^{-4}$ corresponding to an optimal trade-off between the discretization bias inherent to NEISand its computational budget. We can observe that NEO-IS always outperforms NEIS, which suffers from a non-negligeable bias if the stepsize h is not chosen small enough.

D. 2 Gibbs inpainting

We display here additional results for the Gibbs inpainting experiment presented in Section 5. We emphasize that the starting images are chosen at random in the test set.

[^0]

Figure S2: NEO v. NEIS. 25 GM with $\sigma^{2}=0.005, d=5.500$ runs each.

Figure S3: Forward orbits of NEO-MCMC.

E NEO and VAEs

Denote by $p_{\theta}(x, z)$ the joint distribution of the observation $z \in \mathbb{R}^{p}$ and the latent variable $x \in$ \mathbb{R}^{d}. The marginal likelihood is given, for $z \in \mathbb{R}^{p}$ by $p_{\theta}(z)=\int p_{\theta}(x, z) \mathrm{d} x$. Given a training set $\mathcal{D}=\left\{z_{i}\right\}_{i=1}^{M}$, the objective is to estimate θ by maximizing the likelihood, i.e. maximizing $\log p_{\theta}(\mathcal{D})=\sum_{i=1}^{M} \log p_{\theta}\left(z_{i}\right)$. We show two experiments in the following, first the evaluation of independently trained VAEs, and then the derivation and learning of a VAE based on NEO, and NEO-VAE.

E. 1 Log-likelihood estimation

We present here first the evaluation of the log-likelihood of a trained VAE on the dynamically binarized MNIST dataset. The models we compare share the same architecture: the inference network q_{ϕ} is given by a convolutional network with 2 convolutional layers and one linear layer, which outputs the parameters $\mu_{\phi}(x), \sigma_{\phi}(x) \in \mathbb{R}^{d}$ of a factorized Gaussian distribution, while the generative model $p_{\theta}(\cdot \mid z)$ is given by another symmetrical convolutional network g_{θ}. This outputs the parameters for the factorized Bernoulli distribution (for MNIST dataset), that is

$$
p_{\theta}(z \mid x)=\prod_{i=1}^{N} \operatorname{Ber}\left(z^{(i)} \mid\left(g_{\theta}(x)\right)^{(i)}\right) .
$$

We here follow the experimental setting of [20]. Given a test set $\mathcal{T}=\left\{z_{i}\right\}_{i=1}^{M_{\mathcal{T}}}$, we estimate $\sum_{i=1}^{M_{\mathcal{T}}} \log p_{\theta^{*}}\left(z_{i}\right)$. We also estimate similarly the log-likelihood of an Importance Weighted Auto Encoder (IWAE) [4]. Following [20], we compare IS, AIS, and NEO-IS. As previously, AIS, IS, and NEO-IS are given a similar computational budget, choosing here $K=12, N=5 \cdot 10^{3}$. For NEO, we choose $\gamma=1$. and $h=0.2$. Similarly, the stepsize of HMC transitions in AIS is $h=0.1$ in order to achieve an acceptance ratio of around 0.6 in the HMC transitions. We report in Table 1 the log-likelihood computed on the test set for VAE, IWAE with latent dimension in $\{16,32\}$. For

Figure S4: Additional examples for the Gibbs inpainting task for CelebA dataset. From top to bottom: i-SIR, HMC and NEO-MCMC: From left to right, original image, blurred image to reconstruct, and output every 5 iterations of the Markov chain.

Model	VAE, $d=32$	VAE, $d=16$	IWAE, $d=32$	IWAE, $d=16$
IS	-90.17	-90.44	-88.76	-90.13
AIS	-89.67	-89.97	-88.30	-89.61
NEO-IS	-88.81	-89.17	-87.46	-88.99

Table 1: Evaluation of the log-likelihood (normalizing constant) of different Variational Auto Encoders.
the same computational budget, NEO-IS yields consistently better values for the estimation of the log-likelihood of the VAE.

E. 2 Definition of a NEO-VAE

Variational inference (VI) provides us with a tool to simultaneously approximate the intractable posterior $p_{\theta}(x \mid z)$ and maximize the marginal likelihood $p_{\theta}(\mathcal{D})$ in the parameter θ. This is achieved by introducing a parametric family $\left\{q_{\phi}(x \mid z), \phi \in \Phi\right\}$ to approximate the posterior $p_{\theta}(x \mid z)$ and maximizing the Evidence Lower Bound (ELBO) (see [12]) $\mathcal{L}_{\mathrm{ELBO}}(\mathcal{D}, \theta, \phi)=\sum_{i=1}^{M} \mathcal{L}_{\mathrm{ELBO}}\left(z_{i}, \theta, \phi\right)$
where

$$
\begin{align*}
\mathcal{L}_{\mathrm{ELBO}}(z, \theta, \phi) & =\int \log \left(\frac{p_{\theta}(x, z)}{q_{\phi}(x \mid z)}\right) q_{\phi}(x \mid z) \mathrm{d} x \tag{S50}\\
& =\log p_{\theta}(z)-\operatorname{KL}\left(q_{\phi}(\cdot \mid z) \| p_{\theta}(\cdot \mid z)\right)
\end{align*}
$$

and KL is the Kullback-Leibler divergence. In the sequel, we set $\rho(x)=q_{\phi}(x \mid z)$ and $\mathrm{L}(x)=$ $p_{\theta}(x, z) / q_{\phi}(x \mid z)$. In such a case, $\pi(x)=\rho(x) \mathrm{L}(x) / \mathrm{Z}=p_{\theta}(x \mid z)$ and $\mathrm{Z}=p_{\theta}(z)$ (in these notations, the dependence in the observation z is implicit).

We follow the the auxiliary variational inference framework (AVI) provided by [1]. We consider a joint distribution $\bar{p}_{\theta}(x, u, z)$ which is such that $p_{\theta}(z)=\int p_{\theta}(x, u, z) \mathrm{d} x \mathrm{~d} u$ where $u \in \mathrm{U}$ is an auxiliary variable (the auxiliary variable can both have discrete and continuous components; when u has discrete components the integrals should be replaced by a sum). Then as the usual VI approach, we consider a parametric family $\left\{\bar{q}_{\phi}(x, u \mid z), \phi \in \Phi\right\}$. Introducing auxiliary variables loses the tractability of (S50) but they allow for their own ELBO as suggested in [1, 13] by minimizing

$$
\begin{equation*}
\mathrm{KL}\left(\bar{q}_{\phi}(\cdot \mid z) \| \bar{p}_{\theta}(\cdot \mid z)\right)=\int \bar{q}_{\phi}(x, u \mid z) \log \left(\frac{\bar{p}_{\theta}(x, u, z)}{\bar{q}_{\phi}(x, u \mid z)}\right) \mathrm{d} x \mathrm{~d} u \tag{S51}
\end{equation*}
$$

The auxiliary variable u is naturally associated with the extended target \bar{p} defined similar to Remark 2,

$$
\begin{equation*}
\bar{p}_{N}\left(\left[x, x^{1: N \backslash\{i\}}\right], i\right)=\check{\pi}\left(x^{1: N}, i\right)=\frac{\widehat{\mathrm{Z}}_{x}^{\varpi}}{N Z} \rho_{N}\left(x^{1: N}\right) \tag{S52}
\end{equation*}
$$

with $(x, u)=\left(\left[x, x^{1: N \backslash\{i\}}\right], i\right)$, a shorthand notation for a N-tuple $x^{1: N}$ with $x^{i}=x$, and, with r_{i} defined in (15),

$$
\begin{equation*}
\rho_{N}\left(x^{1: N}\right)=\rho\left(x^{1}\right) r_{1}\left(x^{1}, x^{2: N}\right)=\rho\left(x^{j}\right) r_{j}\left(x^{j}, x^{1: N \backslash\{j\}}\right), \quad j \in\{1, \ldots, N\}, \tag{S53}
\end{equation*}
$$

generally for Markov transitions $\left\{r_{j}\right\}_{j \in[N]}$. We might write simply in the following

$$
\rho_{N}\left(x^{1: N}\right)=\prod_{i=1}^{N} \rho\left(x^{i}\right)
$$

An extended proposal playing the role of $\bar{q}_{\phi}(x, u \mid z)$ is derived from the NEO-MCMC sampler, i.e.

$$
\begin{equation*}
\bar{q}_{N}\left(\left[x, x^{1: N \backslash\{i\}}\right], i\right)=\frac{\widehat{\mathrm{Z}}_{x}^{\varpi}}{N \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi}} \rho_{N}\left(x^{1: N}\right) . \tag{S54}
\end{equation*}
$$

where $\widehat{Z}_{x^{1: N}}^{\varpi}$ is the NEO estimator (4) of the normalizing constant. Note that, by construction,

$$
\begin{equation*}
\sum_{i=1}^{N} \bar{q}_{N}\left(x^{1: N}, i\right)=\rho_{N}\left(x^{1: N}\right) \tag{S55}
\end{equation*}
$$

showing that this joint proposal can be sampled by drawing the proposals $x^{1: N} \sim \rho_{N}$, then sampling the path index $i \in[N]$ with probability proportional to $\left(\widehat{\mathrm{Z}}_{x^{i}}^{\varpi}\right)_{i=1}^{N}$ (with $\widehat{\mathrm{Z}}_{x}^{\varpi}$ defined in (4)). The ratio of (S52) over (S54) is

$$
\begin{equation*}
\bar{p}_{N}\left(x^{1: N}, i\right) / \bar{q}_{N}\left(x^{1: N}, i\right)=\widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi} / \mathrm{Z} . \tag{S56}
\end{equation*}
$$

Thus, we write the augmented ELBO (S51)

$$
\begin{equation*}
\mathcal{L}_{\mathrm{NEO}}=\int \rho_{N}\left(x^{1: N}\right) \log \widehat{\mathrm{Z}}_{x^{1: N}}^{\varpi} \mathrm{d} x^{1: N}=\log \mathrm{Z}-\mathrm{KL}\left(\bar{q}_{N} \mid \bar{p}_{N}\right), \tag{S57}
\end{equation*}
$$

where we have used (S55) and that the ratio $\bar{p}_{N}\left(x^{1: N}, i\right) / \bar{q}_{N}\left(x^{1: N}, i\right)$ does not depend on the path index i. When $\varpi_{k}=\delta_{k, 0}$, where $\delta_{i, j}$ is the Kronecker symbol, and $\rho_{N}\left(x^{1: N}\right)=\prod_{j=1}^{N} \rho\left(x^{j}\right)$, we exactly retrieve the Importance Weighted AutoEncoder (IWAE); see e.g. [4] and in particular the interpretation in [6].
Choosing the conformal Hamiltonian introduced in Section 2 allows for a family of invertible flows that depends on the parameter θ which itself is directly linked to the target distribution. Table 2 displays the estimated NLL of all models provided by IS and the NEO method. It is interesting to note here again that NEO improves the training of the VAE when the dimension of the latent space is small to moderate.

Table 2: Negative Log Likelihood estimates for VAE models for different latent space dimensions.

	$d=4$		$d=8$		$d=16$		$d=50$	
model	IS	NEO	IS	NEO	IS	NEO	IS	NEO
VAE	115.01	113.49	97.96	97.64	90.52	90.42	88.22	88.36
IWAE, $N=5$	113.33	111.83	97.19	96.61	89.34	89.05	87.49	87.27
IWAE, $N=30$	111.92	110.36	96.81	95.94	88.99	88.64	86.97	86.93
NEO VAE, $K=3$	109.14	107.47	94.50	94.26	89.03	88.92	88.14	88.16
NEO VAE, $K=10$	110.02	107.90	94.63	94.22	89.71	88.68	88.25	86.95

Bibliography

[1] Agakov, F. V. and Barber, D. An auxiliary variational method. In International Conference on Neural Information Processing, pp. 561-566. Springer, 2004.
[2] Andrieu, C., Doucet, A., and Holenstein, R. Particle Markov chain Monte Carlo methods. Journal of the Royal Statistical Society: Series B, 72(3):269-342, 2010.
[3] Andrieu, C., Lee, A., and Vihola, M. Uniform ergodicity of the iterated conditional SMC and geometric ergodicity of particle Gibbs samplers. Bernoulli, 24(2):842-872, 2018.
[4] Burda, Y., Grosse, R., and Salakhutdinov, R. Importance weighted autoencoders. In The 4th International Conference on Learning Representations (ICLR), 2016.
[5] Chopin, N. and Robert, C. P. Properties of nested sampling. Biometrika, 97(3):741-755, 2010.
[6] Cremer, C., Morris, Q., and Duvenaud, D. Reinterpreting importance-weighted autoencoders. arXiv preprint arXiv:1704.02916, 2017.
[7] Douc, R., Garivier, A., Moulines, E., Olsson, J., et al. Sequential Monte Carlo smoothing for general state space hidden Markov models. Annals of Applied Probability, 21(6):2109-2145, 2011.
[8] Douc, R., Moulines, E., Priouret, P., and Soulier, P. Markov Chains. Springer Series in Operations Research and Financial Engineering. Springer, Cham, 2018. ISBN 978-3-319-97703-4; 978-3-319-97704-1. doi: 10.1007/978-3-319-97704-1. URL https://doi.org/ 10.1007/978-3-319-97704-1.
[9] Franca, G., Sulam, J., Robinson, D. P., and Vidal, R. Conformal symplectic and relativistic optimization. Journal of Statistical Mechanics: Theory and Experiment, 2020(12):124008, 2020.
[10] Hall, P. and Heyde, C. Martingale Limit Theory and Its Application. Academic Press, 1980.
[11] Hartman, P. Ordinary Differential Equations: Second Edition. Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), 1982. ISBN 9780898719222. URL https://books.google.fr/books? id=NEkkJ9309okC.
[12] Kingma, D. P. and Welling, M. An introduction to variational autoencoders. arXiv preprint arXiv:1906.02691, 2019.
[13] Lawson, D., Tucker, G., Dai, B., and Ranganath, R. Energy-inspired models: Learning with sampler-induced distributions. arXiv preprint arXiv:1910.14265, 2019.
[14] Lindsten, F., Douc, R., and Moulines, E. Uniform ergodicity of the particle Gibbs sampler. Scandinavian Journal of Statistics, 42(3):775-797, 2015.
[15] Müller, T., McWilliams, B., Rousselle, F., Gross, M., and Novák, J. Neural importance sampling. ACM Transactions on Graphics, 38(145), 2019.
[16] Rotskoff, G. and Vanden-Eijnden, E. Dynamical computation of the density of states and Bayes factors using nonequilibrium importance sampling. Physical Review Letters, 122(15):150602, 2019.
[17] Rubin, D. B. Comment: A noniterative sampling/importance resampling alternative to the data augmentation algorithm for creating a few imputations when fractions of missing information are modest: The SIR algorithm. Journal of the American Statistical Association, 82(398): 542-543, 1987.
[18] Smith, A. F. and Gelfand, A. E. Bayesian statistics without tears: a sampling-resampling perspective. The American Statistician, 46(2):84-88, 1992.
[19] Tierney, L. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics, 22(4):1701-1728, 1994. doi: 10.1214/aos/1176325750. URL https://doi.org/10.1214/ aos/1176325750.
[20] Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. On the quantitative analysis of decoderbased generative models. arXiv preprint arXiv:1611.04273, 2016.

[^0]: ${ }^{1}$ The code from [16] we run is available at https : //gitlab.com/rotskoff/trajectory_estimators/ -/tree/master.

