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Abstract

We investigate the reasons for the performance degradation incurred with batch-
independent normalization. We find that the prototypical techniques of layer
normalization and instance normalization both induce the appearance of failure
modes in the neural network’s pre-activations: (i) layer normalization induces
a collapse towards channel-wise constant functions; (ii) instance normalization
induces a lack of variability in instance statistics, symptomatic of an alteration of
the expressivity. To alleviate failure mode (i) without aggravating failure mode (ii),
we introduce the technique “Proxy Normalization” that normalizes post-activations
using a proxy distribution. When combined with layer normalization or group nor-
malization, this batch-independent normalization emulates batch normalization’s
behavior and consistently matches or exceeds its performance.

1 Introduction

Normalization plays a critical role in deep learning as it allows successful scaling to large and deep
models. In vision tasks, the most well-established normalization technique is Batch Normalization
(BN) [1]. At every layer in the network, BN normalizes the intermediate activations to have zero
mean and unit variance in each channel. While indisputably successful when training with large batch
size, BN incurs a performance degradation in the regime of small batch size [2, 3, 4, 5, 6, 7]. This
performance degradation is commonly attributed to an excessive or simply unwanted regularization
stemming from the noise in the approximation of full-batch statistics by mini-batch statistics.

Many techniques have been proposed to avoid this issue, while at the same time retaining BN’s
benefits. Some techniques mimic BN’s principle while decoupling the computational batch from the
normalization batch [2, 8, 7]. Other techniques are “batch-independent” in that they operate indepen-
dently of the batch in various modalities: through an explicit normalization either in activation space
[9, 10, 11, 12, 13, 3, 5, 14, 15, 6] or in weight space [16, 17, 18, 19, 20]; through the use of an analytic
proxy to track activation statistics [21, 22, 23]; through a change of activation function [24, 5, 15].

In this paper, we push the endeavor to replace BN with a batch-independent normalization a step
further. Our main contributions are as follows: (i) we introduce a novel framework to finely
characterize the various neural network properties affected by the choice of normalization; (ii) using
this framework, we show that while BN’s beneficial properties are not retained when solely using
the prototypical batch-independent norms, they are retained when combining some of these norms
with “Proxy Normalization”, a novel technique that we hereby introduce; (iii) we demonstrate on an
extensive set of experiments that, by reproducing BN’s beneficial properties, our batch-independent
normalization approach consistently matches or exceeds BN’s performance.

As a starting point of our analysis, we need to gain a better understanding of those beneficial properties
of BN that we aim at reproducing.
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2 Batch Normalization’s beneficial properties

We consider throughout this paper a convolutional neural network with d = 2 spatial axes. This neural
network receives an input x ∈ RH×W×C0 which, unless otherwise stated, is assumed sampled from
a finite dataset D. The neural network maps this input x to intermediate activations xl ∈ RH×W×Cl
of height H , width W and number of channels Cl at each layer l. The value of xl at spatial position
α ∈ {1, . . . ,H} × {1, . . . ,W} and channel c ∈ {1, . . . , Cl} is denoted as xlα,c, with the dependency
on x kept implicit to avoid overloading notations.

The inclusion of BN at layer l leads in the full-batch setting to adding the following operations ∀α, c:

ylα,c =
xlα,c − µc(xl)

σc(xl)
, ỹlα,c = γlcy

l
α,c + βlc, (1)

where µc(xl), σc(xl) are the mean and standard deviation of xl in channel c, and γlc, β
l
c are channel-

wise scale and shift parameters restoring the degrees of freedom lost in the standardization. In the
mini-batch setting, the full-batch statistics µc(xl), σc(xl) are approximated by mini-batch statistics.

Table 1 summarizes the beneficial properties that result from including BN in the neural network.
Below, we provide details on each of these properties, and we discuss whether each property is
reproduced with batch-independent norms.

Scale invariance. When BN is present, the input-output mapping of the neural network is invariant
to the scale of weights preceding any BN layer. With such scale invariance plus weight decay, the
scale of weights during training reaches an equilibrium with an “effective” learning rate depending
on both the learning rate and the weight decay strength [25, 26, 27, 8, 28, 29, 30]. Such mechanism
of “auto rate-tuning” has been shown to provide optimization benefits [31, 26, 32].

This property is easy to reproduce. It is already obtained with most existing batch-independent norms.

Control of activation scale in residual networks. To be trainable, residual networks require the
scale of activations to remain well-behaved at initialization [33, 34, 35, 20, 36, 37]. While this
property naturally arises when BN is present on the residual path, when BN is not present it can also
be enforced by a proper scaling decaying with the depth of the residual path. This “dilution” of the
residual path with respect to the skip connection path reduces the effective depth of the network and
enables to avoid coarse-grained failures modes [38, 39, 40, 41, 42, 35].

This property is easy to reproduce. It is already obtained with most existing batch-independent norms.

Regularizing noise. Due to the stochasticity of the approximation of µc(xl), σc(xl) by mini-batch
statistics, training a neural network with BN in the mini-batch setting can be seen as equivalent to
performing Bayesian inference [43, 44] or to adding a regularizing term to the training of the same
network with full-batch statistics [45]. As a result, BN induces a specific form of regularization.

This regularization is not reproduced with batch-independent norms, but we leave it out of the scope
of this paper. To help minimize the bias in our analysis and “subtract away” this effect, we will
perform all our experiments without and with extra degrees of regularization. This procedure can be
seen as a coarse disentanglement of normalization’s effects from regularization’s effects.

Avoidance of collapse. Unnormalized networks with non-saturating nonlinearities are subject to a
phenomenon of “collapse” whereby the distribution with respect to x, α of the intermediate activation
vectors (xlα,1, . . . ,x

l
α,Cl

)T becomes close to zero- or one-dimensional in deep layers [39, 46, 41, 47,
48, 49, 37]. This means that deep in an unnormalized network: (i) layers tend to have their channels
imbalanced; (ii) nonlinearities tend to become channel-wise linear with respect to x, α and not add any
effective capacity [39, 50, 51]. Consequently, unnormalized networks can neither effectively use their
whole width (imbalanced channels) nor effectively use their whole depth (channel-wise linearity).

Conversely, when BN is used, the standardization at each layer prevents this collapse from happening.
Even in deep layers, channels remain balanced and nonlinearities remain channel-wise nonlinear with
respect to x, α. Consequently, networks with BN can effectively use their whole width and depth.

The collapse is, on the other hand, not always avoided with batch-independent norms [39, 18, 49].
Most notably, it is not avoided with Layer Normalization (LN) [9] or Group Normalization (GN) [3],
as we show both theoretically and experimentally on commonly found networks in Section 4.

To the extent possible, we aim at designing a batch-independent norm that avoids this collapse.
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Table 1: BN’s beneficial properties. We show whether each property is (at least approximately)
present (3) or absent (7) with various batch-independent norms: Layer Normalization (LN), Instance
Normalization (IN), Layer Normalization + Proxy Normalization (LN+PN, cf Section 5). In this
categorization, BN is considered in the mini-batch setting but still close to the full-batch setting, such
that it approximately preserves expressivity [53].

Scale Control of Regularizing Avoidance of Preservation of
invariance activation scale noise collapse expressivity

BN 3 3 3 3 3
LN 3 3 7 7 3
IN 3 3 7 3 7
LN+PN 3 3 7 3 3

Preservation of expressivity. We can always express the identity with Eq. (1) by choosing
βlc = µc(x

l) and γlc = σc(x
l). Conversely, for any choice of βlc, γ

l
c, we can always “re-absorb”

Eq. (1) into a preceding convolution with bias. This means that BN in the full-batch setting does not
alter the expressivity compared to an unnormalized network, i.e. it amounts to a plain reparameteriza-
tion of the hypothesis space.

The expressivity is, on the other hand, not always preserved with batch-independent norms. In activa-
tion space, the dependence of batch-independent statistics on the input x turns the standardization into
a channel-wise nonlinear operation that cannot be “re-absorbed” into a preceding convolution with
bias [18]. This phenomenon is most pronounced when statistics get computed over few components.
This means e.g. that Instance Normalization (IN) [10] induces a greater change of expressivity than
GN, which itself induces a greater change of expressivity than LN.

In weight space, the expressivity can also be altered, namely by the removal of degrees of freedom.
This is the case with Weight Standardization (WS) [18, 20] and Centered Weight Normalization [17]
that remove degrees of freedom (one per unit) that cannot be restored in a succeeding affine trans-
formation. This reduction of expressivity could explain the ineffectiveness of these techniques in
EfficientNets [52], as previous works observed [20] and as we confirm in Section 6.

To the extent possible, we aim at designing a batch-independent norm that preserves expressivity.

3 Theoretical framework of analysis

We specified the different properties that we wish to retain in our design of batch-independent
normalization: (i) scale invariance, (ii) control of activation scale; (iii) avoidance of collapse; (iv)
preservation of expressivity. We now introduce a framework to quantify the presence or absence of
the specific properties (iii) and (iv) with various choices of normalization.

Propagation. For simplicity, we assume in our theoretical setup that any layer l up to depth L
consists of the following three steps: (i) convolution step with weights ωl ∈ RKl×Kl×Cl−1×Cl ;
(ii) normalization step; (iii) activation step sub-decomposed into an affine transformation with scale
and shift parameters γl,βl ∈ RCl and an activation function φ which, unless otherwise stated, is
assumed positive homogeneous and nonzero (e.g. φ = ReLU). If we denote xl,yl, zl ∈ RH×W×Cl
the intermediate activations situated just after (i), (ii), (iii) with the convention z0 ≡ x, we may write
the propagation through layer l as

xl = Conv(zl−1), ∀α, c : Conv(zl−1)α,c = (ωl ∗ zl−1)α,c, (2)

yl = Norm(xl), ∀α, c : Norm(xl)α,c =
xlα,c − µIx,c(xl)

σIx,c(x
l)

, 1 (3)

zl = Act(yl), ∀α, c : Act(yl)α,c = φ
(
ỹlα,c

)
= φ

(
γlcy

l
α,c + βlc

)
, (4)

where µIx,c(x
l), σIx,c(x

l) denote the mean and standard deviation of xl conditionally on Ix,c ≡ {c},
{x}, {x, c}, {x, c mod G} for the respective cases Norm = BN, LN, IN, GN with G groups.

1We omit the numerical stability constant and adopt the convention Norm(xl)α,c = 0, ∀α if σIx,c(x
l) = 0.
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Moments. Extending the previous notations, we use µ, σ, P indexed with a (possibly empty) subset
of variables to denote the operators of conditional mean, standard deviation and power. If we apply
these operators to the intermediate activations yl, that implicitly depend on the input x and that
explicitly depend on the spatial position α and the channel c, we get e.g.

µc(y
l) = Ex,α

[
ylα,c

]
, σc(y

l) =
√

Varx,α
[
ylα,c

]
, Pc(yl) = Ex,α

[
(ylα,c)

2
]

︸ ︷︷ ︸
µc(yl)2+σc(yl)2

,

µx,c(y
l) = Eα

[
ylα,c

]
, σx,c(y

l) =
√

Varα
[
ylα,c

]
, Px,c(y

l) = Eα
[
(ylα,c)

2
]

︸ ︷︷ ︸
µx,c(yl)2+σx,c(yl)2

,

where, by convention, x, α, c are considered uniformly sampled among inputs of D, spatial positions
and channels, whenever they are considered as random.

Power decomposition. Using these notations, we may gain important insights by decomposing the
power in channel c of yl, just after the normalization step, as

Pc(yl) = Ex

[
µx,c(y

l)
]2

︸ ︷︷ ︸
P(1)
c (yl)

+ Varx

[
µx,c(y

l)
]

︸ ︷︷ ︸
P(2)
c (yl)

+Ex

[
σx,c(y

l)
]2

︸ ︷︷ ︸
P(3)
c (yl)

+ Varx

[
σx,c(y

l)
]
.

︸ ︷︷ ︸
P(4)
c (yl)

(5)

Since this four-terms power decomposition will be at the core of our analysis, we detail two useful
views of it. The first view is that of a hierarchy of scales: P(1)

c (yl) measures the power of µc(yl) at
the dataset scale; P(2)

c (yl) measures the power of µx,c(y
l)− µc(yl) at the instance scale; the sum of

P(3)
c (yl) and P(4)

c (yl) measures the power of ylα,c−µx,c(y
l) at the pixel scale. A particular situation

where the power would be concentrated at the dataset scale withP(1)
c (yl) equal toPc(yl) would imply

that yl has its distribution fully “collapsed” in channel c, i.e. that yl is constant in channel c.

The second view is that of a two-level binary tree: on one half of the tree, the sum of P(1)
c (yl) and

P(2)
c (yl) measures the power coming from µx,c(y

l), with the relative proportions of P(1)
c (yl) and

P(2)
c (yl) functions of the inter-x similarity and inter-x variability of µx,c(y

l); on the other half of the
tree, the sum of P(3)

c (yl) and P(4)
c (yl) measures the power coming from σx,c(y

l), with the relative
proportions of P(3)

c (yl) and P(4)
c (yl) functions of the inter-x similarity and inter-x variability of

σx,c(y
l). A particular situation where P(2)

c (yl), P(4)
c (yl) would be equal to zero would imply that

µx,c(y
l), σx,c(yl) have zero inter-x variability, i.e. that µx,c(y

l), σx,c(yl) are constant for all x.

A version of Eq. (5) at the layer level instead of channel level will be easier to work with. Defining
P(i)(yl) as the averages of P(i)

c (yl) over c for i ∈ {1, 2, 3, 4}, we obtain

P(yl) = P(1)(yl) + P(2)(yl) + P(3)(yl) + P(4)(yl).

It should be noted that P(yl) = 1 for any choice of Norm ∈ {BN,LN, IN,GN} as long as the
denominator of Eq. (3) is nonzero for all x, c [C.1]. Consequently, the terms P(i)(yl) sum to one,
meaning they can be conveniently seen as the proportion of each term i ∈ {1, 2, 3, 4} into P(yl).

Revisiting BN’s avoidance of collapse. When BN is used, yl is normalized not only layer-wise but
also channel-wise with P(1)

c (yl) = 0 and Pc(yl) = 1. As a first consequence, ỹl (that is only one
affine transformation away from yl) is unlikely to have its channel-wise distributions collapsed. This
means that the nonlinearity φ acting on ỹl is likely to be effectively nonlinear with respect to ỹl’s
channel-wise distributions.2 As a result, each layer adds capacity and the network effectively uses its
whole depth. This is opposite to the situation where ỹl has its channel-wise distributions collapsed
with Pc(ỹl)− P(1)

c (ỹl)� Pc(ỹl) for all c, which results in φ being close to linear with respect to
ỹl’s channel-wise distributions. This is illustrated in Figure 1 and formalized in Appendix C.2.

2Note that: (i) the effective nonlinearity of φ with respect to ỹl’s channel-wise distributions could be
quantified in the context of random nets of Definition 1 with “reasonable” choices of β, γ; (ii) BN only
guarantees an intra-distribution nonlinearity and not an intra-mode nonlinearity in contexts such as adversarial
training [54, 55] or conditional GANs [56], unless modes are decoupled in BN’s computation [57, 58, 59, 60, 61].
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Figure 1: Channel-wise collapse induces channel-wise linearity. Each subplot shows φ = ReLU
(black activation function) as well as two channel-wise distributions (blue and red distributions)
positioned symmetrically around 0 with Pc(ỹ

l)−P(1)
c (ỹl)

Pc(ỹl) = 1, 1
2 ,

1
4 ,

1
8 for (a), (b), (c), (d), respectively.

When progressing from (a) to (d), the part of the distribution corresponding to active ReLU (shaded
region) becomes either overly dominant (blue distribution) or negligible (red distribution). In either
case, the channel-wise distribution ends up concentrated on only one side of piece-wise linearity.

As an additional consequence, yl is guaranteed to have its channels well balanced with equal power
Pc(yl) for all c. As a result, the network effectively uses its whole width. This is opposite to the
situation where a single channel c becomes overly dominant over the others with Pc(yl)� Pc′(yl)
for c 6= c′, which results in downstream layers only “seeing” this channel c and the network behaving
as if it had a width equal to one at layer l.

Revisiting BN’s preservation of expressivity. When BN is used, P(1)
c (yl) = 0 implies for all c

that the terms P(2)
c (yl),P(3)

c (yl),P(4)
c (yl) sum to one. Apart from that, BN does not impose any

particular constraints on the relative proportions of each term into the sum. This means that the
relative proportions of P(i)

c (yl) and P(i)(yl) for i ∈ {2, 3, 4} are free to evolve as naturally dictated
by the task and the optimizer during learning.

This absence of constraints seems sensible. Indeed, imposing constraints on these relative proportions
would alter the expressivity, which would not have any obvious justification in general and could
even be detrimental in some cases, as we discuss in Section 4.

4 Failure modes with batch-independent normalization

With our theoretical framework in hand, we now turn to showing that the prototypical batch-
independent norms are subject to failures modes opposite to BN’s beneficial properties.

In the case of LN, the failure mode does not manifest in an absolute sense but rather as a “soft”
inductive bias, i.e. as a preference or a favoring in the hypothesis space. This “soft” inductive bias is
quantified by Theorem 1 in the context of networks with random model parameters.

Definition 1 (random net). We define a “random net” as a neural network having an input x
sampled from the dataset D and implementing Eq. (2), (3), (4) in every layer up to depth L, with
the components of ωl,γl,βl at every layer l ∈ {1, . . . , L} sampled i.i.d. from the fixed distributions
νω ,νγ ,νβ (up to a fan-in’s square root scaling for ωl).

In such networks, we assume that: (i) none of the inputs in the dataset D are identically zero; (ii) νω ,
νβ, νγ have well-defined moments, with strictly positive associated root mean squares ω, γ, β > 0;
(iii) νω , νβ are symmetric around zero.

Theorem 1 (layer-normalized networks collapse (informal)). [D.3] Fix a layer l ∈ {1, . . . , L} and
νω, νβ, νγ , D in Definition 1. Further suppose Norm = LN and suppose that the convolution of
Eq. (2) uses periodic boundary conditions.

Then for random nets of Definition 1, it holds when widths are large enough that

P(yl)− P(1)(yl) . ρl−1, P(yl) ' 1, (6)

where ρ ≡ γ2/(γ2 + β2) < 1, and . and ' denote inequality and equality up to arbitrarily small
constants with probability arbitrarily close to 1 when min1≤k≤l Ck is large enough.
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Discussion on LN’s failure mode. Theorem 1 implies that, with high probability, yl is subject to
channel-wise collapse in deep layers (l� 1) with P(yl)−P(1)(yl)� P(yl). This means that ỹl

(that is only one affine transformation away from yl) is likely to have its channel-wise distributions
collapsed with Pc(ỹl)−P(1)

c (ỹl)� Pc(ỹl) for most c. The nonlinearity φ acting on ỹl is then likely
to be close to linear with respect to ỹl’s channel-wise distributions [C.2]. Being close to channel-wise
linear in deep layers, layer-normalized networks are unable to effectively use their whole depth.

Since the inequality . can be replaced by an equality ' in the case φ = identity of Theorem 1 [D.4],
the aggravation at each layer l of the upper bound of Eq. (6) does not stem from the activation function
itself but rather by the preceding affine transformation. The phenomenon of channel-wise collapse
— also known under the terms of “domain collapse” [39] or “elimination singularity” [18] — is
therefore not only induced by a “mean-shifting” activation function such as φ = ReLU [62, 20], but
also by the injection of non-centeredness through the application of the channel-wise shift parameter
βl at each layer l. The fact that the general case of positive homogeneous φ is upper bounded by the
case φ = identity in Eq. (6) still means that the choice φ = ReLU can only be an aggravating factor.

Crucially, in the context of random nets of large widths, LN’s operation at each layer l does not
compensate this “mean shift”. This comes from the fact that LN’s mean and variance statistics can
be approximated by zero and a constant value independent of x, respectively. This means that LN’s
operation can be approximated by a layer-wise constant scaling independent of x.3

The predominance of LN’s failure mode in the hypothesis space — implied by its predominance
in random nets — is expected to have at least two negative effects on the actual learning and final
performance: (i) being expected along the training trajectory and being associated with reduced
effective capacity, the failure mode is expected to cause degraded performance on the training loss;
(ii) even if avoided to some extent along the training trajectory, the failure mode is still expected in
the vicinity of this training trajectory, implying an ill-conditioning of the loss landscape [62, 64] and
a prohibition of large learning rates that could have led otherwise to generalization benefits [65].

After detailing LN’s failure mode, we now detail IN’s failure mode.
Theorem 2 (instance-normalized networks lack variability in instance statistics). [E] Fix a layer
l ∈ {1, . . . , L} and lift any assumptions on φ. Further suppose Norm = IN, with Eq. (3) having
nonzero denominator at layer l for all inputs and channels.

Then it holds that

• yl is normalized in each channel c with

P(1)
c (yl) = 0, Pc(yl) = 1;

• yl lacks variability in instance statistics in each channel c with

P(2)
c (yl) = 0, P(3)

c (yl) = 1, P(4)
c (yl) = 0.

Discussion on IN’s failure mode. We see in Theorem 2 that yl’s power decomposition with
IN is constrained to be such that P(1)(yl),P(2)(yl),P(4)(yl) = 0 and P(3)(yl) = 1. While the
constraints on P(1)(ỹl), P(3)(ỹl) are removed by the affine transformation between yl and ỹl, the
constraints on P(2)(ỹl), P(4)(ỹl), on the other hand, remain even after the affine transformation.
These constraints on P(2)(ỹl), P(4)(ỹl) translate into 2Cl fixed constraints in activation space that
apply to each ỹl ∈ RH×W×Cl associated with each choice of input x in the dataset D [53].

Such constraints on ỹl are symptomatic of an alteration of expressivity. They notably entail that
some network mappings that can be expressed without normalization cannot be expressed with IN.
One such example is the identity mapping [C.3]. Another such example is a network mapping that
would provide in channel c through ỹlα,c, just before the nonlinearity, a detector of a given concept at
position α in the input x. With IN, the lack of variability in instance statistics implies that the mean
µx,c(ỹ

l) and standard deviation σx,c(ỹl) of the feature map in channel c are necessarily constant for
all x, equal to βc and γc, respectively. This does not allow to express for some inputs x the presence
of the concept at some position α: µx,c(ỹ

l) > 0, σx,c(ỹl) > 0; and for other inputs x the absence of
the concept: µx,c(ỹ

l) = 0, σx,c(ỹl) = 0.
3In this view, we expect layer-normalized networks to be also subject to a phenomenon of increasingly

imbalanced channels with depth [46, 63, 48].
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Figure 2: “Power plots”. The power decomposition of yl is shown as a function of the depth l for BN
and different batch-independent norms: IN, LN, GN, LN+PN, LN+WS. Top row: Random net of Defi-
nition 1 with φ = ReLU, widths Cl = 1024, kernel sizes Kl = 3, convolutions using periodic bound-
ary conditions and components of βl, γl sampled i.i.d. fromN (0, 0.22) andN (1, 0.22), respectively.
Bottom row: ResNet-50 (v2) throughout 100 epochs of training on ImageNet (IN is not shown in this
row due to numerical stability issues). Further experimental details are reported in Appendix A.2.

This latter example is not just anecdotal. Indeed, it is accepted that networks trained on high-level
conceptual tasks have their initial layers related to low-level features and their deep layers related to
high-level concepts [66, 67]. This view explains the success of IN on the low-level task of style transfer
with fixed “style” input, IN being then incorporated inside a generator network that only acts on the
low-level features of the “content” input [10, 68, 69, 70]. On high-level conceptual tasks, on the other
hand, this view hints at a harmful tension between IN’s constraints and the requirement of instance
variability to express high-level concepts in deep layers. In short, with IN not only is the expressivity
altered, but the alteration of expressivity results in the exclusion of useful network mappings.

Failure modes with GN. Group Normalization is a middle ground between the two extremes of
LN (G = 1 group) and IN (G = Cl groups at layer l). Networks with GN are consequently affected
by both failure modes of Theorem 1 and Theorem 2, but to a lesser extent than networks with LN for
the failure mode of Theorem 1 and IN for the failure mode of Theorem 2. On the one hand, since
GN becomes equivalent to a constant scaling when group sizes become large, networks with GN are
likely to be subject to channel-wise collapse. On the other hand, since GN can be seen as removing a
fraction — with an inverse dependence on the group size — of P(2)(yl), P(4)(yl) in between each
layer, networks with GN are likely to lack variability in instance statistics.

The balance struck by GN between the two failure modes of LN and IN could still be beneficial,
which would explain GN’s superior performance in practice. It makes sense intuitively that being
weakly subject to two failure modes is preferable over being strongly subject to one failure mode.

Experimental validation. The “power plots” of Figure 2 show the power decomposition of yl
as a function of the depth l in both a random net of Definition 1 and ResNet-50 (v2) [71] trained
on ImageNet.4 Looking at the cases of BN and IN, LN, GN in these power plots, we confirm that:
(i) unlike networks with BN and IN, networks with LN, and to a lesser extent GN, are subject to
channel-wise collapse as depth increases (see Appendix A.2.1 for a precise verification of Theorem 1);
(ii) networks with IN, and to a lesser extent GN, lack variability in instance statistics.

4To ensure that activation steps are directly preceded by normalization steps (cf Section 5), we always use
v2 instantiations of ResNets and instantiations of ResNeXts having the same reordering of operations inside
residual blocks as ResNets v2 (cf Appendix A.1).
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5 Proxy Normalization

With the goal of remedying the failure modes of Section 4, we now introduce our novel technique
“Proxy Normalization” (PN) that is at the core of our batch-independent normalization approach.

PN is incorporated into the neural network by replacing the activation step of Eq. (4) by the following
“proxy-normalized activation step” (cf Figure 3 and the practical implementation of Appendix B):

z̃l = PN-Act(yl), ∀α, c : PN-Act(yl)α,c =
φ
(
γlcy

l
α,c + βlc

)
− EY lc

[
φ
(
γlcY

l
c + βlc)

]
√

VarY lc
[
φ
(
γlcY

l
c + βlc)

]
+ ε

, (7)

where ε ≥ 0 is a numerical stability constant and Y lc is a Gaussian “proxy” variable of mean β̃lc and
variance (1 + γ̃lc)

2 depending on the additional parameters β̃l, γ̃l ∈ RCl of PN. Unless otherwise
stated, we let β̃l, γ̃l be nonzero but still subject to weight decay and thus close to zero. We show in
Appendix A.3.3 that it is also effective to let β̃l, γ̃l be strictly zero and Y lc ∼ N (0, 1).

If we assume (as hinted by Section 4) that only the affine transformation and the activation function φ
(i.e. the activation step) play a role in the aggravation at each layer l of channel-wise collapse and
channel imbalance, then PN provides the following guarantee of channel-wise normalization.
Theorem 3 (guarantee of channel-wise normalization in proxy-normalized networks (informal)).
[F] Fix a layer l ∈ {1, . . . , L} and lift any assumptions on φ and x’s distribution. Further suppose
that the neural network implements Eq. (2), (3), (7) at every layer up to depth L, with ε = 0 and
Eq. (3), (7) having nonzero denominators for all layers, inputs and channels.

Then both yl and z̃l at layer l are channel-wise normalized if the following conditions hold:

(i) z̃l−1 at layer l − 1 is channel-wise normalized;

(ii) The convolution and normalization steps at layer l do not cause any aggravation of channel-
wise collapse and channel imbalance;

(iii) yl at layer l is channel-wise Gaussian and PN’s additional parameters β̃l, γ̃l are zero.

Our batch-independent approach: LN+PN or GN+PN. At this
point, we crucially note that PN: (i) is batch-independent; (ii) does not
cause any alteration of expressivity. This leads us to adopt a batch-
independent normalization approach that uses either LN or GN (with
few groups) in the normalization step and that replaces the activation
step by the proxy-normalized activation step (+PN). With such a choice
of normalization step, we guarantee three of the benefits detailed in
Table 1: “scale invariance”, “control of activation scale” and “preserva-
tion of expressivity”. With the proxy-normalized activation step, we
finally guarantee the fourth benefit of “avoidance of collapse” without
compromising any of the benefits provided by the normalization step.

Experimental validation. We confirm in Figure 2 that BN’s behav-
ior is emulated in a fully batch-independent manner with our approach,
LN+PN or GN+PN. Indeed, the power plots of networks with LN+PN
resemble the power plots of networks with BN. As desired, PN reme-
dies LN’s failure mode without incurring IN’s failure mode.

zlα,c = φ
(
γlcy

l
α,c + βlc

)

Zlc = φ
(
γlcY

l
c + βlc

)

z̃lα,c =
zlα,c − E

[
Zlc
]

√
Var
[
Zlc
]
+ ε

Act

PN

PN-Act
ylα,c

zlα,c

z̃lα,c

Figure 3: Plugging PN.
PN is plugged into the ac-
tivation step Act to yield
the proxy-normalized ac-
tivation step PN-Act.

Approach strength 1: Normalizing beyond initialization. Our batch-independent approach
maintains channel-wise normalization throughout training (cf Figure 2). In contrast, many alternative
approaches, either explicitly or implicitly, focus on initialization [21, 24, 17, 18, 49, 20, 72]. Centered
Weight Normalization [17], WS [18, 20, 72] or PreLayerNorm [49] notably rely on the implicit
assumption that different channels have the same channel-wise means after the activation function φ.
While valid in networks at initialization with βl = 0 and γl = 1 (cf Appendix A.2.2), this assumption
becomes less valid as the affine transformation starts deviating from the identity. We see in Figure 2
that networks with LN+WS are indeed less effective in maintaining channel-wise normalization,
both in networks with random βl, γl (top row) and in networks considered throughout training
(bottom row). Such a coarser channel-wise normalization might in turn lead to a less effective use of
model capacity and a degradation of the conditioning of the loss landscape [62, 64].
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Approach strength 2: Wide applicability. Our batch-independent approach matches BN with
consistency across choices of model architectures, model sizes and activation functions (cf Section 6).
Its only restriction, namely that activation steps should be immediately preceded by normalization
steps for yl and its associated proxy Y l to be at the same scale, has easy workarounds. Applicability
restrictions might be more serious with alternative approaches: (i) alternative approaches involving a
normalization in weight space [16, 17, 18, 19, 20] might be ill-suited to architectures with less “dense”
kernels such as EfficientNets [20]; (ii) approaches involving the tracking of activation statistics
[21, 22, 23] might be nontrivial to apply to residual networks [73, 74]; (iii) approaches involving a
change of activation function [24, 5, 15] might precisely restrict the choice of activation function.

Approach strength 3: Ease of implementation. Our approach is straightforward to implement
when starting from a batch-normalized network. It simply requires: (i) replacing all BN steps with
LN or GN steps, and (ii) replacing all activation steps with proxy-normalized activation steps. The
proxy-normalized activation steps themselves are easily implemented (cf Appendix B).

6 Results

We finally assess the practical performance of our batch-independent normalization approach. While
we focus on ImageNet [75] in the main text of this paper, we report in Appendix A some additional
results on CIFAR [76]. In Appendix A, we also provide all the details on our experimental setup.

Choices of regularization and batch size. As mentioned in Section 2, we perform all our experi-
ments with different degrees of regularization to disentangle normalization’s effects from regulariza-
tion’s effects. We detail all our choices of regularization in Appendices A.1 and A.3.4.

In terms of batch size, we set: (i) the “global batch size” in between weight updates to the same value
independently of the choice of norm; (ii) the “normalization batch size” to a near-optimal value with
BN. These choices enable us to be conservative when concluding on a potential advantage of our
approach over BN at small batch size. Indeed, while the performance of batch-independent approaches
would remain the same or slightly improve at small batch size [77, 65], the performance of BN would
eventually degrade due to a regularization that eventually becomes excessive [2, 3, 4, 5, 6, 7].

Effect of adding PN. We start as a first experiment
by analyzing the effect of adding PN on top of various
norms in ResNet-50 (RN50). As visible in Table 2,
PN is mostly beneficial when added on top of LN or
GN with a small number of groups G. The conse-
quence is that the optimal G shifts to lower values in
GN+PN compared to GN. This confirms the view that
PN’s benefit lies in addressing LN’s failure mode.

It is also visible in Table 2 that PN does not provide
noticeable benefits to BN. This confirms again the
view that PN’s benefit lies in addressing the problem
— not present with BN — of channel-wise collapse.
Importantly, since PN does not entail effects other
than normalization that could artificially boost the per-
formance, GN+PN can be compared in a fair way to
BN when assessing the effectiveness of normalization.

Table 2: Effect of adding PN. ResNet-
50 is trained on ImageNet with BN and
LN, GN, GN+WS with G groups, either
without or with PN added on top (plain vs.
PN). Results are formatted as X / Y with
X, Y the validation accuracies (%) without
and with extra regularization, respectively.

RN50
G plain +PN

BN 76.3 / 75.8 76.2 / 76.0

LN 1 74.5 / 74.6 75.9 / 76.5
GN 8 75.4 / 75.4 76.3 / 76.7
GN 32 75.4 / 75.3 75.8 / 76.1

GN+WS 8 76.6 / 76.7 76.8 / 77.1

This is unlike WS which has been shown to improve BN’s performance [18]. In our results of Table 2,
the high performance of GN+WS without extra regularization and the fact that PN still provides
benefits to GN+WS suggests that: (i) on top of its normalization benefits, WS induces a form of
regularization; (ii) GN+WS is still not fully optimal in terms of normalization.

GN+PN vs. BN. Next, we turn to comparing the performance of our batch-independent approach,
GN+PN, to that of BN across a broad range of models trained on ImageNet. As visible in Figure 4 and
Tables 3, 4, GN+PN outperforms BN in ResNet-50 (RN50) and ResNet-101 (RN101) [71], matches
BN in ResNeXt-50 (RNX50) and ResNeXt-101 (RNX101) [78], and matches BN in EfficientNet-B0
(EN-B0) and EfficientNet-B2 (EN-B2), both in the original variant with depthwise convolutions and
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expansion ratio of 6 [52] and in an approximately parameter-preserving variant (cf Appendix A.1) with
group convolutions of group size 16 and expansion ratio of 4 [79]. In short, our batch-independent
normalization approach, GN+PN, matches BN not only in behavior but also in performance.

With regard to matching BN’s performance with alternative norms, various positive results have been
reported in ResNets and ResNeXts [8, 7, 12, 13, 15, 20, 36] but only a limited number in EfficientNets
[15]. In EfficientNets, we are notably not aware of any other work showing that BN’s performance
can be matched with a batch-independent approach. As a confirmation, we assess the performance
of various existing batch-independent approaches: GN [3], GN+WS [18], Evo-S0 [15], FRN+TLU
[80, 5]. Unlike GN+PN, none of these approaches is found in Table 4 to match BN with consistency.

Normalization and regularization. Our results suggest that while an efficient normalization is
not sufficient in itself to achieve good performance on ImageNet, it is still a necessary condition,
together with regularization. In our results, it is always with extra regularization that GN+PN yields
the most benefits. Importantly, the fact that GN+PN consistently leads to large improvements in
training accuracy (cf Appendix A.3.2) suggests that additional benefits would be obtained on larger
datasets without the requirement of relying on regularization [81, 72].

RN50

75

76

77

RNX50

76

78

EN-B0

76

77

RN101

77

78

RNX101

77

78

79

EN-B2

79

80

BN

BN w/ extra regul

GN

GN w/ extra regul

GN+PN

GN+PN w/ extra regul

Figure 4: BN vs. GN, GN+PN.
Validation accuracies (%) of
ResNets, ResNeXts and Efficient-
Nets trained on ImageNet with
BN and GN, GN+PN, without and
with extra regularization. Efficient-
Nets are considered in the variant
with group convolutions [79].

Table 3: BN vs. GN, GN+PN. ResNets and ResNeXts are
trained on ImageNet with BN and GN, GN+PN. Results are
formatted as in Table 2.

RN50 RN101 RNX50 RNX101

BN 76.3 / 75.8 77.9 / 78.0 77.6 / 77.2 78.7 / 78.9
GN 75.4 / 75.3 77.0 / 77.4 76.2 / 76.6 77.4 / 78.1
GN+PN 76.3 / 76.7 77.6 / 78.6 76.7 / 77.8 77.7 / 79.0

Table 4: BN vs. batch-independent approaches. Efficient-
Nets are trained on ImageNet with BN and various batch-
independent approaches. Results are formatted as in Table 2.

depthwise convs [52] group convs [79]

EN-B0 EN-B2 EN-B0 EN-B2

BN 76.9 / 77.2 79.4 / 80.0 76.8 / 76.7 79.5 / 79.7
GN 76.2 / 76.2 78.9 / 79.4 76.2 / 76.2 79.0 / 79.6
GN+PN 76.8 / 77.0 79.3 / 80.0 76.7 / 76.8 79.3 / 80.1
Evo-S0 75.8 / 75.8 78.5 / 78.7 76.2 / 76.5 78.9 / 79.6
GN+WS 74.2 / 74.1 77.8 / 77.8 76.2 / 76.3 79.2 / 79.4
FRN+TLU 75.7 / 75.7 78.4 / 78.8 74.9 / 75.1 78.2 / 78.6

7 Summary and broader impact

We have introduced a novel framework to finely characterize the various neural network properties
affected by the choice of normalization. Using this framework, we have shown that while BN’s
beneficial properties are not retained when solely using the prototypical batch-independent norms,
they are retained when combining some of these norms with the technique hereby introduced of Proxy
Normalization. We have demonstrated on an extensive set of experiments that our batch-independent
normalization approach consistently matches BN in both behavior and performance.

The main implications of this work could stem from the unlocked possibility to retain BN’s normal-
ization benefits while removing batch dependence. Firstly, our approach could be used to retain BN’s
normalization benefits while alleviating the burden of large activation memory stemming from BN’s
requirement of sufficiently large batch sizes. This is expected to be important in memory-intensive
applications such as object detection or image segmentation, but also when using A.I. accelerators that
leverage local memory to provide extra acceleration and energy savings in exchange for tighter mem-
ory constraints. Secondly, our approach could be used to retain BN’s normalization benefits while
avoiding BN’s regularization when the latter is detrimental. As discussed in Section 6, this is expected
to be important in the context — that will likely be prevalent in the future — of large datasets.
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