
A Miscellaneous technicalities
Here, we collect some definitions and properties concerning p-process and supermartingales for the
unfamiliar reader, and restate a technical lemma necessary for upcoming proofs.
Lemma 1 (Lemma 8 from JJ). Let 𝑎∈R𝑛

+ be a 𝑛-dimensional vector with positive real entries, and
for 𝑖=1,...,𝑛 let 𝑍𝑖 be independent random variables where

P(𝑍𝑖≥ 𝑡)≤exp(−𝑡/𝑎𝑖).

Then for any 𝛿∈(0,1),
𝑛∑︁

𝑖=1

𝑍𝑖≤5log(1/𝛿)

𝑛∑︁
𝑖=1

𝑎𝑖.

occurs with at least probability 1−𝛿.

A.1 Equivalence property of p-processes

We note the following equivalence proposition for p-processes. Lemma 3 in Howard et al. [16] and
Lemmas 1 and 2 in Ramdas et al. [31] makes similar statements regarding sequential processes, but do
not additionally characterize the behavior of the infimum of a p-process.
Proposition 6. The following statements are equivalent for a discrete-time process (𝑃𝑡)𝑡≥1:

(i) (𝑃𝑡)𝑡≥1 is a p-process i.e. P(𝑃𝜏 ≤𝛼)≤𝛼 for all (possibly infinite) 𝜏 ∈𝒯 and all 𝛼∈(0,1);

(ii) P(𝑃𝜏 ≤𝛼)≤𝛼 for all finite 𝜏 ∈𝒯 and all 𝛼∈(0,1);

(iii) P(∃𝑡≥1:𝑃𝑡≤𝛼)≤𝛼 for all 𝛼∈(0,1);

(iv) inf𝑡≥1𝑃𝑡 is superuniformly distributed (its distribution is stochastically larger than uniform).

Proof. In what follows, let 𝜏𝛼 ∈ 𝒯 be defined as 𝜏𝛼 := inf{𝑡≥ 1 : 𝑃𝑡 ≤ 𝛼}, which is defined to be
infinite if 𝑃𝑡 never drops below 𝛼.

(i)⇒(ii) is trivial by definition.

(ii)⇒(iii): Fix 𝛼∈(0,1). By (ii), we have P(𝑃𝜏𝛼∧𝑛≤𝛼)≤𝛼 for all 𝑛≥1. It follows that

P(∃𝑡≥1:𝑃𝑡≤𝛼)= lim
𝑛→∞

P(∃𝑡∈{1,...,𝑛} :𝑃𝑡≤𝛼)= lim
𝑛→∞

P(𝑃𝜏𝛼∧𝑛≤𝛼)≤𝛼.

(iii)⇒(iv): For each 𝜖>0, since inf𝑡≥1𝑃𝑡≤𝛼 implies 𝜏𝛼+𝜖<∞, we have

P
(︂

inf
𝑡≥1

𝑃𝑡≤𝛼

)︂
≤P(𝜏𝛼+𝜖<∞)≤𝛼+𝜖.

As 𝜖>0 is arbitrary, we get P(inf𝑡≥1𝑃𝑡≤𝛼)≤𝛼, i.e., inf𝑡≥1𝑃𝑡 is superuniformly distributed.

(iv)⇒(i): For any 𝜏 ∈𝒯 and 𝛼∈(0,1), since 𝑃𝜏 ≥ inf𝑡≥1𝑃𝑡, we have P(𝑃𝜏 ≤𝛼)≤P(inf𝑡≥1𝑃𝑡≤𝛼)≤
𝛼, thus showing that (𝑃𝑡) is a p-process.

As a direct consequence of Proposition 6, if (𝑃𝑡) is a p-process and 𝑃𝑠 is uniformly distributed on [0,1]
for some 𝑠≥1, then we have P(𝑃𝑠≤𝑃𝑡)=1 for all 𝑡≥1, since 𝑃𝑠 is as small as min𝑡≥1𝑃𝑡. Therefore,
if a p-process does not always take its minimum at a deterministic point 𝑠, then 𝑃𝑠 cannot be uniformly
distributed on [0,1]. In other words, for all deterministic 𝑡, the random variables 𝑃𝑡 are, in general, not
“precise” (i.e., uniform on [0,1]) p-variables, but conservative ones. In contrast, the random variables
𝐸𝑡 from an e-process (𝐸𝑡) are “precise” (i.e., have expectation 1) as soon as (𝐸𝑡) is a nonnegative
martingale starting at 1.

A.2 Nonnegative supermartingales

A real-valued process (𝑀𝑡)𝑡≥0 is a supermartingale w.r.t. a filtration (ℱ𝑡) if it satisfies:

E[𝑀𝑡|ℱ𝑡−1]≤𝑀𝑡−1 for 𝑡∈N. (6)

For nonnegative supermartingales, we typically assume 𝑀0 =1 for simplicity; they possess two useful
properties. The first is the optional stopping theorem.
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Fact 6 (Optional stopping theorem. Durrett [13], Ramdas et al. [31]). Let (𝑀𝑡) be a nonnegative
supermartingale w.r.t. (ℱ𝑡). Then, for any stopping time 𝜏 ∈𝒯 :

E[𝑀𝜏 ]≤𝑀0.

The second is Ville’s inequality.
Fact 7 (Ville’s inequality). Let (𝑀𝑡) be a nonnegative supermartingale w.r.t. (ℱ𝑡). Let 𝑠∈R+ be a
number in the positive reals.

P(∃𝑡∈N :𝑀𝑡≥𝑠)≤𝑀0

𝑠
.

B Proofs

B.1 Proofs of results in Section 3.1

The proofs of Propositions 1 to 4 all follow from the application of one of Facts 1 to 3.

First, we note that (𝑃1,𝑡),...,(𝑃𝑘,𝑡) being p-processes implies that 𝑃1,𝑡,...,𝑃𝑘,𝑡 are p-variables for all
𝑡∈N. Thus, for any choice of stopping time 𝜏*∈𝒯 for the algorithm, 𝑃1,𝜏* ,...,𝑃𝑘,𝜏* are p-variables.

Consequently, Proposition 2 for the adaptive and dependent p-variables case and Proposition 3 for the
adaptive and dependent p-variables with constrained rejection sets case follow from Fact 1 and Fact 2,
respectively.

Similarly, we note that 𝐸1,𝜏* ,...𝐸𝑘,𝜏* are e-variables, since (𝐸1,𝑡),...,(𝐸𝑘,𝑡) are e-processes. As a
result, Proposition 4 follows from Fact 3.

Now, we prove Proposition 1 in a slightly different manner than JJ, using the notion of self-consistency.

Proof of Proposition 1. Consider an arbitrary 𝑖 ∈ [𝑘]. Recall that each 𝑃𝑖,𝑡 is determined only by
𝑋𝑖,𝑡𝑖(1),...,𝑋𝑖,𝑡𝑖(𝑇 (𝑖)). By independence of 𝑋𝑖,𝑡 across 𝑖∈ [𝑘] and 𝑡∈N, we rename 𝑋𝑖,𝑡𝑖(𝑗) as 𝑋𝑖,𝑗 ,
since they are identically distributed. Thus, 𝑃𝑖,𝑡 is now constructed from 𝑋𝑖,1,...,𝑋𝑖,𝑡. We perform this
transformation so we can consider 𝑃𝑖,𝑡 in the infinite-sample limit. Under our renaming, 𝒮𝜏* is the
output of running BH on 𝑃1,𝑇1(𝜏*),...,𝑃𝑘,𝑇𝑘(𝜏*).

Define 𝑃 *
𝑖 := inf𝑡≥1𝑃𝑖,𝑡. Note that 𝑃 *

𝑖 are independent p-variables across 𝑖 ∈ [𝑘] by Proposition 6
since 𝑋1,𝑡,...,𝑋𝑘,𝑡 are independent for all 𝑡∈N and (𝑃1,𝑡),...,(𝑃𝑘,𝑡) are p-processes. We can derive
self-consistency w.r.t. 𝑃 *

𝑖 as follows.

max
𝑖∈𝒮𝜏*

𝑃 *
𝑖 ≤ max

𝑖∈𝒮𝜏*
𝑃𝑖,𝑇𝑖(𝜏*) def. of 𝑃 *

𝑖

≤ |𝒮𝜏* |𝛿′

𝑘
. p-self-consistency of 𝒮𝜏*

Combined with Fact 2, we can show that FDR(𝒮𝜏*)≤𝛿′log(1+log(1/𝛿′)).

Separately, we can also apply the FDR guarantee on the output of BH on arbitrarily dependent p-
variables from Fact 1. Consequently, we can guarantee FDR(𝒮𝜏*)≤ 𝛿′log(1+log(1/𝛿′))∧𝛿′log𝑘.
Thus, our choice of 𝛿′ implies FDR(𝒮𝜏*)≤𝛿, which is our desired result.

B.2 Proof of Proposition 5

Howard et al. [16] actually specifiy a more general form for𝜆ℓ and𝑤ℓ for the discrete mixture e-process,
𝐸DM

𝑖,𝑡 . Let 𝑓 be a probability density over (0,𝜆max] and nonincreasing over that interval, 𝜆∈R+ satisfy
𝜆≤𝜆max, and 𝜂>1 be a step size. Howard et al. [15] define 𝜆ℓ,𝑤ℓ as follows:

𝜆ℓ :=
𝜆

𝜂ℓ+1/2
and 𝑤𝑘 :=

𝜆(𝜂−1)𝑓(𝜆ℓ
√
𝜂)

𝜂ℓ+1
. (7)

Let,

𝑓LIL
𝑠 :=

(𝑠−1)𝑠𝑠−1I{0≤𝜆≤1/𝑒𝑠}
𝜆log𝑠𝜆−1

,
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for any 𝑠>1. We will now connect these definitions to (3b). Set 𝜆=1/𝑒, 𝜂=𝑒, and 𝑓 =𝑓LIL
2 . Then,

𝜆ℓ =
1

𝑒ℓ+3/2
,

𝑤ℓ =
1
𝑒 (𝑒−1)𝑓LIL

2 ( 1
𝑒ℓ+3/2 ·

√
𝑒)

𝑒ℓ+1

=
(𝑒−1)𝑓LIL

2 ( 1
𝑒ℓ+1 )

𝑒ℓ+2

=
(𝑒−1) 2I{ℓ≥1}

1

𝑒ℓ+1 log2(𝑒ℓ+1)

𝑒ℓ+2

=
2(𝑒−1)I{ℓ≥1}

( 1
𝑒ℓ+1 )(𝑒ℓ+2)log2(𝑒ℓ+1)

=
2(𝑒−1)I{ℓ≥1}

𝑒(ℓ+1)2
.

By reindexing ℓ, we can redefine the variables as follows:

𝜆ℓ =
1

𝑒ℓ+5/2
and 𝑤ℓ =

2(𝑒−1)

𝑒(ℓ+2)2
.

To prove Proposition 5, we prove the following more general proposition which is derived from existing
results in Howard et al. [16].
Proposition 7 (Derived from equations (49) and (82) of Howard et al. [16]). Let,

𝐸𝑖,𝑡 :=

∞∑︁
ℓ=0

𝑤ℓexp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)− 𝜆2
ℓ

2

⎞⎠.

If
∞∑︀
ℓ=0

𝑤ℓ ≤ 1, then (𝐸𝑖,𝑡) is a nonnegative supermartingale, and consequently an e-process, if the

conditional distribution 𝑋𝑖,𝑡 |ℱ𝑡−1 is 1-sub-Gaussian and E[𝑋𝑖,𝑡 |ℱ𝑡−1]≤𝜇0 for all 𝑡∈N.

Proof. Let

𝑀𝜆
𝑖,𝑡 :=exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)− 𝜆2

2

⎞⎠,

where 𝜆∈R. (𝑀𝑖,𝑡) is a nonnegative supermartingale because of the sub-Gaussian and bounded condi-

tional mean assumptions on 𝑋𝑖,𝑡. Let, 𝑤sum =
∞∑︀
ℓ=0

𝑤ℓ. Now, we show that 𝐸𝑖,𝑡 is a supermartingale:

E[𝐸𝑖,𝑡 |ℱ𝑡−1]=E

[︃ ∞∑︁
ℓ=0

𝑤ℓ𝑀
𝜆ℓ
𝑖,𝑡 |ℱ𝑡−1

]︃

=

∞∑︁
ℓ=0

𝑤ℓE
[︁
𝑀𝜆ℓ

𝑖,𝑡 |ℱ𝑡−1

]︁
≤

∞∑︁
ℓ=0

𝑤ℓ𝑀
𝜆ℓ
𝑖,𝑡−1

=𝐸𝑖,𝑡−1.

The sole inequality is by the supermartingale property of (𝑀𝜆ℓ
𝑖,𝑡 ). Thus, we have shown our desired

result.
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B.3 Proof of Theorem 1

We follow a similar path as the sample complexity proof (i.e. Theorem 2) from JJ for Theorem 1. Our
goal is to show that we reject the following set with at least 1−𝛿 probability:

ℛ={𝑖∈ℋ1 :̂︀𝜇𝑖,𝑡+𝜙(𝑡,𝛿)≥𝜇𝑖 for all 𝑡∈N}. (8)

Lemma 2. E[|ℛ|]≥(1−𝛿)|ℋ1|.

Proof. We have the following:

E[|ℛ|]=
∑︁
𝑖∈ℋ1

P(̂︀𝜇𝑖,𝑡+𝜙(𝑡,𝛿)≥𝜇𝑖)

≥
∑︁
𝑖∈ℋ1

P(|̂︀𝜇𝑖,𝑡−𝜇𝑖|≤𝜙(𝑡,𝛿))

≥(1−𝛿)|ℋ1|. Fact 4

Lemma 2 shows that rejecting ℛ is sufficient to produce rejection sets that have TPR(𝒮)≥1−𝛿. Thus,
our goal in this proof is to show a bound on 𝑇 := min{𝑡∈N :ℛ⊆𝒮𝑡} with at least 1−𝛿 probability,
where 𝑇 =∞ if ℛ ̸⊆𝒮𝑡 for all 𝑡∈N. Note that for all 𝑡≥𝑇 , 𝒮𝑇 ⊆𝒮𝑡 by the way (5a) is defined — it
does not sample arms that have already been rejected.

We note that we can use any 𝜙 defined in Fact 4 in this proof and still achieve the desired result. For
simplicity, we use 𝜙 to denote 𝜙0 in this proof. First we define a notion of inverse for 𝜙. Let

𝜙−1(𝜖,𝛿) :=min{𝑡 :𝜙(𝑡,𝛿)≤𝜖}. (9)

JJ and other work [18] show that for some absolute constant 𝑐>0,

𝜙−1(𝜖,𝛿)≤𝑐𝜖−2log(log(𝜖−2)/𝛿) for all 𝜖∈R+,𝛿∈(0,1). (10)

Also, recall that 𝑓.𝑔 denotes 𝑓 asymptotically dominates 𝑔 i.e. there exist 𝑐>0 that is independent of
the problem parameters such that 𝑓≤𝑐𝑔.

We decompose 𝑇 into the number of time steps the algorithm samples a null arm, and the number of
time steps the algorithm samples a non-null arm:

𝑇 =

∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}=

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}+I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}. (11)

Our first goal is to prove a sample complexity bound on
∞∑︀
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}. We define the following

variables for each 𝑖∈ [𝑘].

𝜌𝑖 :=inf{𝜌∈ [0,1] : |̂︀𝜇𝑖,𝑡−𝜇𝑖|>𝜙(𝑡,𝜌) for all 𝑡∈N}∪{1}. (12)

Lemma 3. For each 𝑖∈ [𝑘], P(𝜌𝑖≤𝑠)≤𝑠 for 𝑠∈(0,1) i.e. 𝜌𝑖 is superuniformly distributed.

The above lemma follows directly from Fact 4. We also define a concentration bound for independent
superuniformly distributed variables.
Lemma 4. For any fixed positive reals 𝑎1,...,𝑎𝑑, independent superuniformly distributed random
variables 𝑟1,...,𝑟𝑑, and 𝛽∈(0,1), the following event occurs with probability at least 1−𝛽:

𝑑∑︁
𝑖=1

𝑎𝑖log(1/𝑟𝑖)≤5log(1/𝛽)

𝑑∑︁
𝑖=1

𝑎𝑖.

This lemma follows directly from recognizing 𝑎𝑖log(1/𝑟𝑖) satisfies the requirements for𝑍𝑖 in Lemma 1.
Now, we will show that the UCB for each 𝑖∈ℛ will be above 𝜇𝑖.
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Lemma 5. Let 𝜈𝑖 be sub-Gaussian for each 𝑖∈ [𝑘]. Any algorithm with (𝒜𝑡) that outputs ℐ𝑡 ={𝐼𝑡} as
defined in (5a) has the following property:

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖).

Proof. The following is true for any 𝑖∈ℛ and 𝑡∈N:̂︀𝜇𝑖,𝑡+𝜙(𝑇𝑖(𝑡),𝛿))≥𝜇𝑖−𝜙(𝑇𝑖(𝑡),𝜌𝑖)+𝜙(𝑇𝑖(𝑡),𝛿)) by def. of 𝜌𝑖 and ℛ
≥𝜇𝑖. by def. of ℛ

Thus, {ℛ ̸⊆𝒮𝑡} implies for any 𝑡∈N:

argmax𝑖∈[𝑘]∖𝒮𝑡
̂︀𝜇𝑖,𝑡+𝜙(𝑇𝑖(𝑡),𝛿)

(i)
≥min

𝑖∈ℛ
𝜇𝑖

≥ min
𝑖∈ℋ1

𝜇𝑖, (13)

where inequality (i) is by the definition of ℛ.

In addition, we argue that the UCB for 𝑖∈ℋ0 will shrink below min𝑖∈ℋ1𝜇𝑖 quickly. For 𝑖∈ℋ0, the
following is true for any 𝑡∈N:̂︀𝜇𝑖,𝑡+𝜙(𝑇𝑖(𝑡),𝛿)≤𝜇𝑖+𝜙(𝑇𝑖(𝑡),𝜌𝑖)+𝜙(𝑇𝑖(𝑡),𝛿)

≤𝜇𝑖+2𝜙(𝑇𝑖(𝑡),𝛿𝜌𝑖). (14)

Thus, {∀𝑖∈ℋ0 :𝜇𝑖+2𝜙(𝑇𝑖(𝑡),𝛿𝜌𝑖)≤min𝑖∈ℋ1
𝜇𝑖,ℛ ̸⊆𝒮𝑡} =⇒ {𝐼𝑡∈ℋ1} for all 𝑡∈N by (13) and

(14).

Subsequently, we argue the following:
∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}≤
∞∑︁
𝑡=1

I

{︂
∃𝑖∈ℋ0 :𝜇𝑖+2𝜙(𝑇𝑖(𝑡),𝛿𝜌𝑖)> min

𝑖∈ℋ1

𝜇𝑖,ℛ̸⊆𝒮𝑡

}︂
≤
∑︁
𝑖∈ℋ0

𝜙−1(∆𝑖/2,𝛿𝜌𝑖) 𝜇𝑖≤𝜇0 for all 𝑖∈ℋ0

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖).

Thus, we have shown our desired result.

Now, we proceed to show a bound on
∞∑︀
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}. Denote 𝜋 as an arbitrary mapping from

ℋ1 to [|ℋ1|]. Let (𝑥)+ =𝑥∨0 for any 𝑥∈R. We define additional variables as follows:

ℓ′𝑖 :=(⌈log(2∆−1
𝑖 )−5/2⌉)+,

𝜌DM
𝑖 :=min

𝑡∈N

1

exp

(︃
𝑇𝑖(𝑡)∑︀
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2

ℓ′𝑖
/2

)︃ .

Lemma 6. P
(︀
𝜌DM
𝑖 ≤𝑠

)︀
≤𝑠 for 𝑠∈(0,1) i.e. 𝜌DM

𝑖 is superuniformly distributed for each 𝑖∈ℋ1.

Proof. First, we prove an underlying process is a nonnegative supermartingale. Let

𝑀𝑡 =exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2

ℓ′𝑖
/2

⎞⎠.
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Assume that arm 𝑖 is selected at time 𝑡 — otherwise the supermartingale property is directly satisfied.

E[𝑀𝑡 |ℱ𝑡−1]=E

⎡⎣exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2

ℓ′𝑖
/2

⎞⎠ |ℱ𝑡−1

⎤⎦
=E
[︁
exp
(︁
𝜆ℓ′𝑖

(𝜇𝑖−𝑋𝑖,𝑡)−𝜆2
ℓ′𝑖
/2
)︁
|ℱ𝑡−1

]︁
exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆ℓ′𝑖
(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2

ℓ′𝑖
/2

⎞⎠
≤𝑀𝑡−1,

where the final inequality holds because 𝑋𝑖,𝑡 are i.i.d. across 𝑡 ∈ N, have mean 𝜇𝑖, and are 1-sub-
Gaussian.

Thus, 𝜌DM
𝑖 is a superuniform random variable by applying Ville’s inequality to (𝑀𝑡).

Proposition 8 (Growth of 𝐸DM
𝑖,𝑡 ). When 𝑖∈ℋ1 and 𝜈𝑖 is 1-sub-Gaussian,

log𝐸𝑖,𝑡&∆2
𝑖𝑇𝑖(𝑡)−loglog(∆−2

𝑖 )−log(1/𝜌DM
𝑖 ).

Proof. We show the following lower bound on 𝐸DM
𝑖,𝑡 :

𝐸DM
𝑖,𝑡 =

∞∑︁
ℓ=0

𝑤ℓexp(𝑇𝑖(𝑡)(𝜆ℓ∆𝑖−𝜆2
ℓ))exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆2
ℓ/2−𝜆ℓ(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))

⎞⎠
≥𝑤ℓ′𝑖

exp(𝑇𝑖(𝑡)(𝜆ℓ′𝑖
∆𝑖−𝜆2

ℓ′𝑖
))exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆2
ℓ′𝑖
/2−𝜆ℓ′𝑖

(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))

⎞⎠
≥exp

(︂
1

4𝑒
∆2

𝑖𝑇𝑖(𝑡)−log(1/𝑤ℓ′𝑖
)−log(1/𝜌DM

𝑖 )

)︂
. by def. of ℓ′𝑖 and 𝜌DM

𝑖

Thus, plugging in 𝑤ℓ′𝑖
, we get our desired result.

Proof of Theorem 1. By Proposition 8,

𝑇𝑖(𝑡)&∆−2
𝑖 log(𝜀log(∆−2

𝑖 )/𝜌DM
𝑖 )

implies 𝐸𝑖,𝑡≥𝜀 for 𝜀>0.

Now, we can derive the following bound:
∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}=

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}+

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 loglog(∆−2

𝑖 )+∆−2
𝑖 log(1/𝜌𝑖)+∆−2

𝑖 log(1/𝛿)

+max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 loglog(∆−2

𝑖 )+∆−2
𝑖 log(1/𝜌DM

𝑖 )+∆−2
𝑖 log(𝑘/𝜋(𝑖)𝛿).

by Lemma 5

Recall that 𝜌𝑖, by Lemma 3, and 𝜌DM
𝑖 , by Lemma 6, are superuniform random variables that are

independent across 𝑖∈ [𝑘] and 𝑖∈ℋ1, respectively. Consequently, we can apply Lemma 4 at level
𝛽=𝛿/2 to 𝜌𝑖 for 𝑖∈ [𝑘] and 𝜌DM

𝑖 for 𝑖∈ℋ1. Then, the following happens with at least 1−𝛿 probability:
∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)+∆−2
𝑖 log(𝑘/𝜋(𝑖)).
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Algorithm 2: An generic algorithm that uses a BAI subroutine to find a best arm that is not in the
rejection set for the algorithm to then repeatedly sample and eventually reject.
Input: A BAI algorithm ℬ that takes in 𝐵⊆ [𝑘], and a history of samples and initial randomness

𝐷𝑡(𝐵) :=𝑈∪{(𝑖,𝑗,𝑋𝑖,𝑗) :𝑗≤ 𝑡,𝑖∈ℐ𝑗∩𝐵}. At each step, ℬ outputs a superarm ℐ ∈𝒦 to
sample next, or a best arm 𝑖∈𝐵. Let 𝛿∈(0,1) be the level of FDR control and 𝛿′∈(0,1) be
the corrected level for p-variables. Let (𝑒𝑖,𝑡) and (𝑝𝑖,𝑡) be realized values of e-processes
and p-processes, respectively, for each 𝑖∈ [𝑘]. Let 𝜏*∈𝒯 be the stopping time for the
algorithm.

Initialize 𝒮0 :=∅
Initialize bestarm := none
for 𝑡∈1,..., do

𝐵 :=[𝑘]∖𝒮𝑡−1

if bestarm is none or bestarm∈𝒮𝑡−1 then
ℐ𝑡 :=ℬ(𝐵,𝐷𝑡−1(𝐵))
if ℬ(𝐵,𝐷𝑡−1(𝐵)) terminated with best arm 𝐼𝑡 then bestarm:=𝐼𝑡;

else
ℐ𝑡 :={bestarm} (or an arbitrary ℐ ∈𝒦 such that bestarm∈𝒦).

end
Update e-process or p-process for each queried arm not in 𝒮𝑡−1.

𝒮𝑡 :=

{︂
BH[𝛿′](𝑝1,𝑡,...,𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

We can derive two different bounds. The first is using the fact that
|ℋ1|∑︀
𝑖=1

log(𝑘/𝑖)≤𝑘. As a result,

∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}.𝑘∆−2log(log(∆−2)/𝛿).

The second comes from dropping the 𝜋(𝑖) term, which is as follows:
∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)+
∑︁
𝑖∈ℋ1

∆−2
𝑖 log(𝑘log(∆−2

𝑖 )/𝛿).

Thus, we have shown both sample complexity bounds as desired.

C Generic algorithms for (𝒜𝑡)

We propose two generic algorithms that can be used for the exploration component in Algorithm 1
regardless of the type of hypotheses tested or what the joint distribution of 𝑋1,𝑡, ... ,𝑋𝑘,𝑡 is. For
simplicity, we assume that the algorithm can always sample each arm separately, i.e. {{1},...,{𝑘}}⊆𝒦.

Reduction to best arm identification (BAI) The first relies on having access to a best arm iden-
tification (BAI) algorithm. BAI is well studied problem, and there exist many algorithms for it in
both the standard bandit setting [1, 22, 18, 23] and combinatorial bandit settings [12, 10, 20]. A BAI
algorithm returns the “best arm” i.e. the arm with the highest mean reward, with high probability. Thus,
we can employ a BAI algorithm as a subroutine to repeatedly find the best arm out of arms not in the
rejection set, and then repeatedly sample that best arm until it is rejected. Algorithm 2 formulates an
algorithm using a BAI subroutine that fits the meta-algorithm introduced in Algorithm 1 . Consequently,
we can immediately have access to algorithms for multiple testing that have non-trivial exploration
components for a wide variety of settings.

Largest e-process (or smallest p-process) If no apparent exploration strategy exists, we can always
select the arm that currently has the most evidence for rejection, but has not yet been rejected. Al-
gorithm 3 illustrates this algorithm — our exploration strategy is to simply pick the superarms that
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Algorithm 3: An generic algorithm applicable to any combinatorial bandit and set of hypotheses
that utilizes the evidence itself (i.e. p-variables or e-variables) to select arms to sample.
Input: Let 𝛿∈(0,1) be the level of FDR control and 𝛿′∈(0,1) be the corrected level for

p-variables. (𝑒𝑖,𝑡) and (𝑝𝑖,𝑡) be realized values of e-processes and p-processes, respectively,
for each 𝑖∈ [𝑘]. Let 𝜏*∈𝒯 be the stopping time for the algorithm.

Initialize 𝒮0 :=∅
Initialize 𝑒𝑖,0 =1 or 𝑝𝑖,0 =1 for all 𝑖∈ [𝑘]
for 𝑡∈1,..., do

if 𝑡≤𝑘 then
𝐼𝑡 := 𝑡
ℐ𝑡 :={𝐼𝑡} or an arbitrary ℐ ∈𝒦 where 𝐼𝑡∈ℐ

else

𝐼𝑡∈

{︃
argmin𝑖∈[𝑘]∖𝒮𝑡−1

𝑝𝑖,𝑡−1 if using p-variables
argmax𝑖∈[𝑘]∖𝒮𝑡−1

𝑒𝑖,𝑡−1 if using e-variables
(an arbitrary element of

argmin/argmax).
ℐ𝑡 :={𝐼𝑡} or an arbitrary ℐ ∈𝒦 where 𝐼𝑡∈ℐ

end
Update e-process or p-process for each queried arm not in 𝒮𝑡−1.

𝒮𝑡 :=

{︂
BH[𝛿′](𝑝1,𝑡,...,𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end

contains the arm that already has the “most” evidence (largest e-value or smallest p-value). Thus,
simply having e-variables or p-variables for the hypotheses we are testing can be used to inform the
sampling strategy.

Both of the aforementioned algorithms guarantee FDR control due to being instances of Algorithm 1.
Proposition 9. Algorithms 2 and 3 guarantee that sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿.

As a result, we always have a default choice of exploration component if we are unaware of any domain
specific strategies for sampling.

D Extensions on the bandit setting
In this section, we consider some special cases and extensions on the bandit settings. This includes
settings involving streaming data, constrained rejection sets, multiple agents, and hypotheses involving
multiples arms. Critically, we show how our framework can be easily adaptable to each of these settings
to still maintain valid FDR guarantees.

D.1 Streaming data setting

A unique instance of the combinatorial bandits is the streaming data setting, where the algorithm has
access to the all rewards at each time step. Instead of choosing a sampling policy, the algorithm can
choose a stopping time 𝜏𝑖 for each arm 𝑖∈ [𝑘] that marks when the algorithm will cease observing arm
𝑖. Although 𝑋1,𝑡,...,𝑋𝑘,𝑡 may be arbitrarily dependent, Algorithm 1 with e-variables can still use all
the observations from each arm at each time step. This is because e-BH on e-variables maintains the
same FDR control irrespective of dependence structure. Thus, we can propose a simple strategy in
Algorithm 4 that stops the monitoring of an arm once that arm has been rejected by e-BH, and can limit
the amount of time between rejections or total time run before the algorithm stops. By Proposition 4,
we have the following FDR guarantee.
Proposition 10. Algorithm 4 ensures sup𝜏∈𝒯 FDR(𝒮*

𝜏 )≤𝛿.

Bartroff and Song [5] also study multiple testing in the streaming data setting, and prove FDR
guarantees similar to Proposition 10 for an algorithm that is virtually identical to Algorithm 4 with
p-variables and BH. A key difference between their results and ours is that they use test statistics in
their algorithm instead of p-variables, and make assumptions about the power of the test statistics
that also allow them to provide guarantees about the false negative rate i.e. the expected proportion
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of hypotheses that are not rejected which are true discoveries. Thus, our framework for FDR control
subsumes existing methods for the streaming setting. Other error metrics such as family-wise error rate
and probabilistic bounds on the FDP have also been studied in the sequential setting [3, 4, 2].
Algorithm 4: An algorithm for monitoring in the streaming data setting. This algorithm stops
when the maximum time 𝑡max has been reached, or more than 𝑡gap steps have passed since the last
rejection. Once an arm is added to 𝒮𝑡, the algorithm stops monitoring it.
𝒮0 =∅
𝑡prev.rejection =0
for 𝑡∈1,...,𝑡max do

ℐ𝑡 :=[𝑘]∖𝒮𝑡−1

𝒮𝑡 :=

{︂
eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) if using e-variables
BH[𝛿′](𝑝1,𝑡,...,𝑝𝑘,𝑡) if using p-variables

if 𝑡−𝑡prev.rejection>𝑡gap or 𝒮𝑡 =[𝑘] then return 𝒮𝑡;
end
return 𝒮𝑡

D.2 Structured rejection sets

Structured rejection sets arise in problems where there is a fixed hierarchy that restrict the sets of
hypotheses that can be rejected e.g. hypothesis 2 can only be rejected if hypothesis 1 is rejected
also. Recent work in multiple testing with FDR control has studied settings with general structural
constraints [25] and when the constraints have been restricted to form a directed acyclic graph (DAG)
[30]. A DAG constraint requires all predecessors of a hypothesis in the DAG to be rejected before
the hypothesis itself can be rejected. Thus, the algorithm does not necessarily output the result of
BH or e-BH, but rather a p-self-consistent or e-self-consistent set, respectively. Table 2 illustrates the
FDR guarantees for p-variables in the structured setting for different dependence relationsips between
𝑋1,𝑡,...,𝑋𝑘,𝑡. In case with adaptive (𝒜𝑡) and 𝜏* when 𝑋1,𝑡...,𝑋𝑘,𝑡 are independent — the guarantee in
that setting remains unchanged due to the proof of FDR control already being based upon the fact that
the output of BH was p-self-consistent to 𝑃 *

1 ,...,𝑃
*
𝑘 . Similarly, e-variables still do not pay a penalty

when moving from e-BH to an arbitrary e-self-consistent set. The FDR when using e-variables remains
below 𝛿 after setting 𝛼=𝛿.

Table 2: FDR control guaranteed by an arbitrary p-self-consistent set, and the 𝛿′ to ensure 𝛿 control
of FDR in Algorithm 1 under different dependence structures and adaptivity of (𝒜𝑡). Adaptive and
non-adaptive strategies no longer have different guarantees when outputting a p-self-consistent set. On
the other hand, the FDR control of an e-self-consistent set remains unchanged at 𝛼=𝛿.

Dependence of 𝑋1,𝑡,...,𝑋𝑘,𝑡

Adaptivity of independent arbitrarily dependent
(𝒜𝑡) and 𝜏*

adaptive FDR(𝒮)≤𝛼((1+log(1/𝛼))∧log𝑘) FDR(𝒮)≤𝛼log𝑘
non-adpative 𝛿′ =𝑐𝛿∨(𝛿/log𝑘) (Prop. 1) 𝛿′ =𝑐𝛿/log𝑘

We show an example in Figure 3 of a set of hypotheses in a DAG structure. Thus, a hypothesis can only
be rejected if its predecessors in the DAG are also rejected. We compare the output of BH, e-BH, and
both the largest e-self-consistent set and p-self-consistent set that respect the DAG constraints. The
e-values are calculated assuming that the p-variables are reciprocals of e-variables. We assume the p-
variables are all arbitrarily dependent. The largest e-self-consistent set and the largest p-self-consistent
set are simply the largest subset of e-BH and BH, respectively, that satisfies the DAG constraints.

D.3 Multiple agents

There are many scenarios where multiple agents are interacting with the same bandit and we hope to
have the agents cooperatively accumulate evidence. For example, a research group could be interested
in resuming the study of a hypothesis that previous researchers have run experiments on, and would
like to combine existing evidence with the new evidence they collect from their own experiments. A
cooperative situation could also arise when there are multiple groups that each work on a subset of some
overarching set of hypotheses — the groups can combine the evidence they have for each hypothesis.
In these cases, the evidence shared, either from previous studies or concurrent collaborators, might only
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Figure 3: Example set of p-values for hypotheses that have a DAG constraint upon them and rejection
sets that ensure FDR(𝒮)≤ 𝛿 = 0.05. We assume the p-variables are arbitrarily dependent, and are
reciprocals of e-variables for the sake of comparing e-variable vs. p-variable procedures. The e-self-
consistent and p-self-consistent rejection sets are the largest such sets that satisfy the FDR guarantee
and the DAG constraints. The e-BH and BH rejection sets violate the DAG constraints, i.e. they are not
valid rejection sets, but they do maintain FDR(𝒮)≤𝛿. The largest valid e-self-consistent rejection set
and p-self-consistent rejection set are simply the largest subsets that satisfy the DAG constraints of
e-BH and BH, respectively.

be in the form of an e-value or p-value — the actual samples may be obfuscated for privacy reasons.
Thus, each of the scenarios require the merging of multiple statistics (from each agent) into a single
statistic representing the total amount of evidence for rejecting a hypothesis.

Assume we have 𝑚 agents and let 𝐸1,...,𝐸𝑚 denote the e-variables all testing the same hypothesis. If
the e-variables are all independent, we can define an ie-merging function (outputs an e-variable from
independent e-variables) 𝑓prod as follows:

𝑓prod(𝐸1,...,𝐸𝑚) :=

𝑚∏︁
𝑖=1

𝐸𝑖.

Proposition 11. If𝐸1,...,𝐸𝑚 are independent e-variables, then 𝑓prod(𝐸1,...,𝐸𝑚) is also an e-variable.

The above proposition follows from the fact that the expectation of the product is the product of
expectation for independent random variables.

If 𝐸1,...𝐸𝑚 are dependent, then we can define the following e-merging function (outputs an e-variable
from arbitrarily dependent e-variables):

𝑓mean(𝐸1,...,𝐸𝑚) :=
1

𝑚

𝑚∑︁
𝑖=1

𝐸𝑚.

Proposition 12. If 𝐸1,...,𝐸𝑚 are arbitrarily dependent e-variables, then 𝑓mean(𝐸1,...,𝐸𝑚) is also an
e-variable.

Vovk and Wang [41] show that the set of functions corresponding to all convex combinations of 𝑓mean

and 1 are the only admissible e-merging functions in the class of all symmetric e-merging functions.
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They also show a weaker sense of dominance for 𝑓prod — they prove it outputs a larger e-value than
any other symmetric ie-merging function if all the input e-values are at least 1. Thus, e-variables can be
merged in a relatively simple fashion without many assumptions.

On the other hand, merging p-variables is difficult. When the p-variables are independent, Birnbaum
[8] show that any valid merging function which is monotonic w.r.t. to the p-values is admissible. When
the p-variables are arbitrarily dependent, Vovk et al. [43] prove that there are also many admissible
symmetric p-merging functions. Consequently, the p-variable picture is much less clear about how
to optimally merge p-variables, particularly when there is arbitrary dependence among them. To
illustrate these e-merging/ie-merging functions can be used in a bandit setting, we consider an example
multi-agent problem where many research groups are submitting studies to the same journal.

D.3.1 Example: controlling the FDR of results in a journal

We consider a situation where the editors of a journal are interested in guaranteeing the accuracy of the
results published within the journal. Specifically, they aim to ensure FDR control on the discoveries
within the papers accepted to the journal. The journal requires that each study that is submitted is also
accompanied by an e-value. Since many groups can be testing the same hypothesis, the journal can
use the aforementioned merging techniques to combine the e-values reported by different groups and
produce a valid, aggregate e-variable.

Figure 4: An illustration of how 𝑒𝑖,𝑡 changes in relation to each 𝑒(ℓ)𝑖,𝑡 for a case where ℓ=3 in Algorithm 5.

We see that 𝑒𝑖,𝑡 and 𝑒
(1)
𝑖,𝑡 are identical up to 𝜏 start𝑖,2 −1, where agent 2 begins to sample arm 𝑖. Agent 2’s

process starts at 𝑒𝑖,𝜏start
𝑖,2 −1. Similarly, Agent 3’s process starts at 𝑒𝑖,𝜏start

𝑖,3 −1 when it starts to sample 𝑖 as

well. Validity of Algorithm 5 arises from the fact that each new agent ℓ has its own 𝑒
(ℓ)
𝑖,𝑡 scaled by the

𝑒𝑖,𝑡 that has been achieved already.

Formalizing the multi-agent setup The reward of the 𝑖th arm on the 𝑡th day for the ℓth agent is
denoted as 𝑋(ℓ)

𝑖,𝑡 for all 𝑡,ℓ∈N and 𝑖∈ [𝑘]. We let the index for agents, ℓ, be in N to allow for arbitrarily

large, but finite, number of agents at each time step. We let the joint distribution of 𝑋(ℓ)
1,𝑡 ,...,𝑋

(ℓ)
𝑘,𝑡 be

identically distributed across ℓ,𝑡∈N. Consequently, the rewards 𝑋(ℓ)
1,𝑡 ,...,𝑋

(ℓ)
𝑘,𝑡 corresponding to each

agent ℓ are identical in a marginal sense across all ℓ∈N. However, there can be arbitrary dependencies
between the rewards of different agents. Thus, we allow for a setting where, for each 𝑖∈ [𝑘] and 𝑡∈N,
𝑋

(ℓ)
𝑖,𝑡 is the same reward across all ℓ∈N, and a setting where 𝑋(ℓ)

𝑖,𝑡 are independent across ℓ∈N. Each

agent ℓ∈N outputs ℐ(ℓ)
𝑡 ∈𝒦∪{∅} for each 𝑡∈N. Let the set of agents (e.g. set of studies) on day 𝑡

that are testing hypothesis 𝑖 be 𝐴𝑖,𝑡 for each 𝑡∈N and 𝑖∈ [𝑘]. Critically, we require that 𝐴𝑖,𝑡 be of
finite cardinality almost surely and predictable w.r.t. the new canonical filtration (𝒢𝑡). We define the
canonical filtration for the multi-agent setting as follows:

𝒢𝑡 :=𝜎(𝑈∪{(𝑖,𝑠,ℓ,𝑋
(ℓ)
𝑖,𝑠 ) : 𝑖∈ℐ(ℓ)

𝑠 ,𝑠≤ 𝑡,ℓ∈𝐴𝑖,𝑠}).
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We denote the e-process of the ℓth agent for hypothesis 𝑖 to be (𝐸
(ℓ)
𝑖,𝑡 ), where 𝐸

(ℓ)
𝑖,𝑡 = 1 if ℓ ̸∈ 𝐴𝑖,𝑡.

Implicitly, there exists a stopping time 𝜏 start𝑖,ℓ w.r.t. (𝒢𝑡) that denotes the time when the ℓth agent begins
testing the 𝑖th hypothesis for ℓ∈N and 𝑖∈ [𝑘] (i.e. the time of the first sample of arm 𝑖 by agent ℓ).
Algorithm 5 explicitly formulates the algorithm for dealing with e-values coming from multiple agents.

Algorithm 5: An algorithm for aggregating evidence in the form of e-values from many agents.
The algorithm takes the mean of the e-values for each hypothesis on each day and applies an
e-self-consistent procedure to these aggregated e-values to maintain valid FDR control at 𝛿.

Input: A level of control 𝛿 in (0,1). (𝑒
(ℓ)
𝑖,𝑡 ) are the realized values of an e-process for ℓ∈N,𝑖∈ [𝑘].

Initialize 𝑒𝑖,0 :=1 for 𝑖∈ [𝑘]
𝒮0 :=∅
for 𝑡∈1,... do

Receive new results from new or existing agents and update 𝑒(𝑗)𝑖,𝑡 for 𝑖∈ [𝑘] and 𝑗∈ [𝑎𝑡]

for 𝑖∈ [𝑘] do

𝑒𝑖,𝑡 :=

⎧⎨⎩
1

|𝐴𝑖,𝑡|
∑︀

𝑗∈𝐴𝑖,𝑡

𝑒𝑖,𝜏start
𝑖,𝑗 −1 ·𝑒

(ℓ)
𝑖,𝑡 if 𝑖 ̸∈𝒮𝑡−1

𝑒𝑖,𝑡−1 else
.

end
𝒮𝑡 :=eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) or an arbitrary e-self-consistent set.

end

Figure 4 illustrates how 𝑒𝑖,𝑡 behaves w.r.t. to the 𝑒(ℓ)𝑖,𝑡 of each agent in Algorithm 5. Algorithm 5 uses a
merging approach that is in between 𝑓prod and 𝑓mean. Intuitively, we know the rewards across 𝑡∈N are
independent, and consequently we can merge e-values by taking the product. When merging across
different ℓ∈N,𝑖∈ [𝑘], however, there may be arbitrary dependence between rewards. Consequently,
we must take the mean of those e-values. From a betting perspective as discussed in Shafer [33], we
can view our algorithm as splitting the current wealth (current 𝑒𝑖,𝑡) evenly across each agent whenever
a new agent is introduced before allowing each agent to continue or begin its own strategy. Regardless,
we can show the following guarantee concerning Algorithm 5.

Proposition 13. Let (𝐸
(ℓ)
𝑖,𝑡 ) be upper bounded by some nonnegative supermartingale (𝑀

(ℓ)
𝑖,𝑡 ) w.r.t. (𝒢𝑡)

for 𝑖∈ [𝑘],ℓ∈N where 𝐸(ℓ)
𝑖,𝑡 =𝑀

(ℓ)
𝑖,𝑡 =1 for 𝑡<𝜏 start𝑖,ℓ . Algorithm 5 ensures that sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿.

Proof. Define 𝑀𝑖,𝑡 := 1
|𝐴𝑖,𝑡|

∑︀
ℓ∈𝐴𝑖,𝑡

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 when 𝑖 ̸∈ 𝒮𝑡−1 and 𝑀𝑖,𝑡 :=𝑀𝑖,𝑡−1 otherwise.
We can see that 𝑀𝑖,𝑡 upper bounds 𝐸𝑖,𝑡 for all 𝑡∈N,𝑖∈ [𝑘]. We will show that (𝑀𝑖,𝑡) is a nonnegative
supermartingale. Assume that we have not rejected the 𝑖th hypothesis yet, since otherwise 𝑀𝑖,𝑡 =
𝑀𝑖,𝑡−1, which satisfies the supermartingale property.

E[𝑀𝑖,𝑡 |𝒢𝑡−1]=E

⎡⎣ 1

|𝐴𝑖,𝑡|
∑︁

ℓ∈𝐴𝑖,𝑡

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 |𝒢𝑡−1

⎤⎦
=

1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1 |𝒢𝑡−1

]︁
+

∑︁
ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝑡−1 |𝒢𝑡−1

]︁⎞⎠
=

1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

𝑀
(ℓ)
𝑖,𝑡 ·𝑀𝑖,𝜏start

𝑖,ℓ −1+
∑︁

ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

E
[︁
𝑀

(ℓ)
𝑖,𝑡 |𝒢𝑡−1

]︁
·𝑀𝑖,𝑡−1

⎞⎠
≤ 1

|𝐴𝑖,𝑡|

⎛⎝ ∑︁
ℓ∈𝐴𝑖,𝑡−1

𝑀
(ℓ)
𝑖,𝑡−1 ·𝑀𝑖,𝜏start

𝑖,ℓ −1+
∑︁

ℓ∈𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1

𝑀𝑖,𝑡−1

⎞⎠
=

1

|𝐴𝑖,𝑡|
(|𝐴𝑖,𝑡−1|·𝑀𝑖,𝑡−1+|𝐴𝑖,𝑡∖𝐴𝑖,𝑡−1|·𝑀𝑖,𝑡−1)

=𝑀𝑖,𝑡−1.
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The sole inequality is because (𝑀
(ℓ)
𝑖,𝑡 ) is a supermartingale, and 𝑀

(ℓ)
𝑖,𝑡 = 1 when 𝑡 < 𝜏 start𝑖,ℓ . Thus,

sup𝜏∈𝒯 E[𝐸𝑖,𝜏 ]≤sup𝜏∈𝒯 E[𝑀𝑖,𝜏 ]≤1 where the final inequality is by optional stopping. Consequently,
(𝐸𝑖,𝑡) are e-processes for 𝑖 ∈ [𝑘] so sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿 by Fact 3, which achieves our desired
result.

Nonnegative martingales play a central role in characterizing admissible e-processes — every e-process
is upper bounded by a nonnegative martingale (Corollary 24; Ramdas et al. [31]). Thus, Proposition 13
proves that if (𝐸

(ℓ)
𝑖,𝑡 ) are all e-processes for 𝑖 ∈ [𝑘],ℓ ∈ N, then FDR control is maintained in the

multi-agent for any stopping time.

D.4 Hypotheses involving multiple arms

In the current setting, we have only considered hypotheses that are tied to a single arm i.e. hypothesis 𝑖
is concerned solely with 𝜈𝑖 for all 𝑖∈ [𝑘]. We also might be concerned with hypotheses that involve
multiple arms. For example, we could be interested in the hypothesis that the reward distributions
are exchangeable across arms [40, 42] i.e. any permutation of the arms is the same distribution, or
the hypothesis that the means of two specific reward distributions are the same. Naturally, if each
hypothesis is not restricted to being involved with only a single arm, we can consider more (or fewer)
hypotheses than the number of arms.

Thus, we can denote 𝑘 to be the total number of hypotheses and𝑛 to be the number of arms. Algorithm 6
specifies a meta-algorithm similar to Algorithm 1 that maintains FDR control in multi arm hypotheses.
We simply maintain an e-process or p-process for each hypothesis. An important difference between
hypotheses involving multiple arms setting and the standard setting is that the independence of
𝑋1,𝑡,...,𝑋𝑛,𝑡 is no longer sufficient to ensure all the e-variables or p-variables are dependent only
through the exploration policy and stopping time. The dependence structure within the e-variables or
p-variables is based not only upon the dependence of𝑋1,𝑡,...,𝑋𝑛,𝑡, but also whether the hypothesis tests
themselves have any dependence among each other e.g. two hypotheses might involve the same arm.
Thus, for p-variables, we may require 𝛿′ =𝛿/log𝑘 even when the reward distributions are independent.

Algorithm 6: A meta-algorithm that ensures FDR control when hypotheses can involve multiple
arms in the bandit setting.
Input: Exploration component (𝒜𝑡), stopping rule 𝜏*, desired level of FDR control 𝛿∈(0,1). Set

𝐷0 =∅.
for 𝑡 in 1... do

ℐ𝑡 :=𝒜𝑡(𝐷𝑡−1)⊆ [𝑛]
Obtain rewards for each 𝑖∈ℐ𝑡, and update data 𝐷𝑡 :=𝐷𝑡−1∪{(𝑖,𝑡,𝑋𝑖,𝑡) : 𝑖∈ℐ𝑡}.
Update e-process or p-process that relate to any of the queried arms.

𝒮𝑡 :=

{︂
BH[𝛿/log𝑘](𝑝1,𝑡,...,𝑝𝑘,𝑡) or arbitrary p-self-consistent set if using p-variables
eBH[𝛿](𝑒1,𝑡,...,𝑒𝑘,𝑡) or arbitrary e-self-consistent set if using e-variables

if 𝜏* = 𝑡 then stop and return 𝒮𝑡;
end
Proposition 14. Algorithm 6 outputs 𝒮𝑡 for all 𝑡∈N such that sup𝜏∈𝒯 FDR(𝒮𝜏 )≤𝛿.

E-variables in this setting have potentially larger power over p-variables than in the standard setting.
This is because the number of hypotheses, 𝑘, is no longer tied to the number of arms, 𝑛. For example,
𝑘 ≈ 𝑛2/2 if there was a hypothesis for each pair of arms in the bandit. Then, using p-variables in
Algorithm 6 would require a correction of approximately 2log𝑘. In contrast, p-variables and BH
require no more than a log𝑘 correction in the standard setting. Consequently, allowing for multiple arm
hypotheses further highlights the benefit of e-variables over p-variables when dealing with arbitrarily
dependent statistics.

E Additional simulations
In this section, we perform additional simulations to empirically verify our theoretical results. We test
the performance of different choices of p-variables against e-variables in the standard bandit setting.
We also provide simulations for the combinatorial bandit setting and compare p-variable methods with
different assumptions against an e-variable method.
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E.1 Testing against different choices of p-variables

We consider two additional choices of p-variables to compare with our e-variable method and the
p-variable from JJ discussed in Section 5. One is simply 𝑃 IPM-H

𝑖,𝑡 := 1/𝐸PM-H
𝑖,𝑡 , which we will call

Inverse PM-H (IPM-H). The other, which we call the IS p-variable, which is defined as follows by
setting 𝜙=𝜙IS in (5b).

𝑃 IS
𝑖,𝑡 :=inf{𝛽∈ [0,1] : |̂︀𝜇𝑖,𝑡−𝜇0|>𝜙IS(𝑡,𝛽)}. (15)

We run these methods using the UCB arm selection algorithm described in (5a) inside of Algorithm 1.

(a) |ℋ1|=2 (b) |ℋ1|=⌊log𝑘⌋ (c) |ℋ1|=⌊
√
𝑘⌋

Figure 5: Relative comparison of time 𝑡 for each method to obtain a rejection set, 𝒮𝑡, that has a
TPR(𝒮𝑡)≥ 1−𝛿 while maintaining FDR(𝒮𝑡)≤ 𝛿, where we choose 𝛿 = 0.05. This plot compares
different choices of p-variables against the PM-H e-variable over different numbers of arms (choices
of 𝑘) and different densities of non-null hypotheses (sizes of ℋ1). Time is reported as a ratio to the
time taken by the algorithm that uses the PM-H e-variable. The JJ p-variable is the baseline p-variable
specified in (5). We see that both the IPM-H and the IS p-variable have similar performance, and
require fewer samples than the JJ p-variable. Overall, the PM-H e-variable performs better than any
choice of p-variable.
The results shown in Figure 5 demonstrate that e-variables and e-BH still perform better than any p-
variable and BH method. The two new p-variables, IS and IPM-H, have about similar sample efficiency,
and both outperform the JJ p-variable, but both are still slightly worse than the PM-H e-variable. Thus,
e-BH and e-variables have consistently better performance than BH and p-variables.

E.2 Graph bandits with dependent 𝑋1,𝑡,...,𝑋𝑘,𝑡

We consider a graph bandit setting where the algorithm makes no assumptions about the underlying
dependence structure, and each arm consists of a node and its neighbors. We set the joint distribution
over rewards at each step as the product of independent normal distributions for each arm. The marginal
distribution of each arm 𝑖∈ [𝑘] is a normal distribution with mean 𝜇𝑖, where 𝜇𝑖 = 1/2 if 𝑖∈ℋ1 and
𝜇𝑖 =𝜇0 =0 if 𝑖∈ℋ0. Each graph we simulate is composed of 10 cliques of 𝑘/10 nodes. Thus, the set
of superarms available for sampling is 𝒦={{𝑖,𝑖+10,𝑖+20,...,𝑖+𝑘−10} : for 𝑖∈ [10]}. Finally, we let
𝛿=0.05 be level of FDR control for each algorithm.

We compare 3 different methods. For all 3 methods, the exploration strategy is to uniformly sample
from the set of superarms 𝒦. These methods differ solely in their choice of the evidence component.
The first method is called the single arm BH method, as it only saves a single uniformly random sample
from the set of samples it attains at each time step. Hence, it is equivalent to the uniformly randomly
sampling BH method for the standard bandit setting. In this combinatorial bandit setting, it simply
discards all but one sample at each step, and can consequently still enjoy the guarantees in Proposition 1.
Our second method is to use the default BH and p-variables with no discarding of samples and the
larger correction from Proposition 2. Lastly, we have the e-BH and e-variable method that also uses all
samples from each pull of a superarm, since e-BH requires no correction for arbitrary dependence.

Figure 6 shows the results of using methods that guarantee FDR control at level 𝛿 on graph bandits
with arbitrary dependence between arms. Single arm BH pays a tremendous cost in time by throwing
away many samples at each step, and the slightly smaller correction it needs to make does not make up
for this deficit. Between the two methods that make full use of the samples obtained from superarm, we
see that e-BH does better. Thus, e-variables and e-BH exhibit empirical performance on par or better
than p-variables and BH in both the standard and combinatorial bandit settings.
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(a) |ℋ1|=2 (b) |ℋ1|=⌊log𝑘⌋ (c) |ℋ1|=⌊
√
𝑘⌋

Figure 6: Relative comparison of time 𝑡 for each method to obtain a rejection set, 𝒮𝑡, that has a
TPR(𝒮𝑡)≥ 1−𝛿 while maintaining FDR(𝒮𝑡)≤ 𝛿, where we choose 𝛿 = 0.05. This plot compares
two different p-variable methods (BH and single arm BH) against an e-variable method (e-BH) over
different numbers of arms (choices of 𝑘) and different densities of non-null hypotheses (sizes of
ℋ1). Time is reported as a ratio to the time taken by the algorithm that uses e-BH. We see that e-BH
outperforms the two other BH algorithms in the graph bandit setting. Notably, single arm BH is linearly
increasing in time relative to the other two methods that make full use of the samples obtained from a
superarm. Single arm BH discards too many samples at each step, and the smaller correction it makes
does not make up the deficit in number of samples.

F Betting interpretation of e-variables for bandits
We will describe our methodology for constructing e-variables using the perspective of betting in this
section. Shafer [33] uses betting to formulate a paradigm for understanding the quantity represented by
an e-value, and Shafer and Vovk [34] extend these ideas to form a mathematically rigorous foundation
for probability based on game theory. Separately, betting ideas have also been used in parameter free
techniques for online learning [28, 21, 29]. In this section, we will use a betting approach to produce a
data adaptive e-process.

Recall that if 𝐸 is an e-variable, then E[𝐸]≤1 when the null hypothesis is true. On the other hand, if
the null hypothesis is false, we would like 𝐸 to be large, since that increases the likelihood that the null
hypothesis is rejected. Thus, constructing 𝐸 such that is satisfies the e-variable constraint under the
null and is large under the alternative is the same as constructing a valid hypothesis test that has as
much power as possible. Consequently, we can consider a betting game where we pay a dollar to play,
and 𝐸 is the payout. If the null hypothesis is true, then we are unable to make any money in expectation,
since the expectation is of 𝐸 is at most 1. However, if the null hypothesis is false, then we would expect
to be able to make money on this game. If we did not make money under the alternative, then any test
that used this e-variable would have no power, since the behavior of 𝐸 would not change between the
null hypothesis being true and being false. In other words, this would be no better than picking 𝐸=1
deterministically: a valid e-variable, but ineffectual for testing.

We define the predictably-mixed Hoeffding (PM-H) e-process [45], which we used in our simulations
in Section 5, as follows:

𝐸PM-H
𝑖,𝑡 (𝜇0) :=

𝑇𝑖(𝑡)∏︁
𝑗=1

exp(𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)−𝜆2
𝑖,𝑡𝑖(𝑗)

/2).

(𝜆𝑖,𝑡) is any sequence of nonnegative real numbers that is predictable w.r.t. (ℱ𝑡). We will use an
argument based on betting to derive a (𝜆𝑖,𝑡) sequence, and show that this e-process can “make money”
and hence provide TPR guarantees in the sub-Gaussian case. We first observe the following property
of this process.
Proposition 15. 𝐸PM-H

𝑖,𝑡 (𝜇0) is a nonnegative supermartingale, and thus an e-process, if 𝑖∈ℋ0 and
𝜈𝑖 is 1-sub-Gaussian.

Proof. We drop 𝜇0 from (𝐸PM-H
𝑖,𝑡 (𝜇0)) and denote it as (𝐸PM-H

𝑖,𝑡 ).

We proceed by showing (𝐸PM-H
𝑖,𝑡 ) is a nonnegative supermartingale w.r.t. to the canonical filtration

(ℱ𝑡).
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Consider 𝐸PM-H
𝑖,𝑡 when 𝑖∈ℋ0. If 𝐼𝑡 ̸= 𝑖 then 𝐸PM-H

𝑖,𝑡 =𝐸PM-H
𝑖,𝑡−1 , which satisfies the supermartingale

property in (6).

Otherwise,

E[𝐸PM-H
𝑖 𝑖,𝑡 |ℱ𝑡−1]=E

[︂
exp

(︂
𝜆𝑡(𝑋𝑖,𝑡−𝜇0)− 𝜆2

𝑡

2

)︂
𝐸PM-H

𝑖 𝑖,𝑡−1 |ℱ𝑡−1

]︂
=E
[︂
exp

(︂
𝜆𝑡(𝑋𝑖,𝑡−𝜇0)− 𝜆2

𝑡

2

)︂
|ℱ𝑡−1

]︂
𝐸PM-H

𝑖,𝑡−1

≤𝐸PM-H
𝑖,𝑡−1 ,

where the final equality is because 𝑋𝑖,𝑡 are independent across 𝑡∈N and 1-sub-Gaussian, and 𝜇𝑖≤𝜇0.

Since (𝐸PM-H
𝑖,𝑡 ) is a nonnegative supermartingale, it is an e-process by optional stopping. Thus, we

have achieved our desired result.

Note that Proposition 15 justifies that our choice of e-process for the simulations in Section 5 was
indeed a valid e-process. Now that we have shown (𝐸PM-H

𝑖,𝑡 ) is an e-process, we will consider how to
choose a powerful (𝜆𝑖,𝑡). Consider a model where we view the e-value, 𝑒𝑖,𝑡, for each arm 𝑖∈ [𝑘] as the
money made by each arm, or a “betting score”. For each arm 𝑖∈ [𝑘], imagine we are allocated initial
wealth equal to 1. At each time step, the algorithm chooses an arm 𝑖∈ [𝑘], and a “bet”, 𝜆𝑖,𝑡. The wealth
of the arm at the next round changes by a factor based on the reward 𝑋𝑖,𝑡 (assuming 𝑖 is the arm chosen
at round 𝑡+1):

𝑒𝑖,𝑡+1 =𝑒𝑖,𝑡 ·exp(𝜆𝑖,𝑡(𝑋𝑖,𝑡−𝜇0)−𝜆2
𝑖,𝑡/2)⏟  ⏞  

change in wealth

.

Note that this a “fair game” or the reward multiplier is less than 1 in expectation if E[𝑋𝑖,𝑡]≤𝜇0.

The betting score, 𝐸PM-H
𝑖,𝑡 , may be interpreted as the money earned by arm 𝑖 at time 𝑡. When the

null hypothesis is true, i.e. 𝜇𝑖 ≤ 𝜇0, we know that sup𝜏∈𝒯 E[𝐸PM-H
𝑖,𝜏 ]≤ 1 by Proposition 15. Thus,

regardless of our stopping strategy, we make no money in expectation. However, if we knew that
𝐸PM-H

𝑖,𝑡 was actually a favorable bet, andE[𝑋𝑖,𝑡]=𝜇𝑖>𝜇0, we would want to come up with a sequence
(𝜆𝑖,𝑡) for each arm 𝑖∈ [𝑘] that maximizes our wealth at each arm. Consequently, we can reframe our
goal for choosing (𝜆𝑖,𝑡) as maximizing capital in a betting game. In the next section, we will discuss
some strategies for accomplishing such an objective.

F.1 Optimal betting strategies

One way of maximizing capital is to optimize for the Kelly criterion [24], which aims to maximize the
logarithm of the capital on each step and is equivalent to maximizing rate of growth of capital. In our
scenario, the Kelly criterion manifests in the following form:

E
[︀
log𝐸PM-H

𝑖,𝑡 (𝜇0)
]︀
=

𝑇𝑖(𝑡)∑︁
𝑗=1

E
[︁
𝜆𝑖,𝑡𝑖(𝑗)(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)−𝜆2

𝑖,𝑡𝑖(𝑗)
/2
]︁
.

Optimal choice of (𝜆𝑡) for log wealth. To maximize the above sum, we can simply decompose it
with respect to each 𝑗, and since the 𝜆𝑖,𝑡𝑖(𝑗) are decoupled, we can identify an optimal 𝜆*

𝑖,𝑡𝑖(𝑗)
for each

𝑗:

𝜆*
𝑖,𝑡𝑖(𝑗)

:=argmax𝜆∈R+ 𝜆E[𝑋𝑖,𝑡𝑖(𝑗)−𝜇0]−𝜆2/2=𝜇𝑖,

𝜆*
𝑖,𝑡𝑖(𝑗)

E[𝑋𝑖,𝑡𝑖(𝑗)−𝜇0]−𝜆*
𝑖,𝑡𝑖(𝑗)

2/2= max
𝜆∈R+

𝜆E[𝑋𝑖,𝑡𝑖(𝑗)−𝜇0]−𝜆2/2=∆2
𝑖 /2.

We can see that if the 𝜇𝑖 is known, the above quantity is maximized by setting 𝜆𝑖,𝑡𝑖(𝑗) = 𝜇𝑖 for all
𝑗 ∈ [𝑇𝑖(𝑡)]. This observation confirms our intuition that the Kelly criterion is a sensible quantity to
optimize for when trying to maximize the e-values of hypothesis in ℋ1. On the other hand, if 𝑖∈ℋ0,
𝜇𝑖 ≤ 𝜇0 = 0, the log wealth incurred at each time step is nonpositive. Thus, in expectation, the log
wealth process log𝐸PM-H

𝑖,𝑡 (𝜇0) will only increase in capital when the hypothesis associated with the
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arm is truly non-null. In betting language, we are presenting a one-sided bet that allows for our bets
(𝜆𝑖,𝑡) to make money in expectation iff the null hypothesis is false. Hence, our strategy is profitable
only when the true mean of the arm is greater than 𝜇0.

In practice, we do not know 𝜇𝑖, since testing 𝜇𝑖 is the entire premise of the problem. Instead, we can use
the sample mean, ̂︀𝜇𝑖,𝑡, in place of 𝜇𝑖 and show that it gives us convergence at a rate of approximately
1/𝑇𝑖(𝑡) to the optimal capital gain rate.
Proposition 16. Let 𝜈𝑖 be 1-sub-Gaussian for 𝑖∈ [𝑘]. If 𝜆𝑖,𝑡 = �̂�𝑖,𝑡−1, then

E[̂︀𝜇𝑖,𝑡𝑖(𝑗)−1(𝑋𝑖,𝑡𝑖(𝑗)−𝜇0)−̂︀𝜇2
𝑖,𝑡𝑖(𝑗)−1/2]=∆2

𝑖 /2−1/(𝑇𝑖(𝑡)−1).

Proposition 16 follows from the variance of ̂︀𝜇𝑖,𝑡 being 1/𝑇𝑖(𝑡). Now, we can derive the following
corollary.
Corollary 1. The total log wealth at time 𝑡, log𝐸PM-H

𝑖,𝑡 , has an expectation satisfying the following
property, where 𝜆𝑖,𝑡 =̂︀𝜇𝑖,𝑡−1:

E[log𝐸PM-H
𝑖,𝑡 ]=𝑇𝑖(𝑡)∆

2
𝑖 /2−

𝑇𝑖(𝑡)∑︁
𝑗=1

1/𝑗≈𝑇𝑖(𝑡)∆
2
𝑖 /2−log(𝑇𝑖(𝑡)),

where
𝑇𝑖(𝑡)∑︀
𝑗=1

1/𝑗 is approximately log(𝑇𝑖(𝑡)).

Thus, in log wealth, using ̂︀𝜇𝑖,𝑡 incurs a penalty of log𝑇𝑖(𝑡), which is relatively small compared to the
positive term — especially when 𝑡 is large.

F.2 Sample complexity for standard sub-Gaussian bandits

We prove a sample complexity result for the 𝐸PM-H
𝑖,𝑡 as well.

Theorem 2. Let (𝒜𝑡) be such that 𝒜𝑡 outputs ℐ𝑡 ={𝐼𝑡} for all 𝑡∈N, where 𝐼𝑡 is defined in (5a), 𝜆𝑖,𝑡 =
(̂︀𝜇𝑖,𝑡−1/2)+, and 𝐸𝑖,𝑡 = 𝐸PM-H

𝑖,𝑡 . Then, Algorithm 1 will always guarantee sup𝜏∈𝒯 FDR(𝒮𝜏 ) ≤ 𝛿.
With at least 1−𝛿 probability, there will exist

𝑇 .
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)+
∑︁
𝑖∈ℋ1

∆−2
𝑖 (log(∆−2

𝑖 )log(1/𝛿)+log𝑘)

∧|ℋ0|∆−2log(log(∆−2)/𝛿)+|ℋ1|∆−2log(∆−2)log(1/𝛿)

such that TPR(𝒮𝑡)≥1−𝛿 for all 𝑡≥𝑇 .

Theorem 2 shows the limitation of using an estimate of the mean, ̂︀𝜇𝑖,𝑡, in place of the true mean. The
intuition of the proof of Theorem 2 is that at each step, 𝐸PM-H

𝑖,𝑡 must account for an 1/𝑡 deviation,
since the variance of ̂︀𝜇𝑖,𝑡 is 1/𝑡. The sum of these deviations is approximately log𝑡. Thus, the sample
complexity bound has a log∆−2 instead of only a loglog∆−2 term. This limitation seems to be an
inherent flaw in choice of (𝜆𝑖,𝑡) based on estimation, since the estimation error must be accounted for
along with the typical deviation from providing a concentration inequality that is uniform over time
steps 𝑡.

To prepare for our proof of Theorem 2, we require some self-contained lemmata. Define the following
auxiliary random variables for all 𝑖∈ℋ1:

𝜌′𝑖 :=min
𝑡∈N

𝐸𝑖,𝑡

exp

(︃
𝑇𝑖(𝑡)∑︀
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖−𝜆2
𝑖,𝑡𝑖(𝑗)

)︃ . (16)

Lemma 7. For all 𝑖∈ℋ1, P(𝜌′𝑖≤𝑠)≤𝑠 for 𝑠∈(0,1) i.e. 𝜌′𝑖 is superuniformly distributed.

Proof. We observe that the reciprocal of 𝜌′𝑖 is the following:

1/𝜌′𝑖 =max
𝑡∈N

exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠.
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Let

𝑀𝑡 =exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠.

We will show (𝑀𝑡) is a nonnegative supermartingale w.r.t. (ℱ𝑡). Assume arm 𝑖 is sampled at time 𝑡 —
otherwise the supermartingale property is trivially satisfied.

E[𝑀𝑡 |ℱ𝑡−1]=E

⎡⎣exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠ |ℱ𝑡−1

⎤⎦
=E
[︀
exp
(︀
𝜆𝑖,𝑡(𝜇𝑖−𝑋𝑖,𝑡)−𝜆2

𝑖,𝑡/2
)︀
|ℱ𝑡−1

]︀
exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠
≤exp

⎛⎝𝑇𝑖(𝑡−1)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)(𝜇𝑖−𝑋𝑖,𝑡𝑖(𝑗))−𝜆2
𝑖,𝑡𝑖(𝑗)

/2

⎞⎠
=𝑀𝑡−1.

The sole inequality arises from 𝑋𝑖,𝑡 being independent across 𝑡∈N and 1-sub-Gaussian, and having
mean 𝜇𝑖.

Thus, 𝜌′𝑖 is superuniformly distributed by Ville’s inequality.

Rewriting the definition of 𝜌′𝑖, we get:

𝐸𝑖,𝑡≥exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖−𝜆2
𝑖,𝑡𝑖(𝑗)

⎞⎠𝜌′𝑖 (17)

for all 𝑡∈N. Now show a result for the rate of growth of 𝐸𝑖,𝑡 by showing a result concerning the lower
bound in (17).
Lemma 8. For all 𝑡∈N,

exp

⎛⎝𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖−𝜆2
𝑖,𝑡𝑖(𝑗)

⎞⎠&𝑇𝑖(𝑡)∆
2
𝑖 −log(1/𝜌𝑖)log(𝑇𝑖(𝑡)).

Proof. Recall that 𝜆𝑡 =(̂︀𝜇𝑖,𝑡−1/2)+. Then, we derive the following asymptotic lower bound:

𝑇𝑖(𝑡)∑︁
𝑗=1

𝜆𝑖,𝑡𝑖(𝑗)∆𝑖−𝜆2
𝑖,𝑡𝑖(𝑗)

=
1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

2̂︀𝜇𝑖,𝑡−1∆𝑖−̂︀𝜇2
𝑖,𝑗−1

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 −(∆𝑖−̂︀𝜇𝑖,𝑗−1)2

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 −𝜙(𝑇𝑖(𝑗−1),𝜌𝑖)

2 def. of 𝜌𝑖

≥ 1

4

𝑇𝑖(𝑡)∑︁
𝑗=1

∆2
𝑖 −

4log(log2(2𝑗)/𝜌𝑖)

𝑗
upper bound from Fact 4

&∆2
𝑖𝑇𝑖(𝑡)−log

(︂
1

𝜌𝑖

)︂
log(𝑇𝑖(𝑡)),

where the last line is because
∑︀𝑇𝑖(𝑇 )

𝑗=1 1/𝑗≈ log𝑇𝑖(𝑡). Thus, we have arrived our desired result.
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We now have the ingredients to present a proof of Theorem 2.

Proof of Theorem 2. Combining the lower bound in (17) with Lemma 8, we get the following asymp-
totic lower bound:

𝐸𝑖,𝑡&exp(𝑇𝑖(𝑡)∆
2
𝑖 −log(1/𝜌′𝑖)−log(1/𝜌𝑖)log(𝑇𝑖(𝑡)).

Inverting the expression above, we get that the following lower bound sample complexity of a single
arm,

𝑇𝑖(𝑡)&∆−2
𝑖 log(∆−2

𝑖 )log(1/𝜌𝑖)+∆−2
𝑖 log(1/𝜌′𝑖)+∆−2

𝑖 log(𝜀),

implies 𝐸𝑖,𝑡≥𝜀 for 𝜀>0.

We can now derive a bound for
∞∑︀
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}.

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}≤max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 )log(1/𝜌𝑖)+∆−2
𝑖 log(1/𝜌′𝑖)+∆−2

𝑖 log(𝑘/𝜋(𝑖))

where 𝜋 is a mapping from [|ℋ1|] to ℋ1.

We get the following total bound:

∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}=

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}+

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}

=

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ0,ℛ̸⊆𝒮𝑡}+

∞∑︁
𝑡=1

I{𝐼𝑡∈ℋ1,ℛ̸⊆𝒮𝑡}

.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿𝜌𝑖)

+max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 )log(1/𝜌𝑖)+∆−2
𝑖 log(1/𝜌′𝑖)+∆−2

𝑖 log(𝑘/𝜋(𝑖)),

where the asymptotic inequality is by Lemma 5.

We know that we can apply Lemma 4 at level 𝛽 = 𝛿/2 to 𝜌𝑖 for 𝑖∈ [𝑘] and 𝜌′𝑖 for 𝑖∈ℋ1. Thus, the
following happens with at least 1−𝛿 probability:

∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+max
𝜋

∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 )log(1/𝛿)+∆−2
𝑖 log(𝑘/𝜋(𝑖)).

Similar to the Theorem 1, we can show two different bounds. The first is the following:
∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}. |ℋ0|∆−2log(log(∆−2)/𝛿)+|ℋ1|∆−2log(∆−2)log(1/𝛿),

because
|ℋ1|∑︀
𝑖=1

log(𝑘/𝑖)≤𝑘. The second follows from dropping 𝜋(𝑖):

∞∑︁
𝑡=1

I{ℛ ̸⊆𝒮𝑡}.
∑︁
𝑖∈ℋ0

∆−2
𝑖 log(log(∆−2

𝑖 )/𝛿)

+
∑︁
𝑖∈ℋ1

∆−2
𝑖 log(∆−2

𝑖 )log(1/𝛿)+∆−2
𝑖 log𝑘.

Thus, we have shown both of our desired bounds.
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G Testing the average conditional mean
For simplicity, we will discuss results and proofs in this section under the single arm bandit case, so we
will drop the arm index 𝑖 when labeling terms. Our conclusions, however, do generalize to the general
multi-arm bandit case.

In Section 4 and JJ, the null hypothesis for each arm we are concerned with is

“E[𝑋𝑡 |ℱ𝑡−1]≤𝜇0 for all 𝑡∈N almost surely.” (H1)

In the aforementioned settings, there is an additional assumption that 𝑋𝑖,𝑡 are i.i.d. across 𝑡∈N. Thus,
E[𝑋𝑡 |ℱ𝑡−1] simply becomes E[𝑋𝑡]. We can also test a more general hypothesis of whether the means
of 𝑋𝑡 are less than or equal to 𝜇0 on average.

To formally define a notion of “average mean”, let us consider the case where there is a single arm i.e.
we have a sequence of rewards 𝑋1,𝑋2,..., where the average conditional mean is defined as

𝜇𝑡≡
1

𝑡

𝑡∑︁
𝑗=1

E[𝑋𝑗 |ℱ𝑗−1].

Consequently, we can define a null hypothesis w.r.t. 𝜇𝑡:

“𝜇𝑡≤𝜇0 for all 𝑡∈N almost surely.” (H2)

In the specific case where 𝑋𝑡 are i.i.d. across 𝑡∈N, each with mean 𝜇, then E[𝑋𝑡 |ℱ𝑗−1]=E[𝑋𝑡]=𝜇
for all 𝑡 ∈N, and 𝜇𝑡 = 𝜇. Consequently, there would be no difference between testing the average
conditional mean and testing the marginal mean, 𝜇, because they are the same value. However, when
the distribution of 𝑋𝑡 are not necessarily i.i.d. across 𝑡∈N, we will emphasize that not all valid tests for
(H1) are also valid for (H2). Generally, (H1) is a “stronger” hypothesis than (H2) in the sense that any
distribution over 𝑋𝑡 for 𝑡∈N that satisfies (H1) also satisfies (H2).

The difference between (H1) and (H2) is reflected in the fact that e-processes are supermartingales in
(H1), but only upper bounded by a martingale in (H2).
Proposition 17. Assume that conditional distribution of 𝑋𝑡 |ℱ𝑡−1 is always 1-sub-Gaussian for all
𝑡∈N. Consider a process of the form,

𝐸𝑡 :=

𝑚∑︁
ℓ=1

𝑤ℓexp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆ℓ(𝑋𝑗−𝜇0)− 𝜆2
ℓ

2

⎞⎠
where 𝑚∈N∪{∞},

𝑚∑︀
ℓ=1

𝑤ℓ≤1. Under both (H1) and (H2), (𝑀𝑡) is a e-process. Specifically, (𝑀𝑡) is

(i) a nonnegative supermartingale under (H1).

(ii) upper bounded by a nonnegative supermartingale under (H2).

Proof. (i) follows from Proposition 7.

Without loss of generality, we will consider the case where 𝑚 = 1 and 𝑤1 = 1, since a convex
combination of supermartingales is a supermartingale. Thus,

𝐸𝑡 =exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗−𝜇0)− 𝜆2

2

⎞⎠.
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To prove (ii), we first notice we can define a process 𝑀 ′
𝑡 that upper bounds 𝐸𝑡:

𝑀 ′
𝑡 =exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗−E[𝑋𝑗 |ℱ𝑗−1])− 𝜆2

2

⎞⎠
=exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗−
𝑡∑︁

𝑗=1

E[𝑋𝑗 |ℱ𝑗−1]

⎞⎠− 𝑡𝜆2

2

⎞⎠
=exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗−𝑡𝜇𝑡

⎞⎠− 𝑡𝜆2

2

⎞⎠
≥exp

⎛⎝𝜆

⎛⎝ 𝑡∑︁
𝑗=1

𝑋𝑗−𝑡𝜇0

⎞⎠− 𝑡𝜆2

2

⎞⎠
=𝐸𝑡.

Now, we will show that (𝑀 ′
𝑡) is a supermartingale.

E

⎡⎣exp

⎛⎝ 𝑡∑︁
𝑗=1

𝜆(𝑋𝑗−E[𝑋𝑗 |ℱ𝑗−1])− 𝜆2

2

⎞⎠ |ℱ𝑡−1

⎤⎦=E
[︂
exp

(︂
𝜆(𝑋𝑡−E[𝑋𝑡 |ℱ𝑡−1])− 𝜆2

2

)︂
|ℱ𝑡−1

]︂
𝑀 ′

𝑡−1

≤𝑀 ′
𝑡−1,

where the last inequality is because the conditional distribution of 𝑋𝑡 |ℱ𝑡−1 is 1-sub-Gaussian. Thus,
we have shown both parts of our desired result.

The 𝐸𝑡 specified in Proposition 17 is an e-process, but not necessarily a nonnegative supermartingale,
for any distribution under (H2) where there exists a 𝑡 ∈ N such that E[𝑋𝑡 | ℱ𝑡−1] > 𝜇0. Thus, the
distinction highlighted in Proposition 17 is not vacuous.

Further, we will also note the following negative result that there exists processes that are e-processes
under (H1) but are not under (H2).
Proposition 18. Assume that conditional distribution of 𝑋𝑡 |ℱ𝑡−1 is always 1-sub-Gaussian for all
𝑡∈N. (𝐸PM-H

𝑡 ) is an e-process under all distributions satisfying (H1), but there exist (𝜆𝑡) such that
(𝐸PM-H

𝑡 ) is not an e-process under all distributions that satisfy (H2).

Proof. (𝐸PM-H
𝑡 ) is an e-process under (H1) by a similar argument to the proof of Proposition 15,

since the conditional distribution of 𝑋𝑡 |ℱ𝑡−1 is 1-sub-Gaussian. However, we can provide a simple
counterexample choice of (𝜆𝑡) and distribution that satisfies (H2) which cannot have expectation
greater than 1 at a time 𝑡∈N. Let 𝜇0 =0, 𝑋𝑡 =−1 if 𝑡 is odd, and 𝑋𝑡 =1 if 𝑡 is even. Consider a (𝜆𝑡)
where 𝜆𝑡 =0 when 𝑡 is odd and 𝜆𝑡 =1 when 𝑡 is even. Then,

E[𝐸PM-H
𝑡 ]=exp(⌈𝑡/2⌉).

Consequently, (𝐸PM-H
𝑡 ) with this choice of (𝜆𝑡) is not an e-process under (H2), and we have proved

our desired result.

Thus, using adaptive strategies for selecting (𝜆𝑡) like in Waudby-Smith and Ramdas [45] for testing
(H2) is not necessarily straightforward, while mixture strategies in the form specified in Proposition 17
are valid e-processes for testing both (H1) and (H2).
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