A Proofs

A.1 Proof of Claim 4.1

We first define the notion of restricted minimum eigenvalue.
Definition A. 1 (Restricted minimum eigenvalue). Given a symmetric matrix $H \in \mathbb{R}^{d \times d}$ and integer $s \geq 1$, and $L>0$, the restricted minimum eigenvalue of H is defined as

$$
\phi^{2}(H, s, L):=\min _{\mathcal{S} \subset[d],|\mathcal{S}| \leq s} \min _{\theta \in \mathbb{R}^{d}}\left\{\frac{\langle\theta, H \theta\rangle}{\left\|\theta_{\mathcal{S}}\right\|_{2}^{2}}: \theta \in \mathbb{R}^{d},\left\|\theta_{\mathcal{S}^{c}}\right\|_{1} \leq L\left\|\theta_{\mathcal{S}}\right\|_{1}\right\}
$$

Suppose $\left\{x^{(t)}\right\}_{t=1}^{k} \subseteq \mathbb{R}^{d}$ are k independent random vectors who first $d-1$ coordinates are drawn uniformly from $\{-1,1\}$ and the last coordinate is 1 . Denote $\widehat{\Sigma}=\sum_{t=1}^{k} x^{(t)} x^{(t) \top}$. It is easy to see $\mathbb{E}[\widehat{\Sigma}]=I_{d}$ and $\sigma_{\min }(\mathbb{E}[\widehat{\Sigma}])=1$. From the definition of restricted minimum eigenvalue, we have for any $L>0$,

$$
\phi^{2}(\mathbb{E}[\widehat{\Sigma}], s, L) \geq \sigma_{\min }^{2}(\mathbb{E}[\widehat{\Sigma}])=1
$$

According to Theorem 10 in Javanmard and Montanari [2014] (essentially from Theorem 6 in Rudelson and Zhou [2013]), if the population covariance matrix satisfies the restricted eigenvalue condition, the empirical covariance matrix satisfies it as well with high probability. Specifically, when $k=C_{1} s \log (e d / s)$ for some large constant $C_{1}>0$, the following holds:

$$
\mathbb{P}\left(\phi^{2}(\widehat{\Sigma}, s, 3) \geq \frac{1}{4}\right) \geq 1-2 \exp \left(-k / C_{1}\right) \geq 0.5
$$

According to probabilistic argument, there exists a set of fixed actions $\left\{x^{(1)}, \ldots, x^{(k)}\right\}$ with $k=$ $C_{1} s \log (e d / s)$ such that if we pull uniformly at random from them, the restricted minimum eigenvalue of the resulting covariance matrix is at least $1 / 4$.

Next we compute how many rounds at most the optimism-based algorithm will choose from informative action set \mathcal{I}. Let $N_{t-1}(a)$ as the number of pulls for action a until round t. Since we have $\theta^{*} \in \mathcal{C}_{t}$ with high probability, then

$$
\max _{a \in \mathcal{U}} \max _{\widetilde{\theta} \in \mathcal{C}_{t}}\langle a, \widetilde{\theta}\rangle \geq \max _{a \in \mathcal{U}}\left\langle a, \theta^{*}\right\rangle \geq s \varepsilon .
$$

On the other hand for any action $a \in \mathcal{I}$,

$$
\begin{aligned}
\max _{\widetilde{\theta} \in \mathcal{C}_{t}}\langle a, \widetilde{\theta}\rangle & =\max _{\widetilde{\theta} \in \mathcal{C}_{t}}\left\langle a, \widetilde{\theta}-\theta^{*}\right\rangle+\left\langle a, \theta^{*}\right\rangle \leq \max _{\widetilde{\theta} \in \mathcal{C}_{t}}\left\langle a, \widetilde{\theta}-\theta^{*}\right\rangle+\max _{a \in \mathcal{I}}\left\langle a, \theta^{*}\right\rangle \\
& =\max _{\widetilde{\theta} \in \mathcal{C}_{t}}\left\langle a, \widetilde{\theta}-\theta^{*}\right\rangle+s \varepsilon-1 \leq 2 c \sqrt{\|a\|_{V_{t}^{-1}} s \log (n)}+s \varepsilon-1 \\
& \leq 2 c \sqrt{\frac{s \log (n)}{N_{t-1}(a)}}+s \varepsilon-1 .
\end{aligned}
$$

If $N_{t-1}(a)>4 c^{2} s \log (n)$ for $a \in \mathcal{I}$, then we have $\max _{\widetilde{\theta} \in \mathcal{C}_{t}}\langle a, \widetilde{\theta}\rangle<s \varepsilon$. Based on the optimism principle, the algorithm will switch to pull uninformative actions. This leads to the fact that optimismbased algorithm will pull at most $|\mathcal{I}| 4 c^{2} s \log (n)$ rounds of information actions. According to the proof of minimax lower bound in Hao et al. [2020b], we have when $\sum_{a \in \mathcal{I}} N_{n}(a)<1 /\left(s \varepsilon^{2}\right)$, there exists another sparse parameter θ^{\prime} such that

$$
\begin{equation*}
R_{\theta}(n)+R_{\theta^{\prime}}(n) \gtrsim n s \varepsilon \exp \left(-\frac{2 n \varepsilon^{2} s^{2}}{d}\right) . \tag{A.1}
\end{equation*}
$$

By choosing $\varepsilon=\sqrt{1 /\left(s^{2} \log (n) 4 c^{2}|\mathcal{I}|\right)}$, we have for $d \geq n /(s \log (n) \log (e d / s))$

$$
\begin{equation*}
R_{\theta}(n)+R_{\theta^{\prime}}(n) \gtrsim \frac{n}{\sqrt{\log (n)}|\mathcal{I}|} \tag{A.2}
\end{equation*}
$$

Note that $|\mathcal{I}|=O(s \log (d / s))$ as we proved before. Then we can argue there exists a sparse linear bandit instance such that optimism-based algorithm will suffer linear regret for a data-poor regime. This ends the proof.

A. 2 Proof of Lemma 5.6

We decompose the Bayesian regret in terms of the instantaneous regret:

$$
\begin{align*}
\mathfrak{B} \mathfrak{R}\left(n ; \pi^{\mathrm{IDS}}\right) & =\mathbb{E}\left[\sum_{t=1}^{n}\left\langle x^{*}, \theta\right\rangle-\sum_{t=1}^{n} Y_{t}\right]=\mathbb{E}\left[\sum_{t=1}^{n} \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-Y_{t}\right]\right] \tag{A.3}\\
& =\mathbb{E}\left[\sum_{t=1}^{n} \sum_{a} \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \pi_{t}(a)\right]=\mathbb{E}\left[\sum_{t=1}^{n}\left\langle\pi_{t}, \Delta_{t}\right\rangle\right]
\end{align*}
$$

where the third equation is due to the zero mean of the noise.
We then bound one-step instantaneous regret. From the definition of π_{t}, we have

$$
\begin{equation*}
\pi_{t}=\underset{\pi \in \mathcal{D}(\mathcal{A})}{\operatorname{argmin}} \frac{\left\langle\pi, \Delta_{t}\right\rangle^{2}}{\left\langle\pi, I_{t}\right\rangle} \tag{A.4}
\end{equation*}
$$

In addition, we denote

$$
\begin{equation*}
q_{\lambda, t}=\underset{\pi \in \mathcal{D}(\mathcal{A})}{\operatorname{argmin}} \Psi_{t, \lambda}(\pi)=\underset{\pi \in \mathcal{D}(\mathcal{A})}{\operatorname{argmin}} \frac{\left\langle\pi, \Delta_{t}\right\rangle^{\lambda}}{\left\langle\pi, I_{t}\right\rangle} . \tag{A.5}
\end{equation*}
$$

Note that

$$
\nabla_{\pi} \Psi_{t, 2}(\pi)=\frac{2\left\langle\pi, \Delta_{t}\right\rangle \Delta_{t}}{\left\langle\pi, I_{t}\right\rangle}+\frac{\left\langle\pi, \Delta_{t}\right\rangle^{2} I_{t}}{\left\langle\pi, I_{t}\right\rangle^{2}}
$$

By the first-order optimality condition in Lemma C.1,

$$
0 \leq\left\langle\nabla_{\pi} \Psi_{t, 2}\left(\pi_{t}\right), q_{\lambda, t}-\pi_{t}\right\rangle=\frac{2\left\langle q_{\lambda, t}-\pi_{t}, \Delta_{t}\right\rangle\left\langle\pi_{t}, \Delta_{t}\right\rangle}{\left\langle\pi_{t}, I_{t}\right\rangle}-\frac{\left\langle q_{\lambda, t}-\pi_{t}, I_{t}\right\rangle\left\langle\pi_{t}, \Delta_{t}\right\rangle^{2}}{\left\langle\pi_{t}, I_{t}\right\rangle^{2}}
$$

This further implies

$$
2\left\langle q_{\lambda, t}, \Delta_{t}\right\rangle \geq\left\langle\pi_{t}, \Delta_{t}\right\rangle\left(1+\frac{\left\langle q_{\lambda, t}, I_{t}\right\rangle}{\left\langle\pi_{t}, I_{t}\right\rangle}\right) \geq\left\langle\pi_{t}, \Delta_{t}\right\rangle
$$

Based on the above equation, we can bound the generalized information ratio as follows:

$$
\begin{aligned}
\frac{\left\langle\pi_{t}, \Delta_{t}\right\rangle^{\lambda}}{\left\langle\pi_{t}, I_{t}\right\rangle} & =\frac{\left\langle\pi_{t}, \Delta_{t}\right\rangle^{2}\left\langle\pi_{t}, \Delta_{t}\right\rangle^{\lambda-2}}{\left\langle\pi_{t}, I_{t}\right\rangle} \leq \frac{2^{\lambda-2}\left\langle\pi_{t}, \Delta_{t}\right\rangle^{2}\left\langle q_{\lambda, t}, \Delta_{t}\right\rangle^{\lambda-2}}{\left\langle\pi_{t}, I_{t}\right\rangle} \\
& \leq \frac{2^{\lambda-2}\left\langle q_{\lambda, t}, \Delta_{t}\right\rangle^{\lambda-2}\left\langle q_{\lambda, t}, \Delta_{t}\right\rangle^{2}}{\left\langle q_{\lambda, t}, I_{t}\right\rangle}=2^{\lambda-2} \min _{\pi \in \mathcal{D}(\mathcal{A})} \frac{\left\langle\pi, \Delta_{t}\right\rangle^{\lambda}}{\left\langle\pi, I_{t}\right\rangle}
\end{aligned}
$$

where the first inequality is from Eq. (A.4) and the second inequality is from Eq. (A.5). According to the definition of $\Psi_{*, \lambda}$, we have

$$
\left\langle\pi_{t}, \Delta_{t}\right\rangle \leq 2^{1-2 / \lambda}\left\langle\pi_{t}, I_{t}\right\rangle^{1 / \lambda} \Psi_{*, \lambda}^{1 / \lambda}
$$

Next we prove $\left\langle\pi_{t}, I_{t}\right\rangle=I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right)$. By the chain rule of mutual information,

$$
\begin{aligned}
I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right) & =I_{t}\left(x^{*} ; A_{t}\right)+\mathbb{E}_{t}\left[I_{t}\left(x^{*} ; Y_{t} \mid A_{t}\right)\right]=\mathbb{E}_{t}\left[I_{t}\left(x^{*} ; Y_{t} \mid A_{t}\right)\right] \\
& =\sum_{a \in \mathcal{A}} \pi_{t}(a) I_{t}\left(x^{*} ; Y_{t} \mid A_{t}=a\right)
\end{aligned}
$$

where we use the fact that A_{t} and x^{*} are independent. If Z is independent of X and Y, then we have $I(X ; Y \mid Z)=I(X ; Y)$. Since A_{t} is independent of x^{*} and Y_{t} conditional on \mathcal{F}_{t}, then

$$
\sum_{a \in \mathcal{A}} \pi_{t}(a) I_{t}\left(x^{*} ; Y_{t} \mid A_{t}=a\right)=\sum_{a \in \mathcal{A}} \pi_{t}(a) I_{t}\left(x^{*} ; Y_{t, a}\right)=\left\langle\pi_{t}, I_{t}\right\rangle
$$

This proves the previous claim. Combining with Eq. (A.3),

$$
\begin{align*}
\mathfrak{B} \mathfrak{R}\left(n ; \pi^{\mathrm{IDS}}\right) & =\mathbb{E}\left[\sum_{t=1}^{n}\left\langle\pi_{t}, \Delta_{t}\right\rangle\right] \leq \mathbb{E}\left[\sum_{t=1}^{n} 2^{1-2 / \lambda} I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right)^{1 / \lambda} \Psi_{*, \lambda}^{1 / \lambda}\right] \\
& =2^{1-2 / \lambda} \Psi_{*, \lambda}^{1 / \lambda} \mathbb{E}\left[\sum_{t=1}^{n} I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right)^{1 / \lambda}\right] \tag{A.6}\\
& \leq 2^{1-2 / \lambda} \Psi_{*, \lambda}^{1 / \lambda} n^{1-1 / \lambda} \mathbb{E}\left[\sum_{t=1}^{n} I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right)\right]^{1 / \lambda}
\end{align*}
$$

where the last inequality is from Holder's inequality with $p=\lambda /(\lambda-1)$ and $q=\lambda$.
In the end, we bound the cumulative information gain using the chain rule of mutual information,

$$
\sum_{t=1}^{n} \mathbb{E}\left[I_{t}\left(x^{*} ;\left(A_{t}, Y_{t}\right)\right)\right]=\sum_{t=1}^{n} I\left(x^{*} ;\left(A_{t}, Y_{t}\right) \mid \mathcal{F}_{t}\right)=I\left(x^{*} ; \mathcal{F}_{n+1}\right)
$$

Combining with Eq. (A.6), we have

$$
\mathfrak{B} \mathfrak{R}_{n}(\pi, \rho) \leq 2^{1-2 / \lambda}\left(\Psi_{*, \lambda} I\left(x^{*} ; \mathcal{F}_{n+1}\right)\right)^{1 / \lambda} n^{1-1 / \lambda} .
$$

This ends the proof.

A. 3 Proof of Lemma 5.8

Denote $Z_{1}=\left(A_{1}, Y_{1}\right), \ldots, Z_{n}=\left(A_{n}, Y_{n}\right)$ such that $Z^{n}=\left(Z_{1}, \ldots, Z_{n}\right)$. When the number of actions K is small, we could directly bound it by

$$
I\left(x^{*} ; Z^{n}\right)=H\left(x^{*}\right)-H\left(x^{*} \mid Z^{n}\right) \leq H\left(x^{*}\right) \leq \log |\mathcal{A}|=\log (K)
$$

where for the first inequality we use the non-negativity of Shannon entropy.
When the number of actions is large or infinite, we will bound it through the following informationtheoretic argument. Recall that $x^{*}=\operatorname{argmin}_{a \in \mathcal{A}} x^{\top} \theta^{*}$ so x^{*} can be viewed as a deterministic function θ^{*}. By the data processing lemma (Lemma C.2), we have $I\left(x^{*} ; Z^{n}\right) \leq I\left(\theta^{*} ; Z^{n}\right)$. In other words, we bound the information gain regarding the optimal action by the information gain regarding the true parameter.

Recall that we assume the prior distribution of θ^{*} is $\rho\left(\theta^{*}\right)$ that takes the value in Θ. From Vershynin [2009], we know Θ enjoys an ε-net $\mathcal{N}_{\varepsilon}$ under ℓ_{2}-norm and its cardinality at most $(C d / s \varepsilon)^{s}$ where C is a constant. Hence, its metric entropy satisfies

$$
\begin{equation*}
\log \left|\mathcal{N}_{\varepsilon}\right| \leq s \log (C d / s \varepsilon) \tag{A.7}
\end{equation*}
$$

Suppose the Bayes mixture density $p_{\rho}\left(z^{n}\right)=\int_{\theta \in \Theta} p\left(z^{n} \mid \theta\right) d \rho(\theta)$. According to the definition of mutual information,

$$
\begin{align*}
I\left(\theta^{*} ; Z^{n}\right) & =\mathbb{E}_{\theta^{*}}\left[D_{\mathrm{KL}}\left(\mathbb{P}_{Z^{n} \mid \theta^{*}}| | \mathbb{P}_{Z^{n}}\right)\right] \\
& =\int_{\theta^{*} \in \Theta} \int p\left(z^{n} \mid \theta^{*}\right) \log \left(\frac{p\left(z^{n} \mid \theta^{*}\right)}{p_{w}\left(z^{n}\right)}\right) \mu\left(d z^{n}\right) d \rho\left(\theta^{*}\right) \\
& \leq \int_{\theta \in \Theta} \int p\left(z^{n} \mid \theta^{*}\right) \log \left(\frac{p\left(z^{n} \mid \theta^{*}\right)}{q\left(z^{n}\right)}\right) \mu\left(d z^{n}\right) d \rho\left(\theta^{*}\right) \tag{A.8}\\
& =\int_{\theta \in \Theta} D_{\mathrm{KL}}\left(\mathbb{P}_{Z^{n} \mid \theta^{*}}| | \mathbb{Q}_{Z^{n}}\right) d \rho\left(\theta^{*}\right)
\end{align*}
$$

where the inequality is due to the fact that Bayes mixture density $p_{\rho}\left(z^{n}\right)$ minimizes the average KL divergences over any choice of densities $q\left(z^{n}\right)$. Then we choose ρ_{1} as an uniform distribution over $\mathcal{N}_{\varepsilon}$ such that $q\left(z^{n}\right)=p_{\rho_{1}}\left(z^{n}\right)=\int_{\theta \in \Theta} p\left(z^{n} \mid \theta\right) d \rho_{1}(\theta)$ and we denote $\mathbb{Q}_{Z^{n}}$ as the corresponding
probability measure. Since $\mathcal{N}_{\varepsilon}$ is an ε-net over Θ under ℓ_{2}-norm, for each $\theta \in \Theta$, there exists $\widetilde{\theta} \in \Theta$ such that $\|\theta-\widetilde{\theta}\|_{2} \leq \varepsilon$.
To bound the KL-divergence term, we follow

$$
\begin{align*}
D_{\mathrm{KL}}\left(\mathbb{P}_{Z^{n} \mid \theta}| | \mathbb{Q}_{Z^{n}}\right) & =\mathbb{E}\left[\log \frac{p\left(z^{n} \mid \theta^{*}\right)}{\left(1 /\left|\mathcal{N}_{\varepsilon}\right|\right) \sum_{\widetilde{\theta} \in \mathcal{N}_{\varepsilon}} p\left(z^{n} \mid \widetilde{\theta}\right)}\right] \\
& \leq \mathbb{E}\left[\log \frac{p\left(z^{n} \mid \theta^{*}\right)}{\left(1 /\left|\mathcal{N}_{\varepsilon}\right|\right) p\left(z^{n} \mid \widetilde{\theta}\right)}\right] \tag{A.9}\\
& \leq \log \left|\mathcal{N}_{\varepsilon}\right|+D_{\mathrm{KL}}\left(\mathbb{P}_{Z^{n} \mid \theta}| | \mathbb{P}_{Z^{n} \mid \widetilde{\theta}}\right)
\end{align*}
$$

By the chain rule of KL-divergence,

$$
D_{\mathrm{KL}}\left(P_{Z^{n} \mid \theta} \| \mathbb{P}_{Z^{n} \mid \tilde{\theta}}\right) \leq \mathbb{E}\left[\sum_{t=1}^{n} D_{\mathrm{KL}}\left(\mathbb{P}_{Y_{t} \mid A_{t}, Z^{t-1}, \theta^{*}} \| \mathbb{P}_{Y_{t} \mid A_{t}, Z^{t-1}, \tilde{\theta}}\right)\right]
$$

where we define $Z^{0}=\emptyset$. Under linear model and bandit θ, we know $Y_{t} \sim N\left(A_{t}^{\top} \theta, 1\right)$. A straightforward computation leads to

$$
\begin{align*}
D_{\mathrm{KL}}\left(\mathbb{P}_{Y_{t} \mid A_{t}, Z^{t-1}, \theta^{*}} \| \mathbb{P}_{Y_{t} \mid A_{t}, Z^{t-1}, \widetilde{\theta}}\right) & =\frac{1}{2 \sigma^{2}}\left\|A_{t}^{\top} \theta^{*}-A_{t}^{\top} \widetilde{\theta}\right\|_{2}^{2} \\
& \leq \frac{1}{2 \sigma^{2}}\left\|A_{t}\right\|_{\infty}^{2}\left\|\theta^{*}-\widetilde{\theta}\right\|_{1}^{2} \tag{A.10}\\
& \leq \frac{1}{2 \sigma^{2}} s\left\|\theta^{*}-\widetilde{\theta}\right\|_{2}^{2} \\
& \leq \frac{s}{2 \sigma^{2}} \varepsilon^{2}
\end{align*}
$$

where the first inequality we use the fact that $\|a\|_{\infty} \leq 1$ and the parameters are sparse. Here actually we only require $\|a\|_{\infty}$ for $a \in \mathcal{A}$ being bounded by a constant since evetually it will only appears inside the logarithm term. Putting Eqs. (A.7)-(A.10) together, we have

$$
I\left(\theta^{*} ; Z^{n}\right) \leq \int_{\theta^{*} \in \Theta}\left(s \log (C d / s \varepsilon)+\frac{n s}{2 \sigma^{2}} \varepsilon^{2}\right) d \theta^{*}=s \log (C d / s \varepsilon)+\frac{n s}{2 \sigma^{2}} \varepsilon^{2}
$$

With the choice of $\varepsilon=1 / \sqrt{n}$, we finally have

$$
I\left(\theta^{*} ; Z^{n}\right) \leq 2 s \log \left(C d n^{1 / 2} / s\right)
$$

This ends the proof.

A. 4 Proof of Lemma 5.7

For any particular policy $\widetilde{\pi}$, if one can derive an worse-case bound of $\Psi_{t, \lambda}(\widetilde{\pi})$, we get an upper bound for $\Psi_{*, \lambda}$ automatically. The remaining step is to choose proper policy $\tilde{\pi}$.
First, we bound the information ratio with $\lambda=2$ that essentially follows Proposition 5 in Russo and Van Roy [2014] and Lemma 3 in Russo and Van Roy [2014] for a Gaussian noise. By the definition of mutual information, for any $a \in \mathcal{A}$, we have

$$
\begin{align*}
I_{t}\left(x^{*} ; Y_{t, a}\right) & =D_{\mathrm{KL}}\left(\mathbb{P}_{t}\left(\left(x^{*}, Y_{t, a}\right)\right) \| \mathbb{P}_{t}\left(x^{*} \in \cdot\right) \mathbb{P}_{t}\left(Y_{t, a} \in\right)\right) \\
& =\sum_{a^{*} \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a^{*}\right) D_{\mathrm{KL}}\left(\mathbb{P}_{t}\left(Y_{t, a}=\cdot \mid x^{*}=a^{*}\right) \| \mathbb{P}_{t}\left(Y_{t, a}=\cdot\right)\right) \tag{A.11}
\end{align*}
$$

Define $R_{\max }$ as the upper bound of maximum expected reward. It is easy to see $Y_{t, a}$ is a $\sqrt{R_{\max }^{2}+1}$ sub-Gaussian random variable. According to Lemma 3 in Russo and Van Roy [2014], we have

$$
\begin{equation*}
I_{t}\left(x^{*} ; Y_{t, a}\right) \geq \frac{2}{R_{\max }^{2}+1} \sum_{a^{*} \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a^{*}\right)\left(\mathbb{E}_{t}\left[Y_{t, a} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[Y_{t, a}\right]\right)^{2} \tag{A.12}
\end{equation*}
$$

We bound the information ratio of IDS by the information ratio of TS:

$$
\Psi_{*, 2} \leq \max _{t \in[n]} \frac{\left\langle\pi_{t}^{\mathrm{TS}}, \Delta_{t}\right\rangle^{2}}{\left\langle\pi_{t}^{\mathrm{TS}}, I_{t}\right\rangle}
$$

Using the matrix trace rank trick described in Proposition 5 in Russo and Van Roy [2014], we have $\Psi_{*, 2} \leq\left(R_{\max }^{2}+1\right) d / 2$ in the end.
Second, we bound the information ratio with $\lambda=3$. Recall that the exploratory policy μ is defined as

$$
\max _{\mu \in \mathcal{D}(\mathcal{A})} \sigma_{\min }\left(\int_{x \in \mathcal{A}} x x^{\top} d \mu(x)\right) .
$$

Consider a mixture policy $\pi_{t}^{\text {mix }}=(1-\gamma) \pi_{t}^{\mathrm{TS}}+\gamma \mu$ where the mixture rate $\gamma \geq 0$ will be decided later. Then we will bound the following in two steps.

$$
\Psi_{t, 3}\left(\pi_{t}^{\mathrm{mix}}\right)=\frac{\left\langle\pi_{t}^{\mathrm{mix}}, \Delta_{t}\right\rangle^{3}}{\left\langle\pi_{t}^{\mathrm{mix}}, I_{t}\right\rangle}
$$

Step 1: Bound the information gain According the lower bound of information gain in Eq. (A.12),

$$
\begin{aligned}
\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle & \geq \frac{2}{\left(R_{\max }^{2}+1\right)} \sum_{a \in \mathcal{A}} \pi_{t}^{\operatorname{mix}}(a) \sum_{a^{*} \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a^{*}\right)\left(\mathbb{E}_{t}\left[Y_{t, a} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[Y_{t, a}\right]\right)^{2} \\
& =\frac{2}{\left(R_{\max }^{2}+1\right)} \sum_{a \in \mathcal{A}} \pi_{t}^{\operatorname{mix}}(a) \sum_{a^{*} \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a^{*}\right)\left(a^{\top} \mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-a^{\top} \mathbb{E}_{t}\left[\theta^{*}\right]\right)^{2}
\end{aligned}
$$

By the definition of the mixture policy, we know that $\pi_{t}(a) \geq \gamma \mu(a)$ for any $a \in \mathcal{A}$. Then we have

$$
\begin{aligned}
\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle \geq & \frac{2}{\left(R_{\max }^{2}+1\right)} \gamma \sum_{a^{*} \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a^{*}\right) \\
& \cdot \sum_{a \in \mathcal{A}} \mu(a)\left(\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right)^{\top} a a^{\top}\left(\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right)
\end{aligned}
$$

From the definition of minimum eigenvalue, we have

$$
\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle \geq \frac{2 \gamma}{\left(R_{\max }^{2}+1\right)} \sum_{a \in \mathcal{A}} \mathbb{P}_{t}\left(x^{*}=a\right) C_{\min }\left\|\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right\|_{2}^{2}
$$

Step 2: Bound the instant regret We decompose the regret by the contribution from the exploratory policy and the one from TS:

$$
\begin{align*}
& \left\langle\pi_{t}^{\mathrm{mix}}, \Delta_{t}\right\rangle \\
& =\sum_{a} \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \pi_{t}^{\mathrm{mix}}(a) \\
& =(1-\gamma) \sum_{a} \pi_{t}^{\mathrm{TS}}(a) \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right]+\gamma \sum_{a} \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \mu(a) \tag{A.13}\\
& =(1-\gamma) \sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right) \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right]+\gamma \sum_{a} \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \mu(a)
\end{align*}
$$

Since $R_{\text {max }}$ is the upper bound of maximum expected reward, the second term can be bounded $2 R_{\max } \gamma$. Next we bound the first term as follows:

$$
\begin{aligned}
& \sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right) \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \\
& =\sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right)\left(\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle \mid x^{*}=a\right]-\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle\right]\right) \\
& =\sum_{a} \mathbb{P}_{t}^{1 / 2}\left(x^{*}=a\right) \mathbb{P}_{t}^{1 / 2}\left(x^{*}=a\right)\left(\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle \mid x^{*}=a\right]-\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle\right]\right) \\
& \leq \sqrt{\sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right)\left(\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle \mid x^{*}=a\right]-\mathbb{E}_{t}\left[\left\langle a, \theta^{*}\right\rangle\right]\right)^{2}}
\end{aligned}
$$

where we use Cauchy-Schwarz inequality. Since all the optimal actions are sparse, any action a with $\mathbb{P}_{t}\left(x^{*}=a\right)>0$ must be sparse. Then we have

$$
\left(a^{\top}\left(\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right)\right)^{2} \leq s^{2}\left\|\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right\|_{2}^{2}
$$

for any action a with $\mathbb{P}_{t}\left(x^{*}=a\right)>0$. This further implies

$$
\begin{align*}
& \sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right) \mathbb{E}_{t}\left[\left\langle x^{*}, \theta^{*}\right\rangle-\left\langle a, \theta^{*}\right\rangle\right] \\
& \leq \sqrt{\sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right) s^{2}\left\|\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right\|_{2}^{2}} \\
& =\sqrt{\frac{s^{2}\left(R_{\max }^{2}+1\right)}{2 \gamma C_{\min }} \frac{2 \gamma}{\left(R_{\max }^{2}+1\right)} \sum_{a} \mathbb{P}_{t}\left(x^{*}=a\right) C_{\min }\left\|\mathbb{E}_{t}\left[\theta^{*} \mid x^{*}=a^{*}\right]-\mathbb{E}_{t}\left[\theta^{*}\right]\right\|_{2}^{2}} \tag{A.14}\\
& \leq \sqrt{\frac{s^{2}\left(R_{\max }^{2}+1\right)}{2 \gamma C_{\min }}\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle .}
\end{align*}
$$

Putting Eq. (A.13) and (A.14) together, we have

$$
\left\langle\pi_{t}^{\operatorname{mix}}, \Delta_{t}\right\rangle \leq \sqrt{\frac{s^{2}\left(R_{\max }^{2}+1\right)}{2 \gamma C_{\min }}\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle}+2 R_{\max } \gamma
$$

By optimizing the mixture rate γ, we have

$$
\frac{\left\langle\pi_{t}^{\operatorname{mix}}, \Delta_{t}\right\rangle^{3}}{\left\langle\pi_{t}^{\operatorname{mix}}, I_{t}\right\rangle} \leq \frac{s^{2}\left(R_{\max }^{2}+1\right)}{8 R_{\max }^{2} C_{\min }} \leq \frac{s^{2}}{4 C_{\min }} .
$$

This ends the proof.

B Detailed algorithms

For each $a \in \mathcal{A}$, we expand $v_{t}(a)$ as follows:

$$
\begin{aligned}
v_{t}(a) & =\operatorname{Var}_{t}\left(\mathbb{E}_{t}\left[a^{\top} \theta \mid x^{*}\right]\right)=\mathbb{E}_{t}\left[a^{\top} \mathbb{E}_{t}\left[\theta \mid x^{*}\right]-\mathbb{E}_{t}\left[a^{\top} \mathbb{E}_{t}\left[\theta \mid x^{*}\right]\right]\right]^{2} \\
& =\mathbb{E}_{t}\left[a^{\top} \mathbb{E}_{t}\left[\theta \mid x^{*}\right]-a^{\top} \mathbb{E}_{t}[\theta]\right]^{2}=a^{\top} \mathbb{E}_{t}\left[\left(\mathbb{E}_{t}\left[\theta \mid x^{*}\right]-\mathbb{E}_{t}[\theta]\right)\left(\mathbb{E}_{t}\left[\theta \mid x^{*}\right]-\mathbb{E}_{t}[\theta]\right)^{\top}\right] a
\end{aligned}
$$

We denote $\mu_{t}=\mathbb{E}_{t}[\theta]$ as the posterior mean and $\mu_{t}^{a}=\mathbb{E}_{t}\left[\theta \mid x^{*}=a\right]$. We let $\Phi \in \mathbb{R}^{|\mathcal{A}| \times d}$ as the feature matrix where each row of Φ represent each action in \mathcal{A}. We summarize the procedure of estimating Δ_{t}, I_{t} in Algorithm 3.

```
Algorithm 3 Approximate \(\Delta_{t}, v_{t}\) based on posterior samples
    Input: \(M\) posterior samples \(\theta^{1}, \ldots, \theta^{M}\) from Eq. (6.2), action set \(\mathcal{A}\).
    Calculate \(\widehat{\mu}_{t}=\sum_{m} \theta^{m} / M\).
    for \(a \in \mathcal{A}\) do
        Find \(\widehat{\Theta}_{a}=\left\{m \in[M]:\left(\Phi \theta^{m}\right)_{a}=\max _{a^{\prime} \in \mathcal{A}}\left(\Phi \theta^{m}\right)_{a^{\prime}}\right\}\).
        Calculate \(\widehat{p}_{a}^{*}=\left|\widehat{\Theta}_{a}\right| / M\).
        Calculate \(\widehat{\mu}_{t}^{a}=\sum_{m \in \widehat{\Theta}_{a}} \theta^{m} /\left|\widehat{\Theta}_{a}\right|\).
        Calculate
            \(\widehat{v}_{t}(a)=a^{\top} \sum_{a} \widehat{p}_{a}^{*}\left(\widehat{\mu}_{t}^{a}-\widehat{\mu}_{t}\right)\left(\widehat{\mu}_{t}^{a}-\widehat{\mu}_{t}\right)^{\top} a, \widehat{\Delta}_{t}(a)=\sum_{a \in \mathcal{A}} \widehat{p}_{a}^{*} a^{\top} \widehat{\mu}_{t}^{a}-a^{\top} \widehat{\mu}_{t}\).
    end for
    Output: \(\widehat{v}_{t}, \widehat{\Delta}_{t}\).
```


C Supporting lemmas

Lemma C. 1 (First-order optimality condition.). Suppose that f_{0} in a convex optimization problem is differentiable. Let \mathcal{X} denote the feasible set. Then x is optimal if and only if $x \in \mathcal{X}$ and $\nabla f_{0}(x)^{\top}(y-x) \geq 0, \forall y \in \mathcal{X}$.
Lemma C. 2 (Data processing lemma). If $Z=g(Y)$ for a deterministic function g, then $I(X ; Y) \geq$ $I(X ; Z)$.

