
Differentiable Multiple Shooting Layers
Supplementary Material

Table of Contents
A Proofs 15

A.1 Proof of Theorem 1 . 15
A.2 Proof of Proposition 1 . 16

B Additional Theoretical Results 17
B.1 Finite–Step Convergence . 17
B.2 Flows Sensitivities Dφθ,n . 18
B.3 Backward Model of Multiple Shooting Layers 18

C Additional Details on the Realization of MSLs 20
C.1 Software Implementation of Forward Sensitivity 20
C.2 Implementation of Direct Newton Method . 21
C.3 Alternative Approaches to MSL Inference . 22
C.4 Implementation of Backward Interpolated Adjoint 23
C.5 Broader Impact . 24

D Neural Network Control of the Timoshenko Beam 25
D.1 Port–Based Modeling of the Timoshenko Beam 25
D.2 Discretization of the Problem . 26
D.3 Control by Neural Approximators and MSL . 27

E Experimental Details 28
E.1 Variational Multiple Shooting Layers . 28
E.2 Optimal Limit Cycle Control via Multiple Shooting Layers 28
E.3 Neural Optimal Boudary Control of the Timoshenko Beam 31
E.4 Fast Neural CDEs for Time Series Classification 33

14

A Proofs

A.1 Proof of Theorem 1

Theorem 1 (Quadratic fixed-point tracking). If fθ is twice continuously differentiable in z then

‖B∗p+1 − B̄∗p‖2 ≤Mη2
p (3.4)

for some M > 0. B̄∗p is the result of one Newton iteration applied to B∗p .

Proof. For compactness, we neglect the dependence of γθ, gθ on z0 and we write γ(B, θ) =
γθ(B, z0), g(B, θ) = gθ(B, z0). Recalling that by definition of B∗p+1 it holds

g(B∗p+1, θp+1) = B∗p+1 − γ(B∗p+1, θp+1) = 0, (A.1)

we write the 2-jet of the matching equation at B∗p ,

g(B∗p+1, θp+1) = g(B∗p , θp+1) + Dg(B∗p , θp+1)
[
B∗p+1 −B∗p

]

+
1

2
D2g(B∗p , θp+1)

[
B∗p+1 −B∗p

]⊗2
+ o(‖B∗p+1 −B∗p‖32)

(A.2)

where Dg, D2g can be computed thanks to the assumptions on differentiability of fθ. From the
Newton iteration we have that

B̄∗p −B∗p = −[Dg(B∗p , θp+1)]−1g(B∗p , θp+1)

⇔ 0 = g(B∗p , θp+1) + Dg(B∗p , θp+1)
[
B̄∗p −B∗p

] (A.3)

Using 0 = g(B∗p+1, θp+1), we subtract (A.3) from (A.2) yielding

0 =������
g(B∗p , θp+1) + Dg(B∗p , θp+1)

[
B∗p+1 −B∗p

]
−������
g(B∗p , θp+1)− Dg(B∗p , θp+1)

[
B̄∗p −B∗p

]

+
1

2
D2g(B∗p , θp+1)

[
B∗p+1 −B∗p

]⊗2
+ o(‖B∗p+1 −B∗p‖32)

= Dg(B∗p , θp+1)
[
B∗p+1 −B∗p

]
− Dg(B∗p , θp+1)

[
B̄∗p −B∗p

]

+
1

2
D2g(B∗p , θp+1)

[
B∗p+1 −B∗p

]⊗2
+ o(‖B∗p+1 −B∗p‖32)

= Dg(B∗p , θp+1)
[
B∗p+1 − B̄∗p

]
+

1

2
D2g(B∗p , θp+1)

[
B∗p+1 −B∗p

]⊗2
+ o(‖B∗p+1 −B∗p‖32).

(A.4)
Being the Jacobian of gθ

Dg(B∗p , θp+1) = IN⊗Inz−Dγ(B∗p , θp+1) =

Inz × × ×
−Dφθp+1,0(b∗0,p) Inz × ×

× ×
× × −Dφθp+1,N−1(b∗N−1,p) Inz

always invertible due to the nilpotency of Dγ, we can solve (A.4) in terms for B∗p+1− B̄∗p , leading to

B∗p+1 − B̄∗p =
1

2

[
Dg(B∗p , θp+1)

]−1
D2g(B∗p , θp+1)

[
B∗p+1 −B∗p

]⊗2
+ o(‖B∗p+1 −B∗p‖32). (A.5)

Taking the norm we have

‖B∗p+1 − B̄∗p‖2 ≤
1

2
‖[Dg(B∗p , θp+1)]−1‖2‖D2g(B∗p , θp+1)‖2‖B∗p+1 −B∗p‖22. (A.6)

Using
‖B∗p+1 −B∗p‖2 ≤ ηpmθ

Lm
θ
γ

and ‖D2g(B∗p , θp+1)‖2 = ‖D2γ(B∗p , θp+1)‖2 ≤ mz
∂γ we obtain

‖B∗p+1 − B̄∗p‖2 ≤
1

2
η2
p(mθ

Lm
θ
γ)2mz

∂γ‖[Dg(B∗p , θp+1)]−1‖2. (A.7)

15

Since R = Dγ(B∗p , θp+1) is a nilpotent matrix then

[Dg(B∗p , θp+1)]−1 = [IN ⊗ Inz −R]−1 = IN ⊗ Inz +

N∑

n=1

Rn

and

‖[Dg(B∗p , θp+1)]−1‖2 ≤ 1 +

N∑

n=1

‖R‖n2 .

By Lipsichitz continuity of γ(B∗p , θp+1) we have that

‖R‖2 ≤ mz
γ

and

‖[Dg(B∗p , θp+1)]−1‖2 ≤ 1 +

N∑

n=1

(mz
γ)n

By convergence of finite geometric series we obtain

‖[Dg(B∗p , θp+1)]−1‖2 ≤
1− (mz

γ)N+1

1−mz
γ

The final bound on the tracking error norm thus becomes

‖B∗p+1 − B̄∗p‖2 ≤
1

2
η2
p(mθ

Lm
θ
γ)2mz

∂γ

1− (mz
γ)N+1

1−mz
γ

. (A.8)

The proof of the theorem is completed by setting

M >
1

2
(mθ

Lm
θ
γ)2mz

∂γ

1− (mz
γ)N+1

1−mz
γ

A.2 Proof of Proposition 1

Proposition 1 (Forward Sensitivity (Khalil, 2002)). Let φθ(z, s, t) be the solution of (2.1). Then,
v(t) = Dφθ(z, s, t) satisfies the linear matrix–valued differential equations

v̇(t) = Dfθ(t, z(t))v(t), v(s) = Inz where Dfθ denotes ∂fθ/∂z.

Proof. The following proof is adapted from (Khalil, 2002, Section 3.3). If φθ(z0, s, t) is a solution
of (2.1) at time t starting from z0 at time s, s < t; s, t ∈ [t0, tN] then

φθ(z0, s, t) = z(t) = z0 +

∫ t

s

fθ(τ, z(τ))dτ (A.9)

Differentiating under the integral sign w.r.t. z yields

Dφθ(z0, s, t) =
dz(t)

dz0
=

dz0

dz0
+

∫ t

s

∂fθ(τ, z(τ))

∂z(τ)

dz(τ)

dz0
dτ

= Inz +

∫ t

s

∂fθ(τ, z(τ))

∂z(τ)

dz(τ)

dz0
dτ

(A.10)

We denote Dfθ(t, z(t)) = ∂fθ(τ, z(τ))/∂z(τ) and we notice that dz(τ)/dz0 is the flow Jacobian
Dφθ(z0, s, τ) at time τ ∈ [s, t]. Then, the function v : [s, t]→ Rnz×nz ; τ 7→ Dφθ(z0, s, τ) satisfies

v(t) = Inz +

∫ t

s

Df(τ, z(τ))v(τ)dτ

or, in differential form, v satisfies the IVP

v̇(τ) = Df(τ, z(τ))v(τ), v(s) = Inz .

16

B Additional Theoretical Results

B.1 Finite–Step Convergence

We discuss more rigorously the intuitions on the finite–step convergence of direct Newton methods
introduced in the main text. The following results are thoroughly detailed in (Gander, 2018). We recall
that, by assuming that the first shooting parameter is correctly initialized to z0 and the numerical
integration is exact (we can perfectly retrieve the sub-flows φθ,n), the shooting parameters bkn
coincides with the exact solution of (2.1) from Newton iteraion k = n onward. Formally,

Proposition 2 (Finite–step convergence). If b00 = z0, then solution of the Newton iteration (3.2) are
such that

k ≥ n ⇒ bkn = φθ(z0, t0, tn). (B.1)

Proof. The proof is obtained by induction on the shooting parameter index n (time direction) and
follows from (Gander, 2018, Theorem 2.3).

i. (base case: n = 0) For n = 0, b00 = z0 by assumption. Moreover, the iteration (3.2) yields
bk0 = bk+1

0 = z0 for all naturals k.

ii. (induction step: n→ n+ 1) Suppose that

k ≥ n ⇒ bkn = φθ(z0, t0, tn).

We need to show that

k + 1 ≥ n+ 1 ⇒ bk+1
n+1 = φθ(z0, t0, tn+1),

to conclude the proof by induction. We notice that if we increase k to k + 1, then k + 1 is
still greater than n yielding bk+1

n = bkn = φθ(z0, t0, tn). Using (3.2), we have

bk+1
n+1 = φθ,n(bkn) + Dφθ,n(bkn)

(
bk+1
n − bkn

)

= φθ,n(φθ(z0, t0, tn)) + 0 by induction hypothesis bkn = bk+1
n = φθ(z0, t0, tn);

= φθ(z0, t0, tn+1) by the flow property of ODE solutions;

where the induction hypothesis has been used thanks to the fact that k+1 ≥ n+1⇒ k ≥ n.

The above result can be also extended to the zeroth–order (parareal) method as follows.

Proposition 3 (Finite–step convergence w/ zeroth–order Jacobian approximation). If b00 = z0, then
solution of the approximate Newton iteration

bk+1
n+1 = φθ,n(bkn) + ψθ,n(bk+1

n)− ψθ,n(bkn) (B.2)

are such that
k ≥ n ⇒ bkn = φθ(z0, t0, tn). (B.3)

Proof. The proof is identical to the one Proposition 2 where (B.2) is used in the induction step and
noticing that the correction term ψθ,n(bk+1

n)− ψθ,n(bkn) nullifies for k > n by induction hypothesis
bkn = bk+1

n = φθ(z0, t0, tn).

Even though Proposition 2 and Proposition 3 show that the direct Newton method (and its zeroth-order
approximation) will always converge to the exact solution of (2.1), full convergence after N iterations
is completely useless from a practical perspective. If we suppose to use a fine solver φ̃θ,n to obtain in
parallel accurate numerical approximations of the sub–flows φθ,n and we iterate (3.2) N times, we
will also have executed the parallel integration N times. Thus, one could also just have applied the
same fine solver sequentially across the N boundary points tn with one processing thread and obtain
the same result. For this reason, we believe that tracking Theorem 1 is a key result to obtain large
speedups in the machine learning applications of MSLs.

17

B.2 Flows Sensitivities Dφθ,n

The most computationally demanding stage of the MSL inference is without any doubts the correction
term

Dφθ,n(bkn)
(
bk+1
n − bkn

)

of the direct Newton iteration (3.2). In this paper, we propose to either use the forward sensitivity
approach of Proposition 1 or to rely on the zeroth–order approximation of parareal. Moreover, we
discouraged the use of both reverse–mode AD and backward adjoint sensitivities to compute the full
Jacobians Dφθ,n due to their higher memory or computational cost.

Sensitivities with N − k jvps A common feature among the aforementioned approaches (but the
parareal) is that all Dφθ,n can be computed in parallel at the beginning of each Newton iteration
with a single call of the sensitivity routine. An alternative sequential approach relies on computing
Dφθ,n(bkn)

(
bk+1
n − bkn

)
directly as a jvp during each step of (3.2). This method avoids the compu-

tation of the full Jacobians at cost of having to call the jvp routine N − k times at each Newton
iteration. In such case the only parallel operation performed is the integration of the sub–flows φθ,n.
Nonetheless, we believe that this direction is worth to be explored in future works.

B.3 Backward Model of Multiple Shooting Layers

We show how MSLs can be trained via standard gradient descent techniques where gradients can be
either computed by back–propagating through the operations of the forward pass (parallel/memory
intensive) or by using the convergence property of direct Newton method and directly apply a
interpolated adjoint routine5 (sequential/memory efficient). Although we believe that these two
approaches to backpropagation are sufficient within the scope of this manuscript as they allow for
substantial computational speedups and robustness, we hereby report further theoretical considerations
on the backward pass of MSLs. A thorough algorithmic and experimental analysis of the following
content is a promising research direction for future work.

Implicit differentiation of MSLs As repeatedly pointed out throughout the paper, MSLs are
implicit models and satisfy the implicit relation

B∗ : B∗ = γθ(B
∗, z0). (B.4)

It thus make sense to interpret the backward pass of MSLs in an implicit sense. In particular, implicit
differentiation of the relation (B.4) at B∗ leads to the following loss gradients.

Theorem 2 (Implicit Gradients). Consider a smooth loss function Lθ. It holds

dLθ
dθ

=
∂Lθ
∂θ

+
∂Lθ
∂`y

∂`y
∂B∗

[Inz ⊗ IN − Dγθ(B
∗)]−1 ∂γθ

∂θ
(B.5)

where Dγθ(B
∗, z0) ∈ RNnz×Nnz is the Jacobian of γθ computed at B∗.

Proof. By application of the chain rule to the MSL forward model (2.3) we obtain

dLθ
dθ

=
∂Lθ
∂θ

+
∂Lθ
∂`y

∂`y
∂B∗

dB∗

dθ
.

With
gθ(B

∗) = 0 ⇒ B∗ − γ(B∗, z0) = 0

⇔ ∂gθ(B
∗)

∂θ
+ [Inz ⊗ IN − Dγθ(B

∗)]
dB∗

dθ
= 0

⇔ dB∗

dθ
= [Inz ⊗ IN − Dγθ(B

∗)]−1 ∂γθ
∂θ

.

Thus,
dLθ
dθ

=
∂Lθ
∂θ

∂Lθ
∂`y

∂`y
∂B∗

[Inz ⊗ IN − Dγθ(B
∗)]−1 ∂γθ

∂θ

5Implementation details are provided in Appendix C.4

18

where the Jacobian Dγθ(B
∗) is computed as

Dγθ(B
∗) =

× × × × ×
Dφθ,0(b∗0) × × × ×
× Dφθ,1(b∗1) × × ×

× × ×

× × × Dφθ,N−1(b∗N−1) ×

and

∂γθ
∂θ

=

0nz
∂φθ,0(b0)

∂θ
...

∂φθ,N−1(bN−1)

∂θ

The implicit differentiation routine suggested by Theorem 2 presents two terms which appear to be
very demanding both memory and computation–wise:

(i) The inverse Jacobian [Inz ⊗ IN − Dγθ(B
∗)]−1 of the implicit relation;

(ii) The sub–flows sensitivities to the model parameters θ.

In order to retrieve (i) in standard Deep Equilibrium Models Bai et al. (2019), one should either com-
pute the full–Jacobian at the fixed point via AD and invert it or “recycle” its low–rank approximation
from the Quasi–Newton method of the forward pass. In the case of MSLs we can take advantage of
the special structure of the implicit relation to obtain the exact Jacobian inverse in a computationally
efficient manner. In fact, if fw–sensitivity has been used in the forward pass to compute B∗, then
the sensitivities of the sub–flows computed at the last step K of the Newton iteration Dφθ,n(bKn)
can be stored and re–used to construct the Jacobian Dγθ. Further, due to the nilpotency of Dγθ the
inverse of the total Jacobian can be retrieved in closed form by the finite matrix power series

[Inz ⊗ IN − Dγθ(B
∗)]−1

= Inz ⊗ IN +

N∑

n=1

[Dγθ(B
∗)]n.

Finally, (ii) may be indirectly computed with a single vjp

v>
∂γθ(B

∗, z0)

∂θ

with v> being a 1 by Nnθ row vector defined as

v> =
∂Lθ
∂`y

∂`y
∂B∗

[
Inz ⊗ IN +

N∑

n=1

[Dγθ(B
∗)]n

]

leading to the implicit cost gradient with a single call of the AD.

19

C Additional Details on the Realization of MSLs

Effective time–parallelization of MSLs requires implementation of specialized computational primi-
tives. In example, forward sensitivity methods benefit from a breakdown of matrix–Jacobian products
into a vmapped vector–Jacobian products. Here, we provide code for several key methods and classes
which have been incorporated in the torchdyn (Poli et al., 2020b) library for neural differential
equations and implicit models.

C.1 Software Implementation of Forward Sensitivity

Forward sensitivity analysis is extensively used in MSLs to compute dφθ,n/dbn in parallel for each
shooting parameter bn, n = 0, . . . , N − 1. We showcase how this can be efficiently implemented in
Pytorch (Paszke et al., 2019). Although the implementation fully accommodates batches nb of data,
i.e. each bn is a nb by nz matrix, we will limit the algorithmic analysis to the unitary batch dimension.
The forward sensitivity algorithm aims at computing the solution of the differential equation

(
żn(t)
v̇n(t)

)
=

(
fθ(t, zn(t))

Dfθ(t, zn(t))vn(t)

)
,

(
żn(0)
v̇n(0)

)
=

(
bn
Inz

)
, t ∈ [tn, tn+1] = Tn

for all n, to return φθ,n = zn(tn+1) and dφθ,n/dbn = vn(tn+1). Let Z and V be the tuples
containing all zn and vn,

Z = (z0, z1, . . . , zN−1) ∈
N︷ ︸︸ ︷

Rnz × · · · × Rnz ≡ RN×nz

V = (v0, v1, · · · , vN−1) ∈ Rnz×nz × · · · × Rnz×nz︸ ︷︷ ︸
N

≡ RN×nz×nz .

Given a tuple of time instants T = (τ0, τ1, . . . , τN−1) ∈ [t0, t1]× [t1, t1]× [tN−1, tN] ⊂ RN×1, fθ
can evaluated in parallel on T and Z as the number N of shooting parameters bn and sub–intervals
[tn, tn+1] only accounts for a batch dimension. From a software perspective, we can obtain

F (T,Z) = (fθ(τ
0, z0), . . . , fθ(τ

N−1, zN−1))

in a single call of the function fθ, e.g. an instantiated PyTorch’s nn.Module object. Conversely,
when attempting to compute “∂F∂Z V ” in parallel, additional software infrastructure is necessary. The
main obstacle is that each Jacobian–matrix product (jmp)

∂fθ(t, zn(t))

∂zn
vn(t)

generally requires nz autograd calls. Following the Jax’s (Bradbury et al., 2018) approach, we
make use of a PyTorch implementation6 of vectorizing maps (vmaps) to distribute the computation
of the individual Jacobian–vectors products (in batch for each n = 0, . . . , N − 1) and compose the
jmp row–by–row or column–by–column. In particular we define the vmapped_jmp function

1 def vmapped_jmp(y, z, v):
2 """ Parallel computation of matrix Jacobian products with vmap
3 """
4 def get_jvp(v):
5 return torch.autograd.grad(y, z, v, retain_graph=True)[0]
6 return vmap(get_jvp, in_dims=2, out_dims=2)(v)

The forward sensitivity can then be computed as follows

1 class ForwardSensitivity(nn.Module):
2 "Forward sensitivity for ODEs. Integrates the ODE returning the state and

forward sensitivity"↪→
3 def __init__(self, f):
4 super().__init__()

6see https://pytorch.org/docs/master/generated/torch.vmap.html

20

https://pytorch.org/docs/master/generated/torch.vmap.html

5 self.f = f
6

7 def forward(self, z0, t_span, odeint_func, solver='rk4', atol=1e-5,
rtol=1e-5):↪→

8 I = eye(z0.shape[-1]).to(z0)
9 # handle regular `batch, dim` case as well as `seq_dim, batch, dim`

10 v0 = I.repeat(z0.shape[0], 1, 1) if len(z0.shape) < 3 else
I.repeat(*z0.shape[:2], 1, 1)↪→

11

12 self.z_shape, self.v_shape = z0.shape, v0.shape
13

14 zv0 = self._ravel_state(z0, v0)
15 zvT = odeint_func(self._sensitivity_dynamics, zv0, t_span,
16 solver=solver)[1]
17 zT, vT = self._unravel_state(zvT)
18 return zT, vT
19

20 def _sensitivity_dynamics(self, t, zv):
21 z, v = self._unravel_state(zv)
22 # compute vector field
23 dz = self.f(t, z.requires_grad_(True))
24 # compute fw sensitivity via mjp
25 dv = self._mjp(dz, z, v)
26 return self._ravel_state(dz, dv)
27

28 def _jmp(self, f, z, v):
29 """Parallel computation of matrix jacobian products with vmap
30 """
31 def get_vjp(v):
32 return torch.autograd.grad(f, z, v, retain_graph=True)[0]
33 return vmap(get_vjp, in_dims=2, out_dims=2)(v)
34

35 def _ravel_state(self, z, v):
36 v = v.reshape(*z.shape[:-1], -1)
37 zv = torch.cat([z, v], -1)
38 return zv
39

40 def _unravel_state(self, zv):
41 z, v = zv[...,:self.z_shape[-1]], zv[...,self.z_shape[-1]:]
42 v = v.reshape(*z.shape, self.z_shape[-1])
43 return z, v

where odeint is ODE solver utility of the torchdyn (Poli et al., 2020b) library.

C.2 Implementation of Direct Newton Method

Forward sensitivity Newton (fw sensitivity) MSL is a variant of the proposed model class which
obtains the quantities Dφθ,n directly by augmenting the time–parallelized forward dynamics through
the ForwardSensitivity class previously detailed. During the evaluation of the advancement func-
tion γθ(B, z0) = (z0, φθ(b0, t0, t1), . . . , φθ(bN−1, tN−1, tN)), ForwardSensitivity maximizes
reutilization of vector field fθ evaluations by leveraging the results to advance both standard as well
as sensitivity dynamics. This provides an overall reduction in the potentially expensive evaluation of
the neural network fθ, compared to parareal (zeroth–order MSL). We hereby report the PyTorch
implementation for both the fw sensitivity MSL and zeroth–order MSL methods

1 class MSForward(MShootingSolverTemplate):
2 """Multiple shooting solver using forward sensitivity analysis on the

matching conditions of shooting parameters"""↪→
3 def __init__(self, coarse_method='euler', fine_method='rk4'):
4 super().__init__(coarse_method, fine_method)
5 self.fsens = None
6

21

7 def root_solve(self, odeint_func, f, x, t_span, B, fine_steps, maxiter):
8 if self.fsens is None:
9 self.fsens = ForwardSensitivity(f)

10

11 dt, n_subinterv = t_span[1] - t_span[0], len(t_span)
12 sub_t_span = torch.linspace(0, dt, fine_steps).to(x)
13 i = 0
14 while i <= maxiter:
15 i += 1
16 with torch.set_grad_enabled(True):
17 B_fine, V_fine = self.fsens(B[i-1:], sub_t_span,

odeint_func=odeint_func,↪→
18 solver=self.fine_method)
19 B_fine, V_fine = B_fine[-1], V_fine[-1]
20 B_out = torch.zeros_like(B)
21 B_out[:i] = B[:i]
22 B_in = B[i-1]
23 for m in range(i, n_subinterv):
24 B_in = B_fine[m-i] + torch.einsum('bij, bj -> bi', V_fine[m-i],

B_in - B[m-1])↪→
25 B_out[m] = B_in
26 B = B_out
27 return B

1 class MSZero(MShootingSolverTemplate):
2 def __init__(self, coarse_method='euler', fine_method='rk4'):
3 """Multiple shooting solver using Parareal updates (zero-order

approximation of the Jacobian)↪→
4 """
5 super().__init__(coarse_method, fine_method)
6 def root_solve(self, odeint_func, f, x, t_span, B, fine_steps, maxiter):
7 dt, n_subinterv = t_span[1] - t_span[0], len(t_span)
8 sub_t_span = torch.linspace(0, dt, fine_steps).to(x)
9 i = 0

10 while i <= maxiter:
11 i += 1
12 B_coarse = odeint_func(f, B[i-1:], sub_t_span,

solver=self.coarse_method)[1][-1]↪→
13 B_fine = odeint_func(f, B[i-1:], sub_t_span,

solver=self.fine_method)[1][-1]↪→
14 B_out = torch.zeros_like(B)
15 B_out[:i] = B[:i]
16 B_in = B[i-1]
17 for m in range(i, n_subinterv):
18 B_in = odeint_func(f, B_in, sub_t_span,

solver=self.coarse_method)[1][-1]↪→
19 B_in = B_in - B_coarse[m-i] + B_fine[m-i]
20 B_out[m] = B_in
21 B = B_out
22 return B

In the above, we employ the finite–step convergence property of Newton MSL iterations to avoid
redundant computation. More specifically, at iteration k we do not advance shooting parameters
bn, n < k by slicing the tensor B during γθ evaluations. Similarly, updates in the form (3.2) are not
performed for shooting parameters already at convergence.

C.3 Alternative Approaches to MSL Inference

On Newton and Quasi-Newton methods for MSL The root–finding problem arising in MSLs
can also be approached by standard application of Newton or Quasi–Newton algorithms. Although
Quasi–Newton algorithms can provide improved computational efficiency by maintaining a low–rank
approximation of the Jacobian Dgθ(B, z0) rather than computing it from scratch every iteration, this

22

advantage does not translate well to the MSL case. Popular examples include, e.g., the Broyden
family Broyden (1965) employed in Deep Equilibrium Models (DEQs) Bai et al. (2019). As discussed
in the main text, thanks to the special structure of the Jacobian of the MSL problem, the direct Newton
algorithm (3.2) can be applied without computation and inversion of the full Jacobian.

Root finding via gradient descent A completely different approach to solve the implicit forward
MSL pass (2.3) is to tackle the root–finding via some gradient–descent (GD) method minimizing
‖gθ(B)‖22, i.e.

B∗ = argmin
1

2
‖gθ(B)‖22.

In the case of MSL, all GD solutions (i.e. minima of ‖gθ(B)‖22) are the same of the the root finding
ones. This can be intuitively checked by inspecting the zeros of the gradient, i.e.

∇B
1

2
‖gθ(B)‖22 = Dgθ|Bgθ(B)

and, since Dgθ|B is nonsingular for all B,

∀B̃∗ : ∇B
1

2
‖gθ(B̃∗)‖22 = 0⇒ gθ(B̃

∗) = 0.

C.4 Implementation of Backward Interpolated Adjoint

We provide pseudo–code for our implementation of MSLs with backward gradients obtained via
interpolated adjoints. The implementation relies on cubic interpolation utilities provided by torchcde
Kidger et al. (2020b). Interpolation is used to obtain values of z(t) without a full backsolve from
z(T).

1 def _gather_odefunc_interp_adjoint(vf, vf_params, solver, atol, rtol,
interpolator, solver_adjoint, atol_adjoint, rtol_adjoint, integral_loss,
problem_type, maxiter=4, fine_steps=4):

↪→
↪→

2 "Prepares definition of autograd.Function for interpolated adjoint
sensitivity analysis of the above `ODEProblem`"↪→

3 class _ODEProblemFunc(Function):
4 @staticmethod
5 def forward(ctx, vf_params, x, t_span, B=None):
6 t_sol, sol = generic_odeint(problem_type, vf, x, t_span, solver,

atol, rtol, interpolator, B,↪→
7 True, maxiter, fine_steps)
8 ctx.save_for_backward(sol, t_span, t_sol)
9 return t_sol, sol

10

11 @staticmethod
12 def backward(ctx, *grad_output):
13 sol, t_span, t_sol = ctx.saved_tensors
14 vf_params = torch.cat([p.contiguous().flatten() for p in

vf.parameters()])↪→
15

16 # initialize adjoint state
17 xT, λT, µT = sol[-1], grad_output[-1][-1],

torch.zeros_like(vf_params)↪→
18 λT_nel, µT_nel = λT.numel(), µT.numel()
19 xT_shape, λT_shape, µT_shape = xT.shape, λT.shape, µT.shape
20 A = torch.cat([λT.flatten(), µT.flatten()])
21

22 spline_coeffs = natural_cubic_coeffs(x=sol.permute(1, 0,
2).detach(), t=t_sol)↪→

23 x_spline = CubicSpline(coeffs=spline_coeffs, t=t_sol)
24

25 # define adjoint dynamics
26 def adjoint_dynamics(t, A):
27 if len(t.shape) > 0: t = t[0]
28 x = x_spline.evaluate(t).requires_grad_(True)

23

29 t = t.requires_grad_(True)
30 λ, µ = A[:λT_nel], A[-µT_nel:]
31 λ, µ = λ.reshape(λT.shape), µ.reshape(µT.shape)
32 with torch.set_grad_enabled(True):
33 dx = vf(t, x)
34 dλ, dt, *dµ = tuple(grad(dx, (x, t) +

tuple(vf.parameters()), -λ,↪→
35 allow_unused=True,

retain_graph=False))↪→
36

37 if integral_loss:
38 dg = torch.autograd.grad(integral_loss(t, x).sum(), x,

allow_unused=True, retain_graph=True)[0]↪→
39 dλ = dλ - dg
40

41 dµ = torch.cat([el.flatten() if el is not None else
torch.zeros(1)↪→

42 for el in dµ], dim=-1)
43 return torch.cat([dλ.flatten(), dµ.flatten()])
44

45 # solve the adjoint equation
46 n_elements = (λT_nel, µT_nel)
47 for i in range(len(t_span) - 1, 0, -1):
48 t_adj_sol, A = odeint(adjoint_dynamics, A, t_span[i - 1:i +

1].flip(0), solver, atol=atol, rtol=rtol)↪→
49 # prepare adjoint state for next interval
50 A = torch.cat([A[-1, :λT_nel], A[-1, -µT_nel:]])
51 A[:λT_nel] += grad_output[-1][i - 1].flatten()
52

53 λ, µ = A[:λT_nel], A[-µT_nel:]
54 λ, µ = λ.reshape(λT.shape), µ.reshape(µT.shape)
55 return (µ, λ, None, None, None)
56

57 return _ODEProblemFunc

C.5 Broader Impact

Differential equations are the language of science and engineering. As methods (Jia and Benson,
2019) and software frameworks (Rackauckas et al., 2019; Li et al., 2020; Poli et al., 2020b) are
improved, yielding performance gains or speedups (Poli et al., 2020a; Kidger et al., 2020a; Pal et al.,
2021), the range of applicability of neural differential equations is extended to more complex and
larger scale problems. As with other techniques designed to reduce overall training time, we expect a
net positive environment impact from the adoption of MSLs in the framework.

Application domains for MSLs include environments with real–time constraints, for example control
and high frequency time series prediction. Shorter inference wall–clock and training iteration times
should yield more robust models that can, in example, be retrained online at higher frequencies as
more data is collected.

24

D Neural Network Control of the Timoshenko Beam

In this section we derive the dynamic model of the Timoshenko beam, the boundary control and the
structure–preserving discretization of the problem.

D.1 Port–Based Modeling of the Timoshenko Beam

Linear distributed port-Hamiltonian systems (Macchelli et al., 2004) in one-dimensional domains
take the form

∂z

∂t
(x, t) = P1

∂

∂x
(L(x)z(x, t)) + (P0 −G0)L(x)z(x, t) (D.1)

with distributed state z ∈ Rnz and spatial variable x ∈ [a, b]. Moreover, P1 = P>1 and invertible,
P0 = −P>0 , G0 = G>0 ≥ 0, and L(·) is a bounded and Lipschitz continuous matrix-valued function
such that L(x) = L>(x) and L(x) ≥ κI , with κ > 0, ∀x ∈ [a, b]. Given the Hamiltonian (total
energy) of the system

H = ‖z‖2L = 〈z, Lz〉L2 ,

its variational derivative corresponds to the term L(x)z(x, t):

δH

δz
(z(x, t), x) = L(x)z(x, t)

A particular example from continuum mechanics that falls within the systems class (D.1) is the
Timoshenko beam with no dissipation (Macchelli and Melchiorri, 2004). This system takes the
following form:

∂

∂t

pt
pr
εr
εt

 =

0 0 0 ∂z
0 0 ∂z 1
0 ∂z 0 0
∂z −1 0 0

(ρA)−1 0 0 0
0 (Iρ)

−1 0 0
0 0 EI 0
0 0 0 KshGA

pt
pr
εr
εt

 , (D.2)

where ρ is the mass density, A is the cross section area, Iρ is the rotational inertia, E is the Young
modulus, I the cross section moment of area, Ksh = 5/6 is the shear correction factor and G the
shear modulus.

For this examples the matrices P0, G0, P1, L and are given by

P0 =

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 , P1 =

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 , G0 = 04×4,

L(z) =

(ρA)−1 0 0 0
0 (Iρ)

−1 0 0
0 0 EI 0
0 0 0 KshGA

 .

(D.3)

We investigate the boundary control of the Timoshenko beam model. As control input, the following
selection is made (cantilever-free beam)

π∂ =

EIεr(b, t)
KshGAεt(b, t)
(ρA)−1pt(a, t)
(Iρ)

−1pr(a, t)

 (D.4)

Notice that the control expression can be rewritten compactly as follows

π∂ = B∂
(
Lx(b, t)
Lx(a, t)

)
, where B∂ =

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

 . (D.5)

25

To put system (D.2) in impedance form, the outputs are selected as follows

y∂ =

(ρA)−1pt(b, t)
(Iρ)

−1pr(b, t)
−EIεr(a, t)
−KshGAεt(a, t)

 (D.6)

This is compactly written as

y∂ = C∂
(
Lx(b, t)
Lx(a, t)

)
, where C∂ =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −1

 . (D.7)

With this selection of inputs and outputs, the rate of the Hamiltonian is readily computed
Ḣ = π>∂ y∂ . (D.8)

Within the purpose of this paper we restrict to the case of a cantilever beam undergoing a control
action at the free end

π∂ =

π∂,1
π∂,2

0
0

 , (D.9)

where π∂,1 is the control torque and u∂,2 is the control force.

D.2 Discretization of the Problem

To discretize system (D.2), since the problem is linear, one can either rely on a energy formulation or
a co-energy one. Given the coenergy variables

vt
vr
σr
σt

 =

(ρA)−1 0 0 0
0 I−1

ρ 0 0
0 0 EI 0
0 0 0 KshGA

pt
pr
εr
εt

 (D.10)

and introducing the bending and shear compliance
Cb = (EI)−1, Cs = (KshGA)−1, (D.11)

system (D.2) is rewritten as

ρA 0 0 0
0 Iρ 0 0
0 0 Cb 0
0 0 0 Cs

 ∂

∂t

vt
vr
σr
σt

 =

0 0 0 ∂z
0 0 ∂z 1
0 ∂z 0 0
∂z −1 0 0

vt
vr
σr
σt

 , (D.12)

A weak form suitable for mixed finite elements is readily obtained by considering its weak form
using test functions (µt, µr, νr, νt) and the integration by parts applied to the first two lines. In
this formulation, the Dirichlet boundary condition have to be incorporated as essential boundary
conditions

〈µt, ρA∂tvt〉Ω = −〈∂zµt, σt〉Ω + µt(b)π∂,2,

〈µr, Iρ∂tvr〉Ω = −〈∂zµr, σr〉Ω + 〈µr, σt〉Ω + µr(b)π∂,1,

〈νr, Cb∂tσr〉Ω = 〈νr, ∂zvr〉Ω ,
〈νt, Cs∂tσt〉Ω = 〈νt, ∂zvt〉Ω − 〈νt, vr〉Ω ,

(D.13)

where Ω = [a, b] and 〈f, g〉Ω =
∫ b
a
fg dx. Introducing the following Galerkin basis functions

µt =

Nvt∑

i=1

ϕivtµ
i
t, µr =

Nvr∑

i=1

ϕivrµ
i
r, νr =

Nσr∑

i=1

ϕiσrν
i
r, νt =

Nσt∑

i=1

ϕiσtν
i
r,

vt =

Nvt∑

i=1

ϕivtv
i
t, vr =

Nvr∑

i=1

ϕivrv
i
r, σr =

Nσr∑

i=1

ϕiσrσ
i
r, σt =

Nσt∑

i=1

ϕiσtσ
i
r,

(D.14)

26

a finite-dimensional system is obtained

MρA × × ×
× MIρ × ×
× × MCb ×
× × × MCs

¯
v̇t

¯
v̇r

¯
σ̇r

¯
σ̇t

 =

× × × −D>1
× × −D>2 −D>0
× D2 × ×
D1 D0 × ×

¯
vt

¯
vr

¯
σr

¯
σt

+

× BF
BT ×
× ×
× ×

[
π∂,1
π∂,2

]
,

[
y∂,1
y∂,2

]
=

[
× BT × ×
BF × × ×

]

¯
vt

¯
vr

¯
σr

¯
σt

 .

(D.15)

The mass matrices Mρh, MIθ , MCb , MCs are computed as

M ij
ρA =

〈
ϕivt , ρAϕ

j
vt

〉
Ω
,

Mmn
Iρ =

〈
ϕmvr , Iρϕ

n
vr

〉
Ω
,

Mpq
Cb

=
〈
ϕpσr , Cbϕ

q
σr

〉
Ω
,

Mrs
Cs =

〈
ϕlσt , Csϕ

s
σt

〉
Ω
,

(D.16)

where i, j ∈ {1, Nvt}, m, n ∈ {1, Nvr}, p, q ∈ {1, Nσr}, l, s ∈ {1, Nσt}. Matrices D1, D2, D0

assume the form
Dlj

1 =
〈
ϕlσt , ∂zϕ

j
vT

〉
Ω
,

Dpn
2 =

〈
ϕpσr , ∂zϕ

n
vr

〉
Ω
,

Drn
0 = −

〈
ϕrσt , ϕ

n
vr

〉
Ω
. (D.17)

Vectors BF , BT are computed as (i ∈ 1, Nvt and (m ∈ 1, Nvr)

BiF = ϕivt(b), BjT = ϕjvr (b). (D.18)

D.3 Control by Neural Approximators and MSL

Due to invertibility of the mass matrix we can reduce the above equation to a controlled linear system
representing the discretized dynamics of the boudary-controlled Tymoshenko beam

¯
ż(t) = A

¯
z(t) +Bπ∂(t)

y∂(t) = C
¯
z(t)

(D.19)

with

z =

¯
vt

¯
vr

¯
σr

¯
σt

 , π∂ =

[
π∂,1
π∂,2

]
, y∂ =

[
y∂,1
y∂,2

]
(D.20)

and

A =

× × × −M−1
ρAD

>
1

× × −M−1
Iρ
D>2 −M−1

Iρ
D>0

× M−1
Cb
D2 × ×

M−1
Cs
D1 M−1

Cs
D0 × ×

 ,

B =

× M−1
ρABF

M−1
Iρ
BT ×
× ×
× ×

 , C =

[
× BT × ×
BF × × ×

]
(D.21)

We consider a parametrization u∂,θ with parameters θ of the boundary controller π∂ via a multi–
layer perceptron. The neural network controller π∂,θ takes as input the discretized state of the PDE
π∂(t) = π∂,θ(

¯
z(t)), t 7→ z 7→ u∂,θ. We apply the MSL to the controlled system

¯
ż(t) = A

¯
z(t) +Bπ∂,θ(

¯
z(t))

Further details on the experimental setup and numerical results are given in Appendix E.3.

27

E Experimental Details

Experimental setup Experiments have been performed on a workstation equipped with a 48
threads AMD RYZEN THREADRIPPER 3960X a NVIDIA GEFORCE RTX 3090 GPUs and two
NVIDIA RTX A6000. The main software implementation has been done within the PyTorch
framework. Some functionalities rely on torchdyn (Poli et al., 2020b) ODE solvers and torchcde
(Kidger et al., 2020b) cubic splines interpolation utilities for the interpolated version of the adjoint
gradients.

Common experimental settings In all experiments to setup the multiple shooting problem, we
choose an evenly spaced discretization of the time domain [t0, tN], i.e.

∀n = 1, . . . , N tn = tn−1 +
1

N
(tN − t0)

E.1 Variational Multiple Shooting Layers

Dataset We apply variational multiple shooting layers (vMSL) to trajectory generations of various
dynamical systems. In particular, we consider the Van Der Pol oscillator

ṗ = q

q̇ = α(1− p2)q − p
as well as the Rayleigh Duffing system

ṗ = q

q̇ = αp− 2p3 + (1− q2)q

We generate a dataset of 10000 trajectories by solving the above systems until T = 1. Each trajectory
consists of 20 regularly sampled observations subject to additive noise ε where ε ∼ N (0,Σ), with Σ
not diagonal i.e state–correlated noise.

Models and training Both vMSLs as well as Latent Neural ODE baselines are trained for Latent
Neural GDEs are trained for 300 epochs with ADAM (Kingma and Ba, 2014). We schedule the
learning rate using one cycle policies (Smith and Topin, 2019) where the cycle peak for the learning
rate is 10−2, set to be reached at epoch 100. The encoder architecture is shared across all models as
is defined as two layers of temporal convolutions (TCNs), followed by a linear layer operating on
flattened features. Between each TCN layer we introduce a maxpool operator to reduce sequence
length. We solve Neural ODEs with dopri5 solver with tolerances 10−4.

We experiment with both fw sensitivity MSL as well as zeroth–order MSL as vMSL decoders.
In all cases, we perform a single iteration of the chosen forward method. The parallelized ODE solves
apply a single step of Runge–Kutta 4. We note that vMSL number of function evaluation (NFE)
measurements also include the initialization calls to the vector field performed by the coarse solver to
obtain shooting parameters B0. Fig. 12 provides visualizations for decoder samples (extrapolation)
of all models compared to ground–truth trajectories while Fig. 13 displays the learned vector fields of
both vMSL and Latent ODE model.

To train all models we set the output–space prior p(x̂) := N (x, σ) with σ = 0.1.

E.2 Optimal Limit Cycle Control via Multiple Shooting Layers

In the optimal control tasks we considered a simple mechanical system of the form

q̇(t) = p(t)

ṗ(t) = πθ(q(t), p(t))
, z = [q, p].

evolving in a time span [t0, tN] = [0, 10] and we fixed N = 99. The task was the one of stabilizing
the state of different loci Sd = {z ∈ Z : sd(z) = 0} by minimizing |sd(z(t))|, sd : [q(t), p(t)] 7→
sd(q(t), p(t)). Specifically, we chose the following loci of points

1. sd(q(t), p(t)) = q2(t) + p2(t)− 1 [unit circle]

2. sd(q(t), p(t)) =
√

(q(t)− α)2 + p2(t)
√

(q(t) + α)2 + p2(t)− k

28

0 1 2 3 4

−2

0

2

P
os
it
io
n
q(
t)

Ground truth trajectories

0 1 2 3 4

−2

0

2

Extrapolation Samples of Trained Decoders
Van Der Pol oscillator

vMSL samples

0 1 2 3 4

−2

0

2

Latent Neural ODE samples

0 1 2 3 4

−5

0

5

time [s]

M
om

en
tu
m
p
(t
)

0 1 2 3 4

−5

0

5

time [s]
0 1 2 3 4

−5

0

5

time [s]

Figure 12: Samples of vMSLs and Latent Neural ODE baselines in the trajectory generation task on Van Der
Pol oscillators. The samples are obtained by querying the decoders at desired initial conditions. The models
extrapolate beyond T = 1 used in training.

Variational MSLs & Latent ODEs
vMSL Latent ODE

Learned Vector Field

SMAPE of Vector Field Reconstruction

0.1 0.2 0.3 0.4 0.1 0.2 0.3

Figure 13: Learned vector fields by vMSL and Latent ODE decoders trained on noisy trajectories of the Van
der Pol oscillator. vMSL models obtain the same result at a significantly cheaper NFE cost.

29

−2 −1 0 1 2
−2

−1

0

1

2

q

p

q2 − p2 − 1 = 0

−2 −1 0 1 2
−2

−1

0

1

2

q

p

√
(q − α)2 + p2

√
(q + α)2 + p2 − k = 0

Figure 14: Desired loci in the state space, i.e. limit cycles to be created in the vector field through the control
action uθ(q(t), p(t)).

across timestamps. The desired curves sd are displayed in Fig. 14.

We compared the performance of MSL with the one of a standard (sequential) Neural ODE trained
with dopri5 and rk4 solver. The objective was to show that MSL can achieve the same control
performance while drastically reducing the computational cost of the training.

Models and training The loss function used to train the controlled was chosen as

min
θ

1

2N |Z0|

|Z0|∑

j=0

N∑

n=0

∣∣sd
(
b∗n,j
)∣∣+ α

∥∥πθ(b∗n,j)
∥∥

1

subject to B∗j : gθ(B
∗
j , z

j
0) = 0

zj0 ∈ Z0, α ≥ 0

where B∗j = (b∗0,j · · · b∗N,j). It penalizes the distance of trajectories from the desired curve as well
as the control effort. In both the MSL and the Neural ODE baseline the controller πθ(q, p) has
been chosen as a neural network composed with two fully–connected layers of 32 neurons each and
hyperbolic tangent activation. In the forward pass of MSL we performed a single iteration of the fw
sensitivity–type algorithm. The parallelized ODE solver applies a single step of Runge–Kutta 4
to each shooting parameter bn. The backward pass has been instead performed with reverse–mode
AD. At the beginning of the training phase, the shooting parameters B0

0 have been initialized with
with the sequential dopri5 solver with tolerances set to 10−8, i.e. B0

0 = {φ̃θ(z0, t0, tn)}n. As
described in the main text, B0 has then been updated at each optimization step with the B∗ of the
previous iteration to track the changes in the parameters θ and preserving the ability to track the
“true” solution {φ̃θ(z0, t0, tn)}n with a single iteration of the Newton method (following the results
of Theorem 1). The time horizon has been set to [0, 10s] and we fixed N = 100 shooting parameters.
The baseline Neural ODE has been instead trained with standard dopri5 solver with tolerances set
to 10−5 and the sequential rk4 solver with N steps over the time horizon.

It is worth to be noticed that both the parallelized rk4 integration step of MSL and the sequential
rk4 integration in the Neural ODE baseline operates with the same step size of 0.1s.

All models have been trained for 2500 epochs with a single batch of 2048 initial conditions (q0, p0)
uniformly distributed in [−2, 2]× [−2, 2] with ADAM (Kingma and Ba, 2014) optimizer and learning
rate 10−4.

For the circle desired limit cycle, the training procedure has been repeated with different initial
conditions and neural network initializations in a Monte Carlo Simulation of 50 runs. Further, at
each training step of MSL we solved the forward system using dopri5 with absolute and relative
tolerances set to 10−5 to compute SMAPE with the current MSL solution across training iterations
shown in Fig. 8. Similarly, throughout the training of the baseline Neural ODE we recorded the
NFEs of the forward pass across iterations. We also repeated the training of each model recording the
wall–clock time of every training iteration.

30

0 2 4 6 8 10

−2
−1
0

1
P
os
it
io
n
q(
t)

Multiple Shooting Solution B∗

0 2 4 6 8 10

−2
−1
0

1

Trajectories of the Trained Controlled System
[sθ(q, p) = q2 + p2 − 1]

dopri5 Solution φθ(z0, t0, tN)

0 2 4 6 8 10

−5

0

5
·10−4
Absolute Error B∗ − φθ(z0, t0, tN)

0 2 4 6 8 10
−2

−1

0

1

t [s]

M
om

en
tu
m
p
(t
)

0 2 4 6 8 10
−2

−1

0

1

t [s]

0 2 4 6 8 10
−1

0

1
·10−3

t [s]
Figure 15: Trained MSL controller on the circle experiment. Comparison of the closed–loop
trajectories obtained with MSL B∗ and the dopri5 counterpart.

0 2 4 6 8 10

−2

0

2

P
os
it
io
n
q(
t)

Multiple Shooting Solution B∗

0 2 4 6 8 10

−2

0

2

Trajectories of the Trained Controlled System
[sθ(q, p) =

√
(q − α)2 + p2

√
(q + α)2 + p2 − k]

dopri5 Solution φθ(z0, t0, tN)

0 2 4 6 8 10

−2
0

2

4
·10−3
Absolute Error B∗ − φθ(z0, t0, tN)

0 2 4 6 8 10
−2
−1
0

1

2

t [s]

M
om

en
tu
m
p
(t
)

0 2 4 6 8 10
−2
−1
0

1

2

t [s]

0 2 4 6 8 10
−4
−2
0

2

·10−3

t [s]
Figure 16: Trained MSL controller on the circus experiment. Comparison of the closed–loop
trajectories obtained with MSL B∗ and the dopri5 counterpart.

Analysis of results Figures 15 and 16 display the resulting trajectories of the trained MSL in the
circle and circus control tasks. In particular, we compared the last MSL forward solution B∗ with the
trajectories obtained with the accurate sequential solver with the trained πθ.

We also notice that the MSL and Neural ODE baseline converge to very similar controllers and
closed–loop vector fields, as it is shown in Fig. 17.

In Fig. 18, we report the wall-clock times of each forward–backward passes across training iterations.
It can be noticed how MSLs encompass sequential approaches with a 10x speedup compared to
dopri5 (even though maintaining a similar accuracy in the solutions) and a 3x speedup w.r.t. the
sequential rk4 solver with the same number of steps per sub–interval.

E.3 Neural Optimal Boudary Control of the Timoshenko Beam

With this experiment we aimed at showing the scaling of fw sensitivity MSL to higher–
dimensional regimes in a neural–network optimal control tasks. In particular, we wished to investigate
if the acceleration property of one–step MSLs established by Theorem 1 holds when the system state
has hundreds of dimensions.

31

Neural Optimal Policy via MSLs
Vector Field Learned Controller

−5

0

5

πθ(z)

−2
0

2

Neural Optimal Control via dopri5
Vector Field Learned Controller

−5

0

5

πθ(z)

−2
0

2

4

Figure 17: Comparison between the learned controllers and closed loop vector fields for the MSL
and Neural ODE baseline, in different tasks.

101 102 103
10−1

100

training iteration

w
al
l-
cl
o
ck

ti
m
e
[s
] 2D Limit Cycle (Circle) Control

MSL dopri5 rk4

Figure 18: Wall-clock time of complete training iteration (forward/backward passes + GD update)
for different solvers on the circle experiment

Model and training We kept an identical training setup to the limit cycle control task of E.2.
However, we chose a time horizon of 5s and we fixed N = 500 shooting parameters. We only
compared the proposed MSL model to the sequential rk4 as we empirically noticed how dopri5 was
extremely slow to perform a single integration of the discretized PDE (possibly due to the stiffness of
the problem) and was also highly numerically unstable (high rate of underflows).

We implemented a software routine based on the fenics Alnæs et al. (2015) computational platform
to obtain the finite–elements discretization (namely, matrices A and B in (D.19)) of the PDE given
the physical parameters of the model, the number of elements, and the initial condition of the beam.
We chose a 50 elements discretization of the Timoshenko PDE for a total of 200 dimensions of the
discretized state

¯
z(t) and we initialized the distributed state as z(x, 0) = [sin(πx), sin(3πx), 0, 0].

Since the experiment focus was the numerical performance of MSL training compared to Neural
ODE baselines, we considered a simple stabilization task where the cantilever beam had to be straight.
For this reason we selected the following loss criterium

Lθ =
1

N

N∑

n=0

(
‖b∗n,σr‖2 + ‖b∗n,σt‖2

)
+ α ‖π∂,θ(b∗n)‖1

being b∗n,σr , b∗n,σt the portions of the shooting parameters corresponding to
¯
σr and

¯
σt, respectively.

The boundary controller was designed as a four-layers neural network with 16 neurons per layer,
softplus activation on the first two hidden layers and hyperbolic tangent activation on the third.

Analysis of results We report additional experimental results. Figure 19 displays the trajectories
of the system with the learned boundary control policy. It can be seen how the displacements
variables for each of the finite elements swiftly goes to zero (straight beam configuration) with zero

32

velocity proving the effectiveness of the proposed model. Finally, Fig. 20 shows the initial and final
configurations of the finite elements over the spatial domain x ∈ [0, 1].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1
−0.5

0
0.5
1

t

Velocities vt(t), vr(t) of the Finite Elements

vt
vr

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

0

1

t

Displacements σt(t), σr(t) of the Finite Elements

σt
σr

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.5

0

0.5

t

Learned Control Action π∂

π∂,1
π∂,2

Figure 19: Trajectories of the finite elements states and learned control policy along the trajectory.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

x

v t

t = 5s t = 0

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0
0.5
1

x

v r

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0
0.5
1 ·10

−2

x

σ
t

0 0.2 0.4 0.6 0.8 1
−1
−0.5

0
0.5
1 ·10

−2

x

σ
r

Initial and Final State of the Timoshenko Beam
w/ learned boundary controller π∂,θ

Figure 20: Initial and final (discretized) state of the controlled Timoshenko beam after training with
MSL.

E.4 Fast Neural CDEs for Time Series Classification

Dataset We consider sepsis prediction with data from the PhysioNet 2019 challenge. In particular,
the chosen dataset features 40335 variable length time series of patient features. The task involves

33

predicting whether patients develop sepsis over the course of their intensive care unit (ICU) stay,
using the first 72 hours of observations. Since positive and negative classes are highly imbalanced, we
report area under the receiver operating characteristic (AUROC) as task performance metric. For more
details see (Kidger et al., 2020b), which contains the experimental setup followed in this work, and
(Clifford et al., 2015) for more details on the dataset and task. The data split is performed according
to (Kidger et al., 2020b) with 70% train, 15% validation and 15% test. The 70% split corresponds to
28233 time series, which in this experiment is taken as batch size to enable application of tracking
MSLs relying on Theorem 1.

Models and training All model hyperparameters are collected from (Kidger et al., 2020b) for a
fair comparison. We train a standard neural controlled differential equation (Neural CDE) and an
equivalent Neural CDE solved with a zeroth–order MSL. Both baseline and MSL Neural CDEs use
standard reverse mode autodiff to compute gradients. We train for 1000 epochs (here equivalent to
iterations due to full–batch training) with a learning rate of 10−4 for AdamW (Loshchilov and Hutter,
2017) and with weight decay regularization of 0.03.

34

	
	Proofs
	Proof of Theorem 1
	Proof of Proposition 1

	Additional Theoretical Results
	Finite–Step Convergence
	Flows Sensitivities D,n
	Backward Model of Multiple Shooting Layers

	Additional Details on the Realization of MSLs
	Software Implementation of Forward Sensitivity
	Implementation of Direct Newton Method
	Alternative Approaches to MSL Inference
	Implementation of Backward Interpolated Adjoint
	Broader Impact

	Neural Network Control of the Timoshenko Beam
	Port–Based Modeling of the Timoshenko Beam
	Discretization of the Problem
	Control by Neural Approximators and MSL

	Experimental Details
	Variational Multiple Shooting Layers
	Optimal Limit Cycle Control via Multiple Shooting Layers
	Neural Optimal Boudary Control of the Timoshenko Beam
	Fast Neural CDEs for Time Series Classification

