
Differentiable Multiple Shooting Layers

Stefano Massaroli∗
The University of Tokyo, DiffEqML
massaroli@robot.t.u-tokyo.ac.jp

Michael Poli∗
KAIST, DiffEqML
poli_m@kaist.ac.kr

Sho Sonoda
RIKEN

Taiji Suzuki
The University of Tokyo, RIKEN

Jinkyoo Park
KAIST

Atsushi Yamashita
The University of Tokyo

Hajime Asama
The University of Tokyo

Abstract

We detail a novel class of implicit neural models. Leveraging time–parallel methods
for differential equations, Multiple Shooting Layers (MSLs) seek solutions of initial
value problems via parallelizable root-finding algorithms. MSLs broadly serve as
drop–in replacements for neural ordinary differential equations (Neural ODEs)
with improved efficiency in number of function evaluations (NFEs) and wall–
clock inference time. We develop the algorithmic framework of MSLs, analyzing
the different choices of solution methods from a theoretical and computational
perspective. MSLs are showcased in long horizon optimal control of ODEs and
PDEs and as latent models for sequence generation. Finally, we investigate the
speedups obtained through application of MSL inference in neural controlled
differential equations (Neural CDEs) for time series classification of medical data.

1 Introduction

For the last twenty years, one has tried to speed up numerical computation mainly by providing ever faster
computers. Today, as it appears that one is getting closer to the maximal speed of electronic components,
emphasis is put on allowing operations to be performed in parallel. In the near future, much of numerical

analysis will have to be recast in a more “parallel” form. Nievergelt, 1964

Figure 1: MSLs apply parallelizable root finding
methods to obtain differential equation solutions.

Discovering and exploiting parallelization opportu-
nities has allowed deep learning methods to succeed
across application areas, reducing iteration times for
architecture search and allowing scaling to larger
data sizes (Krizhevsky et al., 2012; Diamos et al.,
2016; Vaswani et al., 2017). Inspired by multiple
shooting, time–parallel methods for ODEs (Bock
and Plitt, 1984; Diehl et al., 2006; Gander, 2015;
Staff and Rønquist, 2005) and recent advances on
the intersection of differential equations, implicit
problems and deep learning, we present a novel class
of neural models designed to maximize paralleliza-
tion across time: differentiable Multiple Shooting Layers (MSLs). MSLs seek solutions of initial
value problems (IVPs) as roots of a function designed to ensure satisfaction of boundary constraints.
Figure 1 provides visual intuition of the parallel nature of MSL inference.
∗Equal contribution. Author order was decided by flipping a coin.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

An implicit neural differential equation MSL inference is built on the interplay of numerical
methods for root finding problems and differential equations. This property reveals the proposed
method as a missing link between implicit–depth architectures such as Deep Equilibrium Newtorks
(DEQs) (Bai et al., 2019) and continuous–depth models (Weinan, 2017; Chen et al., 2018; Massaroli
et al., 2020; Kidger et al., 2020b; Li et al., 2020). Indeed, MSLs can be broadly applied as drop–in
replacements for Neural ODEs, with the advantage of often requiring a smaller number of function
evaluations (NFEs) for neural networks parametrizing the vector field. MSL variants and their
computational signature are taxonomized on the basis of the particular solution algorithm employed,
such as Newton and parareal (Maday and Turinici, 2002) methods.

Faster inference and fixed point tracking Differently from classical multiple shooting methods,
MSLs operate in regimes where function evaluations of the vector field can be significantly more
expensive than surrounding operations. For this reason, the reduction in NFEs obtained through
time–parallelization leads to significant inference speedups. In full-batch training regimes, MSLs
provably enable tracking of fixed points across training iterations, leading to drastic acceleration
of forward passes (often the cost of a single root finding step). We apply the tracking technique to
optimal control of ODEs and PDEs, with speedups in the order of several times over Neural ODEs.
MSLs are further evaluated in sequence generation via a latent variant, and as a faster alternative to
neural controlled differential equations (Neural CDE) (Kidger et al., 2020b) in long–horizon time
series classification.

2 Multiple Shooting Layers

Consider the initial value problem (IVP)

ż(t) = fθ(t, z(t))

z(0) = z0
, t ∈ [0, T]. (2.1)

with state z ∈ Z ⊂ Rnz , parameters θ ∈ W for some spaceW of functions [0, T] → Rnθ and a
smooth vector field fθ : [0, T]× Z ×W → Z . For all z ∈ Z, s, t ∈ [0, T]; s < t we denote with
φθ(z, s, t) the solution of (2.1) at time t starting from z at time s , i.e. φθ(z, s, t) : (z, s, t) 7→ z(t).

The crux behind multiple–shooting methods for differential equations is to turn the initial value
problem (2.1) into a boundary value problem (BVP). We split the the time interval [0, T] in N
sub–intervals [tn, tn+1] with 0 = t0 < t1 < · · · < tN = T and define N left boundary subproblems

zn(tn) = bn and żn(t) = fθ(t, zn(t)), t ∈ [tn, tn+1] (2.2)

where bn are denoted as shooting parameters. At each time t ∈ [0, T], the solution of (2.2) matches
the one of (2.1) iff all the shooting parameters bn are identical to z(tn), bn = φθ(z0, t0, tn). Using
z(tn) = φθ(z(tn−1), tn−1, tn), we obtain the equivalent conditions

b0 = φθ(z0, t0, t0) = z0

b1 = φθ(b0, t0, t1) = z0(t1)

...
bN = φθ(bN−1, tN−1, tN) = zN−1(tN)

Let B := (b0, b1, · · · , bN) and γθ(B, z0) := (z0, φθ(b0, t0, t1), · · · , φθ(bN−1, tN−1, tN)). We can
thus turn the IVP (2.1) into the roots–finding problem the of a function gθ defined as

gθ(B, z0) = B − γθ(B, z0)

Definition 1 (Multiple Shooting Layer (MSL)). With `x : X → Z and `y : ZN+1 → Y two
affine maps, a multiple shooting layer is defined as the implicit input–output mapping
x 7→ y:

z0 = `x(x)

B∗ : gθ(B
∗, z0) = 0

y = `y(B∗)
(2.3)

2

3 Realization of Multiple Shooting Layers

The remarkable property of MSL is the possibility of computing the solutions of all the N IVPs (2.2)
in parallel from the shooting parameters in B with any standard ODE solver. This allows for a drastic
reduction in the number of vector field evaluations at the cost of a higher memory requirement for the
parallelization to take place. Nonetheless, the forward pass of MSLs requires the shooting parameters
B to satisfy the nonlinear algebraic matching condition gθ(B, z0) = 0, which has also to be solved
numerically.

3.1 Forward Model

The forward MSL model involves the synergistic combination of two main classes of numerical
methods: ODE solvers and root finding algorithms, to compute γθ(B, z0) andB∗, respectively. There
exists a hierarchy between the two classes of methods: the ODE solver will be invoked at each step k
of the root finding algorithm to compute γθ(Bk, z0) and evaluate the matching condition gθ(Bk, z0).

Newton methods for root finding Let us denote with Bk the solution of the root finding problem
at the k-th step of the Newton method and let Dgθ(Bk, z0) be the Jacobian of gθ computed in Bk.
The solution B∗ : gθ(B

∗, z0) = 0 can be obtained by iterating the Newton–Raphson fixed point
iteration

Bk+1 = Bk − α
[
IN ⊗ Inz − Dγθ(B

k, z0)
]−1 [

Bk − γθ(Bk, z0)
]

(3.1)

which converges quadratically to B∗ (Nocedal and Wright, 2006). The exact Newton iteration
theoretically (3.1) requires the inverse of the Jacobian IN ⊗ Inz − Dγθ(B

k, z0). Without the special
structure of the MSL problem, the Jacobian would have had to be the computed in full, as in the
case of DEQs (Bai et al., 2019). Being the Jacobian of dimension RNnz×Nnz , its computation with
reverse–mode automatic differentiation (AD) tools scales poorly with state dimensions and number
of shooting parameter (cubically in both nz and N).

Instead, the special structure of the MSL matching function gθ(B, z0) = B − γθ(B, z0) and its
Jacobian, opens up application of direct updates where inversion is not required.

Direct multiple shooting Following the treatment of Chartier and Philippe (1993), we can obtain
a direct formulation of the Newton iteration which does not require the composition of the whole
Jacobian nor its inversion. The direct multiple shooting iteration is derived by setting α = 1 and
multiplying the Jacobian on both sides of (3.1) yielding

[
IN ⊗ Inz − Dγθ(B

k, z0)
]

(Bk+1 −Bk) = γθ(B
k, z0)−Bk

which leads to the following update rule for the individual shooting parameters bkn (see Fig. 2):

bk+1
n+1 = φθ,n(bkn) + Dφθ,n(bkn)

(
bk+1
n − bkn

)
, bk+1

0 = z0 (3.2)

where Dφθ,n(bkn) = dφθ,n(bkn)/dbn is the sensitivity of each individual flow to its initial condition.
Due to the dependence of bk+1

n+1 on bk+1
n , a complete Newton iteration theoretically requires N − 1

sequential stages.

Single Stage of Newton Iteration

bkk

bk+1
n

bk+1
n+1φθ,n

Dφθ,n

+
− ·

+

Figure 2: One stage of Newton iteration (3.2).

Finite-step convergence Iteration (3.2) exhibits
convergence to the exact solution of the IVP (2.1)
in N − 1 steps (Gander, 2018, Theorem 2.3). In par-
ticular, given perfect integration of the sub–IVPs, bkn
coincides with the exact solution φθ(z0, t0, tn) from
iteration index k = n onward, i.e. at iteration k only
the last N − k shooting parameters are actually up-
dated. Thus, the computational and memory footprint
of the method diminishes with the number of iterations. This result can be visualized in the graphical
representation of iteration (3.2) in Figure 3 while further details are discussed in Appendix B.1.

3

Time–Iteration Propagation of Newton Scheme
n

k

l

l

l

l

l

l

l

l

l
z0 b01 b02

z0 b11 b12

z0 b21 b22

φθ

φθ

φθ

φθ φθ

φθ

l

l l

bkn

bk+1
n

bk+1
n+1

B2

B1

B0

Bk+1

Figure 3: Propagation in k and n of the Newton iteration
(3.2). The intertwining between the updates in n and k
leads to the finite step convergence result. In fact, by
setting b00 = z0, we see how the correcting term bk+1

n −
bkn multiplying the flow sensitivity Dφθ,n progressively
nullifies at the same rate in n and k. As a result, the
exact sequential solution of the IVP (2.1) unfolds on the
diagonal k = n and the only active part of the algorithm
is the one above the diagonal (highlighted in yellow).

Numerical implementation Practical imple-
mentation of the Newton iteration (3.2) re-
quires an ODE solver to approximate the flows
φθ,n(bkn) and an algorithm to compute their sen-
sitivities w.r.t. bkn. Besides direct application of
AD, we show an efficient alternative to obtain
all Dφθ,n in parallel alongside the flows, with
a single call of the ODE solver.

Efficient exact sensitivities Differentiating
through the steps of the forward numerical
ODE solver using reverse–mode AD is straight-
forward, but incurs in high memory cost,
additional computation to unroll the solver
steps and introduces further numerical error
on Dφθ,n. Even though the memory footprint
might be mitigated by applying the adjoint
method (Pontryagin et al., 1962), this still re-
quires to solve backward the N − k adjoint
ODEs and sub–IVPs (2.2), at each iteration
k. We leverage forward sensitivity analysis to
compute Dφθ,n alongside φθ,n in a single call

of the ODE solver. This approach, which might be considered as the continuous variant of forward–
mode AD, scales quadratically with nz , has low memory cost, and explicitly controls numerical
error.
Proposition 1 (Forward Sensitivity (Khalil, 2002)). Let φθ(z, s, t) be the solution of (2.1). Then,
v(t) = Dφθ(z, s, t) satisfies the linear matrix–valued differential equations

v̇(t) = Dfθ(t, z(t))v(t), v(s) = Inz where Dfθ denotes ∂fθ/∂z.

Therefore, at iteration k all Dφθ,n(bkn) can be computed in parallel while performing the forward
integration of the N − k IVPs (2.2) and their forward sensitivities, i.e.

ForwardSensitivity :
{
bkn 7→ (φθ,n,Dφθ,n)

}
k<n≤N

which enables full vectorization of Jacobian–matrix products between ∂fθ/∂z and v as well as
maximizing re–utilization of vector field evaluations. Detailed derivations are provided in Appendix
B.2. Appendix C.1 analyzes practical considerations and software implementation of the algorithm.

Zero–order approximate iteration In high state dimension regimes, the quadratic memory scaling
of the forward sensitivity method might be infeasible. If this is the case, a zero–order approximation
of the Newton iteration preserving the finite–step converge property can be employed: the parareal
method Lions et al. (2001). From the Taylor expansion of φθ,n(bk+1

n) around bkn

φθ,n(bk+1
n) = φθ,n(bkn) + Dφθ,n(bkn)

(
bk+1
n − bkn

)
+ o

(
‖bk+1
n − bkn‖22

)
,

we have the following approximant for the correction term of (3.2)

Dφθ,n(bkn)
(
bk+1
n − bkn

)
≈ φθ,n(bk+1

n)− φθ,n(bkn). (3.3)

Parareal computes the RHS of (3.3) by coarse2 numerical solutions ψθ,n(bkn), ψθ,n(bk+1
n) of

φθ,n(bkn), φθ,n(bk+1
n), leading to the forward iteration,

bb+1
n+1 = φθ,n(bkn) + ψθ,n(bk+1

n)− ψθ,n(bkn).

2e.g. few steps of a low–order ODE solver

4

x `x
B0

z0

fw sensitivty

zeroth–order
B∗ `y Lθ

reverse autodiff.

sequential adjoint
∇θLθ

Forward Backward

Figure 4: Scheme of the forward–backward pass of MSLs. After applying the input map `x to the input x and
choosing initial shooting parameters B0, the forward pass is iteratively computed with one of the numerical
schemes described in Sec. 3.1 which, in turn, makes use of some ODE solver to compute φθ,n in parallel, at each
step. Once the output y and the loss are computed computed by applying `y and Lθ to B∗, the loss gradients
can be computed by standard adjoint methods or reverse–mode automatic differentiation.

3.2 Properties of MSLs

Differentiating through MSL Computing loss gradients through MSLs can be performed by
directly back–propagating through the steps of the numerical solver via reverse–mode AD.

A memory efficient alternative is to apply the sequential adjoint method to the underlying Neural
ODE. In particular, consider a loss functions computed independently with the values of different
shooting parameters, L(x,B∗, θ) =

∑N
n=1 cθ(x, b

∗
n). The adjoint gradient for the MSL is then given

by

∇θL =

∫ T

0

λ>(t)∇θfθ(t, z(t))dt

where the Lagrange multiplier λ(t) satisfies a backward piecewise–continuous linear ODE

λ̇(t) = −Dfθ(t, z(t))λ(t) if t ∈ [tn, tn+1)

λ−(tn) = λ(tn) +∇>b cθ(x, bn) λ(T) = ∇>b cθ(x, bN)

The adjoint method typically requires the IVP (2.1) to be solved backward alongside λ to retrieve the
value of z(t) needed to compute the Jacobians Dfθ and ∇θfθ. This step introduces additional errors
on the final gradients: numerical errors accumulated on b∗N ≈ z(T) during forward pass, propagate
to the gradients and sum up with errors on the backward integration of (2.1).

Here we take a different, more robust direction by interpolating the shooting parameters and drop the
integration of (2.1) during the backward pass. The values of the shooting parameters retrieved by the
forward pass of MSLs are solution points of the IVP (2.1), i.e. b∗n = φ(z0, t0, tn) (up to the forward
numerical solver tolerances). On this assumption, we construct a cubic spline interpolation ẑ(t) of
the shooting parameters b∗n and we query it during the integration of λ to compute the Jacobians of fθ.
Further results on back–propagation of MSLs are provided in Appendix B.3. Appendix C.4 practical
aspects of the backward model alongside software implementation of the interpolated adjoint. The
entire scheme of a forward–backward pass of an MSL is shown in Figure 4.

One-step inference: fixed point tracking Consider training a MSL to minimize a twice–
differentiable loss function L(x,B∗, θ) with Lipschitz constant mθ

L through the gradient descent
iteration

θp+1 = θp − ηp∇θL(x,B∗p , θp)

where ηp is a positive learning rate andB∗p is the exact root of the matching function gθ computed with
parameters θp (i.e. the exact solution of the IVP (2.1) at the boundary points). Due to Lipschitzness of
L, we have the following uniform bound on the variation of the parameters across training iterations

‖θp+1 − θp‖2 ≤ ηpmθ
L.

If we also assume γθ to be Lipschitz continuous w.r.t z and θ with constantsmθ
γ , m

z
γ and differentiable

w.r.t. θ we can obtain the variation of the fixed point B∗ to small changes in the model parameters by
linearizing solutions around θp

B∗p+1 −B∗p = [θp+1 − θp]
∂γθp(B∗p , z0)

∂θ
+ o(‖θp+1 − θp‖22)

to obtain the uniform bound

‖B∗p+1 −B∗p‖2 ≤ ηpmθ
Lm

θ
γ + o(‖θp+1 − θp‖22).

5

żn = fθ(t, zn), zn(tn) = bkn

v̇n = Dfθ(t, zn)vn, vn(tn) = I
(1 + jmp{nz}) · NFEφ

żn = fθ(t, zn), zn(tn) = bkn
NFEφ

Solve IVP

vn(tn+1)

n/a

ψθ(b
k
n), ψθ(b

k+1
n)

(1 +N − k) · NFEψ

Sensitivities Dφθ,n

O(N − k)

Compute Step

Bk Bk+1

fw sensitivty

zeroth–order

Figure 5: Single iteration computational span (McCool et al., 2012) in MSL. We normalize to 1 the cost of
evaluating fθ . The N − k sub–IVPs are solved in parallel in their sub–intervals, thus requiring a minimum span
NFEφ. Forward sensitivity introduces Jacobian–matrix products costs amounting to jmp, which can be further
parallelized into jvps.

Having a bounded variation on the solutions of the MSL for small changes of the model parameters
θ, we might think of recycling the previous shooting parameters B∗p as an initial guess for the direct
Newton algorithms in the forward pass succeeding the gradient descent update. We show that by
choosing a sufficiently small learning rate ηp one Newton iteration can be sufficient to track the true
value of B∗ during training. In particular, the following bound can be obtained.
Theorem 1 (Quadratic fixed-point tracking). If fθ is twice continuously differentiable in z then

‖B∗p+1 − B̄∗p‖2 ≤Mη2
p (3.4)

for some M > 0. B̄∗p is the result of one Newton iteration applied to B∗p .

The proof, reported in Appendix A.1, relies on the quadratic converge of Newton method. The
quadratic dependence of the tracking error bound on ηk allows use of typical learning rates for
standard gradient based optimizers to keep the error under control. In this way, we can turn the
implicit learning problem into an explicit one where the implicit inference pass reduces to one Newton
iteration. This approach leads to the following training dynamics:

θ ← θ − η∇θL(x,B∗, θ)

B∗ ← apply{(3.2), B∗}
We note that the main limitation of this method is the assumption on input x to be constant across
training iterations (i.e. the initial condition z0 is constant as well). If the input changes during the
training (e.g. under mini-batch SGD training regime), the solutions of the IVP (2.1) and thus its
corresponding shooting parameters may drastically change with x even for small learning rates.

Numerical scaling Each class of MSL outlined in Section 3.1 is equipped with unique computa-
tional scaling properties. In the following, we denote with NFEφ the total number of vector field fθ
evaluations done, in parallel across shooting parameters, in a single sub–interval [tn, tn+1]. Similarly,
NFEψ indicates the function evaluations required by the coarse solver used for parareal approxima-
tions. Here, we set out to investigate the computational signature of MSLs as parallel algorithms.
To this end, we decompose a single MSL iteration into two core steps: solving the IVPs across
sub–intervals and computing sensitivities Dφ (or their approximation). Figure 5 provides a summary
of the algorithmic span3 of a single MSL iteration as a function of number of Jacobian vector products
(jvp), Jacobian matrix products (jmp), and vector field evaluations (NFE).

Fw sensitivity MSL frontloads the cost of computing Dφθ,n by solving the forward sensitivity
ODEs of Proposition 1 alongside the evaluation of γθ. Forward sensitivity equations involve a
jmp, which can be optionally further parallelized as nz jvps by paying a memory overhead. Once
sensitivities have been obtained along with γθ, no additional computation needs to take place until
application of the shooting parameter update formula. The forward sensitivity approach thus enjoys
the highest degree of time–parallelizability at a larger memory cost.

Zeroth–order MSL computes γθ via a total of NFEφ evaluations fθ, parallelized across sub–intervals.
The cheaper IVP solution in both memory and compute is however counterbalanced during calculation

3Longest sequential cost, in terms of computational primitives, that is not parallelizable due to problem–
specific dependencies. A specific example for MSLs are the sequential NFEφ calls required by the sequential
ODE solver for each sub–interval.

6

of the sensitivities, as this MSL approach approximates the sensitivities Dφθ,n by a zeroth–order
update requiring N − k sequential calls to a coarse solver.

The analysis of MSL backpropagation scaling is straightforward, as sequential adjoints for MSLs
mirror standard sensitivity techniques for Neural ODEs in both compute and memory footprints.
Alternatively, AD can be utilized to backpropagate through the operations of the forward pass methods
in use. This approach introduces a non–constant memory footprint which scales in the number of
forward iterations and thus depth of computational graph.

4 Applications

4.1 Variational MSL

Let x : R → Rnx , be an observable of some continuous–time process and let X =
{x−M , . . . , x0, . . . , xN} ∈ R(M+N+1)×nx be a sequence of observations of x(t) at time instants
t−M < · · · < t0 < · · · < tN . We seek a model able to predict x1, . . . , xN given past observations
x−M , . . . , x0, equivalent to approximating the conditional distribution p(x1:N |x−M :0). To this end
we introduce variational MSLs (vMSLs) as the following latent variable model:

(µ,Σ) = Eω(x−M :0) Encoder Eω
qω(z0|x−M :0) = N (µ,Σ) Approx. Posterior

z0 ∼ qω(z0|x−M :0) Reparametrization

B∗ : gθ(B
∗, z0) = 0 Decoder Dθ

x̂1, . . . , x̂N = `(B∗) Readout `

Once trained, such model can be also used to generate new realistic sequences of the observable x(t)
by querying the decoder network at a desired z0. vMSLs are designed to scale data generation to
longer sequences, exploiting wherever possible parallel computation in time in both encoder as well
as decoder modules. The structure of Eω is designed to leverage modern advances in representation
learning for time–series via temporal convolutions (TCNs) or attention operators (Vaswani et al.,
2017) to offer a higher degree of parallelizability compared to sequential encoders e.g RNNs, ODE-
RNNs (Rubanova et al., 2019) or Neural CDEs (Kidger et al., 2020b). This, in turn, allows the
encoder to match the decoder in efficiency, avoiding unnecessary bottlenecks. The decoder Dθ is
composed of a MSL which is tasked to unroll the generated trajectory in latent space. vMSLs are
trained via traditional likelihood methods. The iterative optimization problem can be cast as the
maximization of an evidence lower bound (ELBO):

min
(θ,ω)

Ez0∼qω(z0|x−M:0)

N∑

n=1

log pn(x̂n)− KL(qω||N (0, I))

with pn(x̂n) = N (xn, σn) and the standard deviations σn are left as a hyperparameters.

0 500 1,000

20
30
40
50

Training Step

N
F
E

Variational MSLs & Latent ODEs
NFE Analysis

vMSL Latent ODE
Figure 6: Mean and standard deviation of
NFEs during vMSL and Latent Neural ODE
across training trials. vMSLs require 60% less
NFEs during both training and inference.

Sequence generation under noisy observations We
apply vMSLs on a sequence generation task given tra-
jectories corrupted by state–correlated noise. We con-
sider a baseline latent model sharing the same over-
all architecture as vMSLs, with a Neural ODE as de-
coder. In particular, the Neural ODE is solved via the
dopri5 solver with absolute and relative tolerances set
to 10−4, whereas the vMSL decoder is an instance of
fw sensitivity MSL. The encoder for both models
is comprised of two layers of temporal convolutions
(TCNs). All decoders unroll the trajectories directly in
output space without additional readout networks. The
validation on sample quality is then performed by in-
spection of the learned vector fields and the error against
the nominal across the entire state–space. The proposed

model obtains equivalent results as the baseline at a significantly cheaper computational cost. As
shown in Figure 6, vMSLs require 60% less NFEs for a single training iteration as well as for sample
generation, achieving results comparable to standard Latent Neural ODEs (Rubanova et al., 2019).
We report further details and results in Appendix E.1.

7

4.2 Neural Optimal Control Neural Optimal Policy via MSLs
Vector Field Learned Controller

−5

0

5

πθ(z)

−2
0

2

Figure 7: [Left] Closed–loop vector fields and trajec-
tories corresponding to the uθ-controlled MSL. [Right]
Learned controller uθ(z) (z ∈ R2) for the two different
desired limit cycles. Although, the inference of the all
trajectory is performed with just two steps of RK4 (8 NFE),
the initial accuracy of dopri5 (> 3000 NFE) is preserved
throughout training.

Beyond sequence generation, the proposed
framework can be applied to optimal control.
Here we can fully exploit the drastic computa-
tional advantages of MSLs. In fact, we leverage
on the natural assumption of finiteness of initial
conditions z0 where the controlled system (or
plant) is initialized to verify the result of Th. 1.
Let us consider a controlled dynamical system

ż(t) = f(t, z(t), πθ(t, z)), z(0) = z0 (4.1)

with a parametrized policy πθ : t, z 7→ πθ(t, z)
and initial conditions z0 ranging in a finite set
Z0 = {zj0}j . We consider the problems of
stabilizing a low–dimensional limit cycle and
deriving an optimal boundary policy for a linear
PDE discretized as a 200–dimensional ODE.

Limit cycle stabilization We consider a sta-
bilization task where, given a desired closed
curve Sd = {z ∈ Z : sd(z) = 0}, we mini-
mize the 1-norm between the given curve and
the MSL solution of (4.1) across the timestamp-
sas well as the control effort |πθ|. We verify the approach on a one degree–of–freedom mechanical
system, aiming with closed curves Sd of various shapes. Following the assumptions on fixed point
tracking and slow–varying–flows of Th. 1, we initialize B0

j by dopri5 adaptive–step solver set
with tolerances 10−8. Then, at each training iteration, we perform inference with a single parallel
rk4 step for each sub–interval [tn, tn+1] followed by a single Newton update. Figure 7 shows the
learned vector fields and controller, confirming a successful system stabilization of the system to
different types of closed curves. We compare with a range of baseline Neural ODEs, solved via
rk4 and dopri5. Training of the controller via MSLs is achieved with orders of magnitude less
wall–clock time and NFEs. Figure 8 shows the difference in NFEs w.r.t. dopri5 while Fig. 9
compares wall–clock times per training iteration of MSL, dopri5 and rk4.

0 500 1,000 1,500 2,000 2,500
0

0.5

1
·10−4

Training Step

S
M
A
P
E

Neural Optimal Control via MSLs
SMAPE of MSL

0 500 1,000 1,500 2,000 2,500
101

102

Training Step

N
F
E

NFE Comparison against Neural ODE

MSL [2 steps of RK4]

Neural ODE [dopri5]

Figure 8: Symmetric Mean Average Percentage Error
(SMAPE) between solutions of the controlled systems
obtained by MSLs and nominal. Compared to Neural
ODEs, MSLs solve the optimal control problem with
NFE savings of several orders of magnitude by carrying
forward their solution across training iterations.

We further provide Symmetric Mean Average
Percentage Error (SMAPE) measurements be-
tween trajectories obtained via MSLs and an
adaptive–step solver. MSLs initialized with re-
cycled solutions are able to track the nominal
trajectories across the entire training process.
Additional details on the experimental setup,
including wall–clock time comparisons with
rk4 and dopri5 baseline Neural ODEs is are
provided in Appendix E.2.

Neural Boundary Control of the Timo-
shenko Beam We further show how MSLs
can be scaled to high–dimensional regimes by
tackling the optimal boundary control prob-
lem for a linear partial differential equation.
In particular, we consider the Timoshenko
beam (Macchelli and Melchiorri, 2004) model
in Hamiltonian form. We derive formalize
the boundary control problem and obtain a
structure–preserving spectral discretization yielding a 160–dimensional Hamiltonian ODE.

We parameterize the boundary control policy with a multi–layer perceptron taking as input (control
feedback) the 160–dimensional discrete state. We train the model in similar setting to the previous
example having the MSL equipped with fw sensitivity and one step of rk4 for the parallel

8

101 102 103
10−1

100

training iteration

w
al
l-
cl
o
ck

ti
m
e
[s
] 2D Limit Cycle (Circle) Control

MSL dopri5 rk4

Figure 9: Mean and standard deviation of wall-
clock time of complete training iteration (for-
ward/backward passes + GD update) for differ-
ent solvers on the circle experiment.

101 102 103

0.5
1

1.5
2

training iteration

w
al
l-
cl
o
ck

ti
m
e
[s
] Timoshenko Beam

MSL rk4

Figure 10: Mean and standard deviation of wall–clock
time per training iteration for MSL and Neural ODE across
training trials. MSLs require are three times faster than the
sequential rk4 with same accuracy (step size).

integration. We compare the training wall–clock time with a Neural ODE solved by sequential rk4 in
Fig. 10. The resulting speed up of MSL with forward sensitivity is three time faster than the baseline
Neural ODE proving that the proposed method is able to scale to high–dimensional regimes. We
include a formal treatment of the boundary control problem in Appendix D while further experimental
details are provided in Appendix E.3.

4.3 Fast Neural CDEs for Time Series Classification

0 200 400 600 800 1,000
0.4

0.6

0.8

1

wall-clock time [s]

A
U
R
O
C

Training Curve on sepsis Pred.s

MSL rk4

Figure 11: Mean and standard deviation of AUROC
during training of MSLs and baseline Neural CDEs
on sepsis prediction.

To further verify the broad range of applicability of
MSLs, we apply them to time series classification
as faster alternatives to neural controlled differen-
tial equations (Neural CDEs) (Kidger et al., 2020b).
Here, MSLs remain applicable since Neural CDEs
are practically solved as ODEs with a special struc-
ture, as described in Appendix E.4. We tackle the
PhysioNet 2019 challenge (Goldberger et al., 2000)
on sepsis prediction, following the exact experi-
mental procedure described by Kidger et al. (2020b),
including hyperparameters and Neural CDE architectures. However, we train all models on the full
dataset to enable application of the fixed point tracking technique for MSLs4. Figure 11 visualized
training convergence of zeroth–order MSL Neural CDEs and the baseline Neural CDE solved with rk4
as in the original paper. Everything else being equal, including architecture and backpropagation via
sequential adjoints, MSL Neural CDEs converge with total wall–clock time one order of magnitude
smaller than the baseline.

5 Related Work

Parallel–in–time integration & multiple shooting MSLs belong to the framework of time–
parallel integration algorithms. The study of these methods is relatively recent, with seminal work in
the 60s (Nievergelt, 1964). The multiple shooting formulation of time–parallel integration, see e.g.
(Bellen and Zennaro, 1989) or (Chartier and Philippe, 1993), finally lead to the modern algorithmic
form using the Newton iteration reported in (3.2). Parareal (Lions et al., 2001) has been successively
introduced as a cheaper approximated solution of multiple shooting problem, rapidly spreading across
application domains, e.g. optimal control of partial differential equations (Maday and Turinici, 2002).
We refer to (Gander, 2015, 2018) as excellent introduction to the topic. We also note recent work
(Vialard et al., 2020) introducing single shooting terminology for Neural ODEs (Chen et al., 2018),
albeit in the unrelated context of learning time–varying parameters.

4We note that the training for all models has been performed on a single NVIDIA RTX A6000 with 48Gb
of GPU memory.

9

Time–parallelization in neural models In the pursuit for increased efficiency, several works have
proposed approaches to parallelization across time or depth in neural networks. (Gunther et al.,
2020; Kirby et al., 2020; Sun et al., 2020) use multigrid and penalty methods to achieve speedups
in ResNets. Meng et al. (2020) proposed a parareal variant of Physics–informed neural networks
(PINNs) for PDEs. Zhuang et al. (2021) uses a penalty–variant of multiple shooting with adjoint
sensitivity for parameter estimation in the medical domain. Solving the boundary value problems with
a regularization term, however, is not guaranteed to converge to a continuous solution. The method
of Zhuang et al. (2021) further optimizes its parameters in a full–batch regime, where application
of (1) achieves drastic speedups while preserving convergence guarantees. Recent theoretical work
(Lorin, 2020) has applied parareal methods to Neural ODEs. However, their analysis is limited to the
theoretical computational complexity setting and does not involve multiple shooting methods nor
derives its implicit differentiation formula.

In contrast our objective is to introduce a novel class of implicit time–parallel models, and to validate
their computational efficiency across settings.

6 Conclusion

This work introduces differentiable Multiple Shooting Layers (MSLs), a parallel–in–time alternative
to neural differential equations. MSLs seek solutions of differential equations via parallel application
of root finding methods across solution subintervals. Here, we analyze several model variants, further
proving a fixed point tracking property that introduces drastic speedups in full–batch training. The
proposed approach is validated on different tasks: as generative models, MSLs are shown to achieve
same task performance as Neural ODE baselines with 60% less NFEs, whereas they are shown to
offer several orders of magnitude faster in optimal control tasks.

Remarkably few methods have been proposed for parallel integration of ODEs. In part this is because the
problems do not have much natural parallelism. (Gear, 1988)

Funding Statement

This work was financially supported by The University of Tokyo, KAIST and RIKEN AIP. All
experiments were run on GPUs provided by The University of Tokyo and KAIST.

References
M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E.

Rognes, and G. N. Wells. The fenics project version 1.5. Archive of Numerical Software, 3(100),
2015.

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, pages 690–701, 2019.

A. Bellen and M. Zennaro. Parallel algorithms for initial-value problems for difference and differential
equations. Journal of Computational and applied mathematics, 25(3):341–350, 1989.

H. G. Bock and K.-J. Plitt. A multiple shooting algorithm for direct solution of optimal control
problems. IFAC Proceedings Volumes, 17(2):1603–1608, 1984.

J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, and Q. Zhang. JAX: composable transformations of
Python+NumPy programs, 2018. URL http://github.com/google/jax.

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of
computation, 19(92):577–593, 1965.

P. Chartier and B. Philippe. A parallel shooting technique for solving dissipative ode’s. Computing,
51(3-4):209–236, 1993.

R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud. Neural ordinary differential
equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 31, pages 6571–6583.
Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

10

http://github.com/google/jax
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf

G. D. Clifford, I. Silva, B. Moody, Q. Li, D. Kella, A. Shahin, T. Kooistra, D. Perry, and R. G. Mark.
The physionet/computing in cardiology challenge 2015: reducing false arrhythmia alarms in the
icu. In 2015 Computing in Cardiology Conference (CinC), pages 273–276. IEEE, 2015.

G. Diamos, S. Sengupta, B. Catanzaro, M. Chrzanowski, A. Coates, E. Elsen, J. Engel, A. Hannun,
and S. Satheesh. Persistent rnns: Stashing weights on chip. 2016.

M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber. Fast direct multiple shooting algorithms for
optimal robot control. In Fast motions in biomechanics and robotics, pages 65–93. Springer, 2006.

M. J. Gander. 50 years of time parallel time integration. In Multiple shooting and time domain
decomposition methods, pages 69–113. Springer, 2015.

M. J. Gander. Time parallel time integration. 2018.

C. W. Gear. Parallel methods for ordinary differential equations. Calcolo, 25(1-2):1–20, 1988.

A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.
Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals. circulation, 101(23):e215–e220, 2000.

S. Gunther, L. Ruthotto, J. B. Schroder, E. C. Cyr, and N. R. Gauger. Layer-parallel training of deep
residual neural networks. SIAM Journal on Mathematics of Data Science, 2(1):1–23, 2020.

J. Jia and A. R. Benson. Neural jump stochastic differential equations. arXiv preprint
arXiv:1905.10403, 2019.

H. K. Khalil. Nonlinear systems, volume 3. Prentice Hall, 2002.

P. Kidger, R. T. Chen, and T. Lyons. " hey, that’s not an ode": Faster ode adjoints with 12 lines of
code. arXiv preprint arXiv:2009.09457, 2020a.

P. Kidger, J. Morrill, J. Foster, and T. Lyons. Neural controlled differential equations for irregular
time series. arXiv preprint arXiv:2005.08926, 2020b.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

A. Kirby, S. Samsi, M. Jones, A. Reuther, J. Kepner, and V. Gadepally. Layer-parallel training with
gpu concurrency of deep residual neural networks via nonlinear multigrid. In 2020 IEEE High
Performance Extreme Computing Conference (HPEC), pages 1–7. IEEE, 2020.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural
networks. Advances in neural information processing systems, 25:1097–1105, 2012.

X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud. Scalable gradients for stochastic differential
equations. In International Conference on Artificial Intelligence and Statistics, pages 3870–3882.
PMLR, 2020.

J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’edp par un schéma en temps pararéel. Comptes
Rendus de l’Académie des Sciences-Series I-Mathematics, 332(7):661–668, 2001.

E. Lorin. Derivation and analysis of parallel-in-time neural ordinary differential equations. Annals of
Mathematics and Artificial Intelligence, 88(10):1035–1059, 2020.

I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

A. Macchelli and C. Melchiorri. Modeling and control of the timoshenko beam. the distributed port
hamiltonian approach. SIAM Journal on Control and Optimization, 43(2):743–767, 2004.

A. Macchelli, A. J. Van Der Schaft, and C. Melchiorri. Port hamiltonian formulation of infinite
dimensional systems i. modeling. In 2004 43rd IEEE Conference on Decision and Control
(CDC)(IEEE Cat. No. 04CH37601), volume 4, pages 3762–3767. IEEE, 2004.

Y. Maday and G. Turinici. A parareal in time procedure for the control of partial differential equations.
Comptes Rendus Mathematique, 335(4):387–392, 2002.

S. Massaroli, M. Poli, J. Park, A. Yamashita, and H. Asama. Dissecting neural odes. arXiv preprint
arXiv:2002.08071, 2020.

M. McCool, J. Reinders, and A. Robison. Structured parallel programming: patterns for efficient
computation. Elsevier, 2012.

11

X. Meng, Z. Li, D. Zhang, and G. E. Karniadakis. Ppinn: Parareal physics-informed neural network
for time-dependent pdes. Computer Methods in Applied Mechanics and Engineering, 370:113250,
2020.

J. Nievergelt. Parallel methods for integrating ordinary differential equations. Communications of the
ACM, 7(12):731–733, 1964.

J. Nocedal and S. Wright. Numerical optimization. Springer Science & Business Media, 2006.
A. Pal, Y. Ma, V. Shah, and C. Rackauckas. Opening the blackbox: Accelerating neural differential

equations by regularizing internal solver heuristics. arXiv preprint arXiv:2105.03918, 2021.
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,

L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

M. Poli, S. Massaroli, A. Yamashita, H. Asama, and J. Park. Hypersolvers: Toward fast continuous-
depth models. arXiv preprint arXiv:2007.09601, 2020a.

M. Poli, S. Massaroli, A. Yamashita, H. Asama, and J. Park. Torchdyn: A neural differential equations
library. arXiv preprint arXiv:2009.09346, 2020b.

L. S. Pontryagin, E. Mishchenko, V. Boltyanskii, and R. Gamkrelidze. The mathematical theory of
optimal processes. 1962.

C. Rackauckas, M. Innes, Y. Ma, J. Bettencourt, L. White, and V. Dixit. Diffeqflux. jl-a julia library
for neural differential equations. arXiv preprint arXiv:1902.02376, 2019.

Y. Rubanova, R. T. Q. Chen, and D. K. Duvenaud. Latent ordinary differential equations for
irregularly-sampled time series. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32,
pages 5320–5330. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf.

L. N. Smith and N. Topin. Super-convergence: Very fast training of neural networks using large
learning rates. In Artificial Intelligence and Machine Learning for Multi-Domain Operations
Applications, volume 11006, page 1100612. International Society for Optics and Photonics, 2019.

G. A. Staff and E. M. Rønquist. Stability of the parareal algorithm. In Domain decomposition
methods in science and engineering, pages 449–456. Springer, 2005.

Q. Sun, H. Dong, Z. Chen, W. Dian, J. Sun, Y. Sun, Z. Li, and B. Dong. Penalty and augmented la-
grangian methods for layer-parallel training of residual networks. arXiv preprint arXiv:2009.01462,
2020.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin.
Attention is all you need. arXiv preprint arXiv:1706.03762, 2017.

F.-X. Vialard, R. Kwitt, S. Wei, and M. Niethammer. A shooting formulation of deep learning.
Advances in Neural Information Processing Systems, 33, 2020.

E. Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics
and Statistics, 5(1):1–11, 2017.

J. Zhuang, N. Dvornek, S. Tatikonda, X. Papademetris, P. Ventola, and J. Duncan. Multiple-shooting
adjoint method for whole-brain dynamic causal modeling. arXiv preprint arXiv:2102.11013, 2021.

12

https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/42a6845a557bef704ad8ac9cb4461d43-Paper.pdf

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 3.2 for numerical

scaling of the model, and the Appendix for additional information.
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] See the Appendix for details on
hardware used.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

	Introduction
	Multiple Shooting Layers
	Realization of Multiple Shooting Layers
	Forward Model
	Properties of MSLs

	Applications
	Variational MSL
	Neural Optimal Control
	Fast Neural CDEs for Time Series Classification

	Related Work
	Conclusion
	

