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Abstract

In low-level vision such as single image super-resolution (SISR), traditional MSE or
L1 loss function treats every pixel equally with the assumption that the importance
of all pixels is the same. However, it has been long recognized that texture and edge
areas carry more important visual information than smooth areas in photographic
images. How to achieve such spatial adaptation in a principled manner has been
an open problem in both traditional model-based and modern learning-based
approaches toward SISR. In this paper, we propose a new adaptive weighted
loss for SISR to train deep networks focusing on challenging situations such
as textured and edge pixels with high uncertainty. Specifically, we introduce
variance estimation characterizing the uncertainty on a pixel-by-pixel basis into
SISR solutions so the targeted pixels in a high-resolution image (mean) and their
corresponding uncertainty (variance) can be learned simultaneously. Moreover,
uncertainty estimation allows us to leverage conventional wisdom such as sparsity
prior for regularizing SISR solutions. Ultimately, pixels with large certainty (e.g.,
texture and edge pixels) will be prioritized for SISR according to their importance
to visual quality. For the first time, we demonstrate that such uncertainty-driven
loss can achieve better results than MSE or L1 loss for a wide range of network
architectures. Experimental results on three popular SISR networks show that
our proposed uncertainty-driven loss has achieved better PSNR performance than
traditional loss functions without any increased computation during testing. The
code is available at https://see.xidian.edu.cn/faculty/wsdong/Projects/UDL-SR.htm

1 Introduction

Single image super-resolution (SISR) aims at reconstructing high-resolution (HR) images from their
corresponding degraded low-resolution (LR) images. Since the publication of super-resolution with
convolutional neural network (SRCNN) [1], there has been a flurry of works on deep learning-based
approaches toward SISR - e.g., EDSR [2], DPDNN [3], RCAN [4], SAN [5], and MoG-DUN [6].
The unifying theme along this line of research appears to be that deeper, bigger, and more complex
networks can achieve improved SISR performance by facilitating the reconstruction of high-frequency
details such as textures and edges in photographic images. Such improvement has been achieved
by novel network architectures (e.g., skip connections [2]), new attention mechanism (e.g., residue
channel attention [4]), and closed-loop supervision [7]. Surprisingly, most of these existing methods
have adopted MSE or L1 loss to optimize the parameters of networks.

The commonly used practice, such as MSE or L1 loss, treats every pixel equally regardless of whether
the pixel is in texture/edge regions or smooth areas. The optimality of such non-adaptive loss function
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(a) Img_001 from Set14 (b) HR image x (c) SR image f(y) (d) Difference map |x− f(y)|

Figure 1: Illustration of the difference (d) between HR image (b) and SR image (c) reconstructed by
EDSR network [2] on dataset Set14 [8]. The image reconstructed by EDSR network is shown in (c)
and (d) shows the absolute difference between the HR image and SR image. Best viewed in color.

has been questioned in the literature of SISR calling for the proposition of perceptual loss function
(e.g., [9]). From a Bayesian perspective, the assumption underlying the MSE or L1 loss is that each
pixel obeys the independent and identically distribution with the same variance. Taking L1 loss as an
example, the likelihood of all pixels in an image can be formulated as

p(x | y,W ) =

M∏
l=1

c exp(−||x
(l) − f (W )(y(l))||1

σ
), (1)

where x and y denote the pair of HR and LR image, f (W )(·) denotes an arbitrary SISR network
parameterized by W , and c, σ denote spatially invariant constants. However, such assumption of
stationarity or spatial invariance of image prior model is invalid for photographic images in the real
world. For instance, if one compares the ground-truth (HR image) and the SR image reconstructed
by EDSR [2] as shown in Fig. 1 (c), it can be observed that texture areas (e.g., hair of baboon)
are not restored as good as smooth areas (e.g., nose of baboon). Fig. 1 (d) depicts the absolute
difference between the HR image and reconstructed SR image, from which we can observe spatial
variation of the difference map. Such observation implies that the uncertainty of texture and edge
areas as characterized by the variance is much larger than that in smooth areas. How to address such
uncertainty-driven loss for SISR sets up the stage for this paper.

In this paper, we propose a new adaptive weighted loss (uncertainty-driven loss) for SISR by
assigning texture and edge areas with higher weights during the training process. Unlike previous
work of perceptual loss [9] focusing on characterizing content and style consistency, we target at
explicitly estimating the variance field underlying the unknown HR image in the first step, which
can be exploited as an auxiliary signal for guiding the SISR solution in the second step. A direct
consequence of our two-step learning approach is that it delivers not only higher visual quality but
also improved objective performance such as PSNR and SSIM. Moreover, uncertainty estimation
perspective allows us to easily incorporate existing models such as Jefferey’s prior [10, 11] into the
proposed SISR solution. It follows that the network training boils down to two sequential steps in
which the variance map is estimated from the first step and serves as the attention signal for the
second step. The main technical contributions are summarized as follows.

• Uncertainty modeling and estimation. We propose to cast SISR into a Bayesian estimation
framework under which SR image (mean) and uncertainty (variance) are derived simulta-
neously. Unlike previous works in which pixels with large uncertainty are attenuated for
high-level vision tasks, we advocate to prioritize them for low-level vision tasks such as
SISR.

• Uncertainty-driven loss (UDL). The estimation of variance map facilitates the training
of SISR network by dividing it into two steps. In the first step, an estimating sparsity
uncertainty (ESU) loss function was derived from the classical Jeffrey’s prior to estimate the
variance map. In the second step, the estimated variance map serves as the guidance signal
leading to adaptive weighted loss named uncertainty-driven loss LUDL.

• Universality of UDL. The proposed uncertainty loss can easily be employed in any existing
SISR network to improve performance and do not increase any additional computation cost
during testing.

• Experimental results on three different baseline networks show that our proposed uncertainty-
driven loss has achieved better PSNR performance than traditional MSE or L1 loss.
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2 Related Work

2.1 Uncertainty in Deep Learning

Many works [12–14] have introduced uncertainty into the regression with input-dependent noises
problems, and studied the nature and behavior of uncertainty for a long time. More recently, modeling
uncertainty in deep learning have improved the performance and robustness of deep networks in
many computer vision tasks [15–17] such as image classification [18], image segmentation [15, 16],
and face recognition [17, 19]. The uncertainty in deep learning can be roughly divided into two
categories [20]. Epistemic/model uncertainty describes how much the model is uncertain about its
predictions. Another type is aleatoric/data uncertainty which refers to noise inherent in observation
data. In [15], they presented a Bayesian deep learning framework combining aleatoric uncertainty
with epistemic uncertainty for per-pixel semantic segmentation and depth regression tasks. Chang et
al.[17] investigated the data uncertainty with estimated mean and variance in face recognition. Those
uncertainty-based loss function proposed by those works [15–17] can be summarized as

L =
1

N

N∑
i=1

||xi − f(yi)||2
2 σ2

i

+
1

2
ln σ2

i , (2)

where f(yi) and σ2
i denote the learned mean and variance respectively. Using above loss function

indeed improved their robustness to noisy data. In those tasks, the pixels with high uncertainty were
regarded as unreliable pixels which would bear loss attenuation. On the contrary, in SISR tasks, the
pixels with high uncertainty (e.g., complex texture or edge areas) should be prioritized since those
regions visually more important than pixels in smooth areas. That can explain why applying above
loss into SISR directly leads performance decline.

2.2 Modeling Uncertainty for SISR

To the best of our knowledge, only two works [21, 22] have studied the behavior of uncertainty for
SISR in the open literature. [22] used batch-normalization uncertainty to analyze SISR uncertainty,
improving the robustness of the network against adversarial attack. The most recent advance related
to our work is Gradient Rescaling Attention Model (GRAM) [21], which analyses the effect of
aleatoric/data uncertainty on SISR reconstruction. By decreasing the loss attenuation of large
variance pixels, GRAM achieves better results than applying above uncertainty loss into SISR directly.
However, GRAM [21] loss remains attenuated when the variance of pixels is high, which contradicts
the intuition of prioritizing texture and edge pixels. Thus, GRAM [21] is still inferior to baseline
methods since the proposed method fails to prioritize the pixels of large variance. Different from
GRAM, we propose a novel uncertainty-driven loss (UDL) to enforce the network concentrating
more on the pixels with large variance aiming at better reconstruction of texture and edge regions.
By quantifying the uncertainty in SISR under deep Bayesian framework, our proposed method has
achieved better results than baseline methods.

3 Methodology

Unlike traditional MSE or L1 loss treating every pixel equally, the proposed new adaptive weighted
loss for SISR aims at prioritizing texture and edge pixels that are visually more important than pixels
in smooth areas. Toward this objective, we first introduce an approach of estimating intermediate
results of SR image (mean) and uncertainty (variance) simultaneously in SISR. Then, with Jeffrey’s
prior term, a regularized approach of estimating sparse uncertainty is proposed for more accurate
uncertainty estimation. An important new insight brought by this paper is that unlike high-level vision
tasks where pixels with large uncertainty are assigned lower weights to attenuate their impact [15],
one should prioritize these pixels in low-level vision tasks such as SISR. Such observation implies
that the attenuation of weighting coefficients in loss function needs to be properly translated into the
attention mechanism given the specific vision problem as the context.

In previous study [15], it has been shown that explicitly representing aleatoric uncertainty can lead
to performance and robustness improvement to noise data in high-level vision tasks such as image
segmentation. Such improvement can be explained away by attenuating the weights of pixels with
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large uncertainty. However, attenuation has to go the opposite direction in low-level vision tasks such
as SISR - i.e., larger weights should be assigned to the pixels with high uncertainty (e.g., texture
and edge pixels) because they are visually more important than pixels in smooth regions. It should
be noted that existing work such as gradient rescaling strategy in GRAM [21] fails to recognize
such difference and does not prioritize pixels with high uncertainty. In this paper, we propose a new
adaptive weighted loss named uncertainty-driven loss (UDL) for properly turning attenuation into
attention for SISR.

Figure 2: The overview of training SISR network with proposed LUDL loss. The whole training
process can divided into two steps; the first step estimates the uncertainty θ precisely and the second
step generates the final mean value f(y). In step1 shown in (a), the mean value f(y) and variance θ
are pretrained by LESU loss. During step2, as shown in (b), the mean value f(y) network is trained
by LUDL loss, while the network of inferring variance θ is fixed. Note that the mean value f(y)
network of step2 starts training from the pretrained network of step1. The Nearest Upsampling
denotes interpolation operator.

3.1 Estimating Uncertainty (EU) in SISR.

As discussed in [15], there are two classes of uncertainty in Bayesian modeling: aleatoric uncertainty
capturing noise inherent in observation data and epistemic uncertainty accounting for uncertainty
of model about its predictions. We opt to study the former (aleatoric uncertainty) and explore its
application into SISR by designing new uncertainty-driven loss (UDL) functions in this paper. In
order to better quantify aleatoric uncertainty in SISR, we use yi,xi to denote the low-resolution (LR)
image and the corresponding high-resolution (HR) image respectively. Let f(·) denotes an arbitrary
SISR network and the aleatoric uncertainty can be denoted by an additive term θi. This way, the
overall observation model can be formulated as

xi = f(yi) + ε θi, (3)
where ε represents the Laplace distribution with zero-mean and unit-variance. Existing deep-learning
based SISR methods target at training a network to learn the SR image (mean) f(yi) only. To more
accurately characterize aleatoric uncertainty for SISR, we propose to estimate not only the SR image
(mean) f(yi) but also the uncertainty (variance) θi simultaneously.

For a given LR image yi and corresponding HR image xi, a Laplace distribution 2 is assumed for
characterizing the likelihood function by

p(xi,θi|yi) =
1

2 θi
exp(−||xi − f(yi)||1

θi
), (4)

where f(yi) and θi denote the SR image (mean) and the uncertainty (variance) which are learned by
deep neural networks (DNNs) respectively. Then, the log likelihood can be formulated as follows,

ln p(xi,θi|yi) = −||xi − f(yi)||1
θi

− ln θi − ln 2 (5)

2The most commonly used loss function in SISR is L1 loss which refers to Laplace distribution.
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(a) HR (b) EDSR-S (c) EDSR-S-LEU (d) EDSR-S-LESU (e)LEU Uncertainty (f)LESU Uncertainty

Figure 3: SISR visual quality comparisons of EDSR-S [2] with different loss function on ‘Img_005’
from Set5 [23] (bicubic-downsampling ×4). Best viewed in color.

For numerical stability, we train the networks to estimate log variance si = ln θi as shown in Fig. 2
(a). At last, the maximum likelihood estimation of (5) can be reformulated as the minimization of
following loss function for estimating uncertainty (EU) in SISR.

LEU =
1

N

N∑
i=1

exp(−si) ||xi − f(yi)||1 + si (6)

Jeffrey’s Prior for Estimating Sparse Uncertainty (ESU) in SISR. The loss function LEU includes
two terms; the first one is associated with fidelity term and the second one prevents the network from
predicting infinite uncertainty for all pixels. Those two terms reach equilibrium but there is no prior
that imposed on the uncertainty estimation. Therefore, based on the observation that the uncertainty
is sparse in view of the whole image as shown in Fig. 2, we propose to impose Jeffrey’s prior [10]
p(w) ∝ 1

w on uncertainty θi, which can be expressed as

p(xi,θi|yi) = p(xi|yi,θi)p(θi) ∝
1

2 θi
exp(−||xi − f(yi)||1

θi
)

1

θi
=

1

2 θ2i
exp(−||xi − f(yi)||1

θi
)

(7)
Then the log likelihood and loss function can be separately formulated as follows,

ln p(xi|yi) = −||xi − f(yi)||1
θi

− 2 ln θi − ln 2 (8)

LESU =
1

N

N∑
i=1

exp(−si) ||xi − f(yi)||1 + 2 si (9)

The limitations of LEU and LESU loss. Applying LEU and LESU loss leads to more accurate es-
timation of uncertainty (variance field), but counter-intuitively, they do not directly improve the
performance of SISR. We have conducted experiments comparing those three different loss functions
to verify the above claim. As shown in Tab. 1, the average PSNR and SSIM results of LESU and
LEU are notably lower than the original results. The reason behind this observation is that both LEU
and LESU loss functions have incorporated the variance term (θi) into the divisor of the absolution
difference term. Consequently, a pixel with a large variance will be penalized after the division
and has less impact on the overall loss function. Note that such attenuation of pixels with large
uncertainty is preferred for high-level vision tasks, as demonstrated in previous works [15–17] on
image classification [18], image segmentation [15, 16], and face recognition [17, 19].

Low-level vision tasks such as SISR are much different. As shown in Fig. 1, pixels with large
uncertainty carry visually important information such as textured and edges. They need to be
prioritized (opposite to attenuation) and given larger instead of smaller weights. To verify such claim,
we have presented a simple example comparing the visual results between LEU and LESU as shown
in Fig. 3. It can be seen that the uncertainty captured by LESU loss is better than LEU loss. The
improvement of LESU in Eq. (9) over LEU in Eq. (6) is attributed to the prioritization of pixels with
large uncertainty (si values). Fig. 3 (f) clearly demonstrate superiority of exploiting the sparsity
constraint with the uncertainty estimation.
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Table 1: Average PSNR and SSIM results for BI degradation on five datasets for investigating three
different loss. The best performance is shown in bold. We record the results in 1.2× 105 iterations.

Base Model Scale Loss Set5 [23] Set14 [8] BSD100 [24] Urban100 [25] Manga109 [26]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Original 30.93 0.8740 27.80 0.7627 27.05 0.7190 24.71 0.7351 28.14 0.8693
EDSR-S[2] ×4 LEU 30.19 0.8627 27.29 0.7538 26.78 0.7120 24.21 0.7179 26.78 0.8481

LESU 30.31 0.8637 27.39 0.7543 26.83 0.7124 24.27 0.7192 26.92 0.8496

3.2 Uncertainty-Driven Loss (UDL) for SISR

Improvement of LESU over LEU inspired us to go one step further. To better prioritize pixels with
large uncertainty, we propose a new adaptive weighted loss named uncertainty-driven loss (UDL)
for SISR. Unlike LESU loss putting a larger weight to the second term than LEU, we suggest that the
first term can also be modified to directly associate the aleatoric/data uncertainty of f(yi). That is,
instead of using exp(−si) to attenuate the importance of pixels with large uncertainty, we need to
use a monotonically increasing function to prioritize them. Linear scaling would be a natural option,
which leads to the following loss function

LUDL =
1

N

N∑
i=1

ŝi ||xi − f(yi)||1, (10)

where ŝi = si − min(si) is a non-negative linear scaling function. To prevent uncertainty value
from degenerating into zeros, the result of uncertainty estimation network in the first step will be
passed to the second step as the attention signal (s = ln θ), as shown in Fig. 2. By leveraging the log
variance to represent the challenging and cumbersome pixels with higher uncertainty, we propose
a new weighted loss named uncertainty-driven loss LUDL. In LUDL loss, texture and edge pixels
with higher uncertainty tend to have larger weights than those in smooth regions. In summary, the
uncertainty estimation θ serves as the bridge connecting two steps: it is the output of the first step;
but passed on to the second step as the guidance required for calculating LUDL loss.

3.3 Two-step Training of Dual Networks

As shown in Fig. 2, the whole training process can be divided into two steps; the first step estimates
the uncertainty θ precisely and the second step generates the final mean value f(y) with the aid from
the estimated uncertainty θ from step1. More specifically, the mean value f(y) and variance θ are
pre-trained by LESU loss during step1 as shown in Fig. 2 (a). After the uncertainty has been estimated,
the mean value f(y) network is trained by LUDL loss with variance θ as shown in Fig. 2 (b), while
the network of inferring variance θ is fixed.

Note that the mean value f(y) network of step2 starts training from the pre-trained network of step1.
Such partial parameter sharing is a salient property of our proposed dual networks with parallel
symmetric attention [27]. In theory, we can extend the two-step training into multiple-step training by
alternating between the estimation of uncertainty (variance θ) and mean value f(y). Conceptually,
an improved estimation of unknown HR image can leads to an improved estimation of aleatoric
uncertainty and vice versa. This line of reasoning will lead to the pursuit of a deep equilibrium model
[28] for SISR; but it is beyond the scope of this paper.

3.4 Discussions: Why UDL Outperforms GRAM?

To the best of our knowledge, only one work GRAM [21] has studied data uncertainty in SISR,
which is the most related to our work. We will discuss connections and differences between proposed
UDL and GRAM [21] here. First, both GRAM [21] and our work has found out that applying the
traditional uncertainty loss designed for high-level computer vision tasks into SISR task directly
results in performance decline. For high-level computer vision tasks, the pixels with higher uncertainty
indicates less confidence in final inference, which needs loss attenuation. However, for SISR tasks, the
pixels with higher uncertainty (e.g., texture and edge pixels) should be prioritized with larger weights
because they are visually more important than pixels in smooth regions. To solve this problem,
GRAM [21] proposes to use uncertainty to generate an attention mask that decreases loss attenuation.
However, GRAM [21] loss still is attenuated when the variance of pixels is high. Thus, GRAM
[21] is still inferior to baseline method since it still does not prioritize pixels with high uncertainty.
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Different from GRAM, we propose an uncertainty-driven loss to assign the pixels with high variance
more weight to prioritize them. Besides, modeling uncertainty under Bayesian framework allows
us to leverage sparsity prior for a more precise estimation of uncertainty. Ultimately, our proposed
method consists of those two technical contributions that achieve better results than baseline methods
and outperform GRAM.

4 Experiments

4.1 Experimental Settings

Datasets and Metrics. 800 high-quality (2K resolution) images from the DIV2K dataset [29] have
been used for training. Following EDSR [2], five standard benchmark datasets: Set5 [23], Set14 [8],
BSD100[24], Urban100 [25], Manga109 [26] are used for testing. Performance evaluation in terms
of of PSNR and SSIM [30] metrics is conducted on the luminance (Y) channel only.

Training Setting. We randomly select 16 RGB LR patches sized by 48×48 as the inputs. The image
patches are randomly rotated by 90◦, 180◦, 270◦and flipped horizontally. The ADAM algorithm [31]
with β1 = 0.9, β2 = 0.999, ε = 10−8 is adopted to optimize the network. The initial learning rate is
10−4 and decreases by half for every 2× 105 minibatch updates.

Degradation models. To demonstrate the effectiveness of our proposed uncertainty-driven loss
in varying degradation scenarios, we have designed the following experiments with two different
degradation models. Let BI denotes bicubic downsampling. The second one is BD which uses
Gaussian blur followed by nearest downsampling to generate LR images. Specifically, we apply
11× 11 sized Gaussian kernel with a standard deviation 1.6 for blurring in our experiments.

SISR Networks. We choose three different networks to verify the effectiveness of proposed LUDL
loss. The first one is EDSR-S or called baseline network in [2]. EDSR-S [2] mainly consists of 16
Resblock with 64 channels, having 1.5M parameters. The second one is DPDNN[3] where denoiser
network is U-net under model-guided framework. The last one is a big network EDSR[2], consisting
of 32 Resblock with 256 channels, having 43M parameters. The analysis of training cost can be
found in our supplementary material.

4.2 Ablation Study

Table 2: Average PSNR and SSIM results for BI degradation on five datasets for investigating three
different loss. The best performance is shown in bold. We record the results in 4× 105 iterations.

Base Model Scale Loss Set5 [23] Set14 [8] BSD100 [24] Urban100 [25] Manga109 [26]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Original 31.61 0.8862 28.22 0.7721 27.30 0.7271 25.25 0.7575 29.31 0.8907
EDSR-S[2] ×4 LEU+LUDL 31.83 0.8895 28.33 0.7754 27.37 0.7297 25.49 0.7665 29.70 0.8959

LESU+LUDL 31.90 0.8897 28.37 0.7755 27.40 0.7301 25.54 0.7671 29.77 0.8967

To further verify the effectiveness of sparse uncertainty estimation at step1, we have conducted an
ablation study to compare the final PSNR/SSIM results of LUDL with LEU or with LESU at step1. In
our ablation study, we have used ×4 bicubic down-sampling degradation on five frequently-used
benchmark datasets with EDSR-S backbone[2]. As shown in Tab. 2, both LEU+LUDL and LESU+LUDL
loss have achieved better performance than original loss. Besides, LESU+LUDL loss obtains better
results than LEU+LUDL due to more accurate uncertainty estimation as shown in Fig. 3 (e) and (f).

4.3 Analysis of Different Weighted Loss

There are many different weighted loss guided by different weight maps, such as Error_map, Gra-
dient_map which can also reveal the challenging pixels. We have conducted experiments with a
weighted loss function where the weight is a pixel-wise gradient or Error_map. The PSNR results of
five benchmark datasets for investigating the influence of different weighted loss functions can be
summarized in Tab. 3.

The HR_gradient_map and LR_gradien_map denote calculating gradient map from high-resolution
(ground truth) images and low-resolution images respectively. The calculation of gradient can be
formulated as
V (i, j) = I(i+1, j)−I(i, j), H(i, j) = I(i, j+1)−I(i, j), G(i, j) = ||(V (i, j), H(i, j)||2, (11)
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Table 3: Average PSNR and ∆ PSNR results with BI degradation on five datasets for investigating
the influence of different weighted loss functions. The best performance is shown in bold.

Weighted loss Set5 ∆ Set14 ∆ BSD100 ∆ Urban100 ∆ Manga109 ∆
Baseline 31.61 0.00 28.22 0.00 27.30 0.00 25.25 0.00 29.31 0.00

Uncertainty(Ours) 31.90 0.29↑ 28.37 0.15↑ 27.40 0.10↑ 25.54 0.29↑ 29.77 0.46↑
Error_map 31.77 0.16↑ 28.30 0.08↑ 27.35 0.05↑ 25.40 0.15↑ 29.57 0.26↑

HR_gradient_map 31.68 0.07↑ 28.27 0.05↑ 27.35 0.05↑ 25.42 0.17↑ 29.45 0.14↑
LR_gradient_map 31.69 0.08↑ 28.29 0.07↑ 27.35 0.05↑ 25.38 0.13↑ 29.50 0.19↑

where I denotes pixels value and i, j denotes position of pixels. Note that we adjust the scaling
functions of Error_map, HR_gradient_map and LR_gradient_map to get the best performance.

From the Tab. 3, one can be observed that other weighted loss functions can indeed improve the PSNR
results, but only to certain degrees. Comparing four different weight maps, our proposed uncertainty
weighted loss function can bring the biggest improvement. Although the Error_map can represent the
variance of a single pixel, the Error_map lacks semantic information or local information to capture a
more precise estimation of variance comparing uncertainty. With regard to the gradient map of HR or
LR images, those gradient maps only well match the edges of images and have a certain correlation
to variance. Comparing the visual results of Error_map, HR_gradient_map and LR_gradient_map
with uncertainty map, those maps only detect edges of images and fail reflecting complex texture
details which are important to final reconstruction performance. Therefore, uncertainty-weighted loss
can is still valuable for achieving the best performance among other weighted maps.

4.4 Analysis of Different Scaling Functions

We have conducted experiments with several various monotonically increasing functions (including
linear and non-linear) and the results can be summarized in Tab. 4.

Table 4: Average PSNR and ∆ PSNR results with BI degradation on five datasets for investigating
the influence of different scaling functions. The best performance are shown in bold.

Scaling functions Set5 ∆ Set14 ∆ BSD100 ∆ Urban100 ∆ Manga109 ∆
Baseline 31.61 0.00 28.22 0.00 27.30 0.00 25.25 0.00 29.31 0.00

s−min(s) 31.90 0.29↑ 28.37 0.15↑ 27.40 0.10↑ 25.54 0.29↑ 29.77 0.46↑
exp(s) 31.80 0.19↑ 28.34 0.12↑ 27.40 0.10↑ 25.53 0.28↑ 29.66 0.35↑

exp(s)(1/2) 31.86 0.25↑ 28.36 0.14↑ 27.41 0.11↑ 25.55 0.30↑ 29.71 0.40↑
log(s)−min(log(s)) 31.89 0.28↑ 28.39 0.17↑ 27.42 0.12↑ 25.57 0.32↑ 29.74 0.43↑

The best and second-best performances are shown in bold. Overall, four various monotonically
increasing functions have achieved better results than the baseline method. The best two scaling
functions are linear scaling and log scaling with a slight difference as shown in the above table. Since
the linear scaling function achieves a comparable performance with low computational cost, we
advocate this choice in this paper.

(a) HR (b) HR (c) EDSR-S (d) EDSR-S-GRAM (e) EDSR-S-LUDL-Ours (f) Our Uncertainty

Figure 4: SISR visual quality comparisons of EDSR-S [2] with different loss function on ‘Img_004’
and ‘Img_016’ from Urban100 [25] (bicubic-downsampling ×4). Best viewed in color.
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(a) Img_095 (b) HR (c) DPDNN (d) DPDNN-GRAM (e) DPDNN-LUDL-Ours (f) Our Uncertainty

Figure 5: SISR visual quality comparisons of DPDNN [3] with different loss function on ‘Img_095’
from BSD100 [24] (bicubic-downsampling ×4). Best viewed in color.
Table 5: Average PSNR and SSIM results for BI degradation on five benchmark datasets. The best
performance is shown in bold. Note that LUDL-Ours denotes adopting LESU at step1 and LUDL at
step2 for simplicity.

Base Model Scale Loss Set5 [23] Set14 [8] BSD100 [24] Urban100 [25] Manga109 [26]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Original 37.66 0.8594 33.22 0.9146 31.95 0.8969 30.71 0.9205 37.79 0.9752
EDSR-S [2] ×2 GRAM [21] 37.48 0.9589 32.99 0.9126 31.76 0.8946 30.11 0.9134 37.38 0.9739

LUDL-Ours 37.95 0.9604 33.50 0.9165 32.13 0.8991 31.54 0.9304 38.38 0.9767
Original 37.75 0.9600 33.30 0.9150 32.09 0.8990 31.50 0.9220 - -

DPDNN [3] ×2 GRAM [21] 37.74 0.9597 33.27 0.9148 31.98 0.8973 30.97 0.9238 38.14 0.9758
LUDL-Ours 38.00 0.9605 33.63 0.9176 32.16 0.8995 31.72 0.9331 38.55 0.9769

Original 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773
EDSR [2] ×2 GRAM [21] 37.87 0.9604 33.43 0.9164 32.08 0.8990 31.46 0.9301 37.91 0.9765

LUDL-Ours 38.29 0.9615 34.14 0.9236 32.40 0.9027 32.99 0.9446 39.53 0.9787
Original 33.90 0.9231 29.95 0.8352 28.85 0.7996 27.30 0.8344 32.52 0.9369

EDSR-S [2] ×3 GRAM [21] 33.27 0.9178 29.60 0.8298 28.60 0.7936 26.52 0.8142 31.14 0.9258
LUDL-Ours 34.15 0.9251 30.15 0.8388 28.99 0.8021 27.72 0.8430 32.97 0.9406

Original 33.93 0.9240 30.02 0.8360 29.00 0.8010 27.61 0.8420 - -
DPDNN [3] ×3 GRAM [21] 33.92 0.9241 30.00 0.8362 28.86 0.8000 27.37 0.8353 32.41 0.9373

LUDL-Ours 34.30 0.9267 30.31 0.8419 29.10 0.8047 28.02 0.8505 33.27 0.9435
Original 34.65 0.9280 30.52 0.8462 29.25 0.8093 28.80 0.8653 34.17 0.9476

EDSR [2] ×3 GRAM [21] 34.34 0.9270 30.28 0.8412 29.07 0.8044 27.98 0.8789 33.32 0.9432
LUDL-Ours 34.83 0.9312 30.69 0.8497 29.28 0.8109 28.99 0.8697 34.63 0.9502

Original 31.61 0.8862 28.22 0.7721 27.30 0.7271 25.25 0.7575 29.31 0.8907
EDSR-S [2] ×4 GRAM [21] 31.08 0.8787 27.89 0.7670 27.12 0.7229 24.81 0.7429 28.18 0.8762

LUDL-Ours 31.90 0.8897 28.37 0.7755 27.40 0.7301 25.54 0.7671 29.77 0.8967
Original 31.72 0.8890 28.28 0.7730 27.44 0.7290 25.53 0.7680 - -

DPDNN [3] ×4 GRAM [21] 31.89 0.8913 28.37 0.7772 27.41 0.7314 25.63 0.7708 29.70 0.9003
LUDL-Ours 32.20 0.8944 28.60 0.7819 27.56 0.7356 26.09 0.7862 30.38 0.9082

Original 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148
EDSR [2] ×4 GRAM [21] 32.32 0.8971 28.73 0.7858 27.66 0.7395 26.35 0.7955 30.73 0.9125

LUDL-Ours 32.59 0.8998 28.87 0.7889 27.78 0.7431 26.75 0.8054 31.24 0.9167

4.5 Results with BI Degradation Model

For bicubic downsampling (BI), we have compared proposed LUDL loss function with GRAM [21]
and original loss functions such as MSE or L1 on three different SISR networks. The average PSNR
and SSIM results in Tab. 5 are cited from corresponding papers or retrained from officially released
code. It is easy to see that our proposed LUDL loss function is superior to GRAM [21] and original

Table 6: Average PSNR and SSIM results for BD degradation on five benchmark datasets. The best
performance is shown in bold. Note that LUDL-Ours denotes adopting LESU at step1 and LUDL at
step2 for simplicity.

Base Model Scale Loss Set5 [23] Set14 [8] BSD100 [24] Urban100 [25] Manga109 [26]
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Original 31.70 0.8903 28.37 0.7778 27.37 0.7320 25.77 0.7789 29.83 0.9014
EDSR-S [2] ×4 GRAM [21] 30.98 0.8791 27.85 0.7667 27.05 0.7225 24.79 0.7452 28.12 0.8773

LUDL-Ours 31.97 0.8927 28.45 0.7793 27.41 0.7321 25.95 0.7842 30.18 0.9053
Original 31.86 0.8923 28.38 0.7780 27.36 0.7311 25.82 0.7812 29.77 0.9033

DPDNN [3] ×4 GRAM [21] 31.75 0.8913 28.33 0.7765 27.32 0.7302 25.62 0.7739 29.55 0.9003
LUDL-Ours 32.03 0.8949 28.60 0.7828 27.48 0.7355 26.21 0.7931 30.35 0.9097

Original 32.17 0.8975 28.65 0.7856 27.59 0.7400 26.56 0.8043 30.66 0.9134
EDSR [2] ×4 GRAM [21] 32.13 0.8963 28.57 0.7822 27.49 0.7362 26.19 0.7916 30.48 0.9097

LUDL-Ours 32.37 0.8986 27.74 0.7867 27.62 0.7407 26.65 0.8065 30.81 0.9149
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loss functions such as MSE or L1 in terms of PSNR and SSIM values. Note that the improvements
achieved by our proposed method do not bring any additional computation cost during testing time.
Comparing EDSR-S (1.5M parameters) with EDSR (43M parameters), our proposed LUDL can
bring lightweight networks with more greater performance improvements than big ones. The visual
image comparison results are reported in Fig. 4 and Fig. 5. As shown in Fig. 4, our proposed LUDL
has recovered with fewer visible artifacts (e.g., the circular pattern of the roof and the lines on the
glassy surface) than original loss and GRAM [21]. Fig. 4 (f) depicts the uncertainty learned by our
LUDL, revealing the challenging pixels with poor reconstruction performance. From Fig. 5, vertical
center-line of window has been recover more clear with precisely estimated uncertainty shown in (e)
and (f), while DPDNN and DPDNN-GRAM [21] failed to discern shown in (c) and (d) respectively.
More visual comparisons can be found in supplementary material.

4.6 Results with BD Degradation Model
For blur downsampling (BD), we have compared proposed LUDL loss function with GRAM [21] and
original loss functions such as MSE or L1 on three different baseline networks. The average PSNR
and SSIM results in Tab. 6 are retrained from officially released code. It is easy to see that our propose
LUDL loss function is superior to GRAM [21] and original loss functions such as MSE or L1 in terms
of PSNR and SSIM values. The visual image comparison results of BD degradation are reported
in Fig. 6 and Fig. 7. Note that the BD degradation involves Gaussian blur, increasing difficulty in
recovering structure patterns. From Fig. 6, we can see that our SR result (Fig. 6 (e)) of ‘Img 109’ is
the closest to that of the ground-truth. In another challenging image (‘Img 078’ from Urban100 [25]),
our method can recover much more reliable textured details as shown in Fig. 7 (e); while all other
methods have severe aliasing artifacts (i.e., distorted tile patterns). The visual quality improvement
achieved by LUDL is mainly due to the fact that our proposed method makes full use of the captured
uncertainty to train deep networks focusing on the challenging pixels with high uncertainty. More
visual comparisons can be found in our supplementary material.

(a) Img_109 (b) HR (c) DPDNN (d) DPDNN-GRAM (e) DPDNN-LUDL-Ours (f) Our Uncertainty

Figure 6: SISR visual quality comparisons of DPDNN [3] with different loss function on ‘Img_109’
from Manga109 [26] (blur-downsampling ×4). Best viewed in color.

(a) Img_078 (b) HR (c) EDSR (d) EDSR-GRAM (e) EDSR-LUDL-Ours (f) Our Uncertainty

Figure 7: SISR visual quality comparisons of EDSR [2] with different loss function on ‘Img_078’
from Urban100 [25] (blur-downsampling ×4). Best viewed in color.

5 Conclusion

In this paper, we propose a new adaptive weighted loss LUDL for SISR to train SISR networks
focusing on challenging pixels with high uncertainty (e.g., textured and edge pixels). Specifically,
variance estimation is introduced into SISR so that the high-resolution images (mean) and their
corresponding uncertainty (variance) can be learned simultaneously. Moreover, modeling uncertainty
under Bayesian framework allows us to leverage sparsity prior for a more precise estimation of
uncertainty. Ultimately, pixels with large certainty (e.g., texture and edge pixels) will be prioritized
for SISR according to their importance to visual quality. For the first time, we demonstrate that such
uncertainty-driven loss can achieve better results than MSE or L1 loss. Experimental results on three
popular SISR networks show that our proposed uncertainty-driven loss has achieved better PSNR
performance than traditional loss functions without any increased computation during testing.
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