
A Related Proposition

Proposition 3 (Amoroso distribution). The Amoroso distribution is a four parameter, continuous,
univariate, unimodal probability density, with semi-infinite range [30]. And its probability density
function is

Amoroso(X|a, θ, α, β) =
1

Γ(α)
|β
θ
|(X − a

θ
)αβ−1 exp

{
−(
X − a
θ

)β
}
, (7)

for x, a, θ, α, β ∈ R, α > 0 and range x ≥ a if θ > 0, x ≤ a if θ < 0. The mean and variance of
Amoroso distribution are

EX∼Amoroso(X|a,θ,α,β)X = a+ θ ·
Γ(α+ 1

β)

Γ(α)
, (8)

and

VarX∼Amoroso(X|a,θ,α,β)X = θ2

[
Γ(α+ 2

β)

Γ(α)
−

Γ(α+ 1
β)2

Γ(α)2

]
. (9)

Proposition 4 (Half-normal distribution). Let random variable X follow a normal distribution
N(0, σ2), then Y = |X| follows a half-normal distribution [31]. Moreover, Y also follows
Amoroso(x|0,

√
2σ, 1

2 , 2). By Eq. (8) and Eq. (9), the mean and variance of half-normal dis-
tribution are

EX∼N(0,σ2)|X| = σ
√

2/π, (10)

and

VarX∼N(0,σ2)|X| = σ2

(
1− 2

π

)
. (11)

Proposition 5 (Scaled Chi distribution). Let X = (x1, x2, ...xk) and xi, i = 1, ..., k are k in-
dependent, normally distributed random variables with mean 0 and standard deviation σ. The

statistic `2(X) =
√∑k

i=1 x
2
i follows Scaled Chi distribution [30]. Moreover, `2(X) also follows

Amoroso(x|0,
√

2σ, k2 , 2). By Eq. (8) and Eq. (9), the mean and variance of Scaled Chi distribution
are

EX∼N(0,σ2·Ik)[`2(X)]j = 2j/2σj ·
Γ(k+j

2)

Γ(k2)
, (12)

and

VarX∼N(0,σ2·Ik)`2(X) = 2σ2

[
Γ(k2 + 1)

Γ(k2)
−

Γ(k+1
2)2

Γ(k2)2

]
. (13)

Proposition 6 (Stirling’s formula). 6 For big enough x and x ∈ R+, we have an approximation of
Gamma function:

Γ(x+ 1) ≈
√

2πx
(x
e

)x
. (14)

Proposition 7 (FKG inequality). If f and g are increasing functions on Rn [32], we have

E(f)E(g) ≤ E(fg). (15)

Say that a function on Rn is increasing if it is an increasing function in each of its arguments.(i.e., for
fixed values of the other arguments).

6en.wikipedia.org/wiki/Stirling’sapproximation

15

en.wikipedia.org/wiki/Stirling's approximation

Proposition 8. Let f(X,Y) is a two dimensional differentiable function. According to Taylor
theorem [33], we have

f(X,Y) = f(E(X),E(Y)) +
∑
cyc

(X − E(X))
∂

∂X
f(E(X),E(Y)) +Remainder1, (16)

f(X,Y) = f(E(X),E(Y)) +
∑
cyc

(X − E(X))
∂

∂X
f(E(X),E(Y))+

1

2

∑
cyc

(X − E(X))T
∂2

∂X2
f(E(X),E(Y))(X − E(X)) +Remainder2

(17)

Lemma 1. Let X and Y are random variables. Then we have such an estimation

Var

(
X

Y

)
≈
(
E(X)

E(Y)

)2(
VarX

E(X)2
+

VarY

E(Y)2
− 2

Cov(X,Y)

E(X)E(Y)

)
. (18)

Proof. Let f(X,Y) = X/Y , according to the definition of variance, we have

Varf(X,Y) = E[f(X,Y)− E(f(X,Y))]2

≈ E[f(X,Y)− E

{
f(E(X),E(Y)) +

∑
cyc

(X − E(X))
∂

∂X
f(E(X),E(Y))

}
]2

from Eq. (16)

= E[f(X,Y)− f(E(X),E(Y))−
∑
cyc

E(X − E(X))
∂

∂X
f(E(X),E(Y))]2

= E[f(X,Y)− f(E(X),E(Y))]2

≈ E[
∑
cyc

(X − E(X))
∂

∂X
f(E(X),E(Y))]2 from Eq. (16)

= 2Cov(X,Y)
∂

∂X
f(E(X),E(Y))

∂

∂Y
f(E(X),E(Y)) +

∑
cyc

[
∂

∂X
f(E(X),E(Y))]2 ·VarX

= 2Cov(X,Y) · 1

E(Y)
·
(
− E(X)

(E(Y))2

)
+

1

(E(Y))2
·VarX +

(EX)2

(EY)4
·VarY

=

(
E(X)

E(Y)

)2(
VarX

E(X)2
+

VarY

E(Y)2
− 2

Cov(X,Y)

E(X)E(Y)

)
.

From Eq.(17) and Lemma 1, we also can obtain an estimation of E(A/B), where A and B are two
random variables. i.e.,

E
(

A

B

)
≈ EA

EB
+ Var(B) · EA

(EB)3
. (19)

Lemma 2. For big enough x and x ∈ R+, we have

lim
x→+∞

[
Γ(x+1

2)

Γ(x2)

]2

· 1

x
=

1

2
. (20)

And

lim
x→+∞

Γ(x2 + 1)

Γ(x2)
−
[

Γ(x+1
2)

Γ(x2)

]2

=
1

4
. (21)

16

Proof.

lim
x→+∞

[
Γ(x+1

2)

Γ(x2)

]2

· 1

x
≈ lim
x→+∞

√

2π(x−1
2) · (x−1

2e)
x−1
2√

2π(x−2
2) · (x−2

2e)
x−2
2

2

· 1

x
from Proposition. 6

= lim
x→+∞

(
x− 1

x− 2

)
·

(x−1
2e)x−2

(x−2
2e)x−2

·
(
x− 1

2e

)
· 1

x

= lim
x→+∞

(
1 +

1

x− 2

)x−2

· x− 1

x− 2
· x− 1

2e
· 1

x

=
1

2

on the other hand, we have

lim
x→+∞

Γ(x2 + 1)

Γ(x2)
−
[

Γ(x+1
2)

Γ(x2)

]2

= lim
x→+∞

x

2
−
(

1 +
1

x− 2

)x−2

· x− 1

x− 2
· x− 1

2e

= lim
x→+∞

x

2e

(
e− (1 +

1

x
)x
)

=
1

2

(
−

1
e (−e)

2

)
=

1

4

Proposition 9. KL divergence between two distributions P and Q of a continuous random variable
is given by DKL(p‖q) =

∫
x
p(x) log p(x)

q(x) . And probabilty density function of multivariate Normal
distribution is given by p(x) = 1

(2π)k/2|Σ|1/2 exp
(
− 1

2 (x− µ)TΣ−1(x− µ)
)
. Let our two Normal

distributions be N
(
µp,Σp

)
and N

(
µq,Σq

)
, both k dimensional. we have

DKL(p‖q) =
1

2

[
log
|Σq|
|Σp|

− k +
(
µp − µq

)T
Σ−1
q

(
µp − µq

)
+ tr

{
Σ−1
q Σp

}]
. (22)

Proposition 10 (Jacobi’s formula). If A is a differentiable map from the real numbers to n × n
matrices,

d

dt
detA(t) = tr

(
adj(A(t))

dA(t)

dt

)
. (23)

Proposition 11. For random variable X with µ and σ2 as mean and variance, then we can use
Taylor expansion to obtain: {

E(logX) ≈ logµ− σ2

2µ2

Var(logX) ≈ σ2

µ2

. (24)

Proposition 12. Given n normal distributions N(0, σ2
i), 1 ≤ i ≤ n and (Xi1, Xi2, ..., Xim) are

sample from N(0, σ2
i), 1 ≤ j ≤ m. then

Var1≤i≤n,1≤j≤m(Xij) =
1

n

n∑
i=1

σ2
i . (25)

17

Proof.

Var1≤i≤n,1≤j≤m(Xij) =
1

mn

n∑
i=1

m∑
j=1

[Xij − E(Xij)]
2 (26)

=
1

n
{ 1

m

m∑
j=1

[Xij − E(X1j)]
2 + ...+

1

m

m∑
j=1

[Xnj − E(Xnj)]
2}

Since E(Xij) = 0, 1 ≤ i ≤ n, 1 ≤ j ≤ m

=
1

n
{σ2

1 + ...+ σ2
n} (27)

Lemma 3. For a matrix B ∈ Rn×n and a small constant ε, we have:

det(In + εB) = 1 + ε tr(B) +O(ε2). (28)

Proof. First, we regard det(In + εB) as a function w.r.t ε. Since Proposition 10, we have:

d

dε
det(In + εB)|ε=0 = tr{adj(In + εB)B}|ε=0 (29)

= tr{det(In + εB) · (In + εB)−1B}|ε=0 (30)

= det(In + εB) · tr{(In + εB)−1B}|ε=0 (31)
= tr(B) (32)

Using Taylor expansion for det(In+εB), we have d
dεdet(In+εB) = det(In)+ d

dεdet(In+εB)|ε=0 ·
ε+O(ε2). In other words, det(In + εB) = 1 + ε tr(B) +O(ε2).

A.1 The proof of Proposition 1

(Proposition 1) If the convolutional filters FA in layer A meet CWDA, then we have following
estimations:

Criterion Mean Variance
`1(FA)

√
2/πσAdA (1− 2

π
)σ2
AdA

`2(FA)
√

2σAΓ(dA+1
2

)/Γ(dA
2

) σ2
A/2

Fermat(FA)
√

2σAΓ(dA+1
2

)/Γ(dA
2

) σ2
A/2

where dA and σ2
A denote the dimension of FA and the variance of the weights in layer A, respectively.

Proof. According to Appendix B, Eq. (21), Proposition 4 and Proposition 5, we can obtain the mean
and variance of `1(FA) and `2(FA). Moreover, From the Theorem 3, we know that the Fermat
point F of FA and the origin 0 approximately coincide. According to Table 1, ||F − FA||2 ≈
||0− FA||2 = ||FA||2. Therefore, the mean and variance of Fermat(FA) are the same as `2(FA)’s
in Proposition 1.

A.2 The proof of Proposition 2

(Proposition 2) If the convolutional filters FA in layer A meet CWDA, then E[`1(FA)/`2(FA)] and
E[`2(FA)/`1(FA)] only depend on their dimension dA.

18

Proof. From Eq. (19), we have:

E[
`1(FA)

`2(FA)
] ≈ E[`1(FA)]

E[`2(FA)]
+ Var[`2(FA)] · E[`1(FA)]

E[`2(FA)]3

=

√
2/πσAdA√

2σAΓ(dA+1
2)/Γ(dA2)

+ σ2
A/2 ·

√
2/πσAdA

[
√

2σAΓ(dA+1
2)/Γ(dA2)]3

from Proposition. 1

≈ O(
√
dA) +O(

1√
dA

) from Eq. (20)

Similarly, we can prove that E[`2(FA)/`1(FA)] also only depend on their dimension dA.

E[
`2(FA)

`1(FA)
] ≈ E[`2(FA)]

E[`1(FA)]
+ Var[`1(FA)] · E[`2(FA)]

E[`1(FA)]3

=

√
2σAΓ(dA+1

2)/Γ(dA2)√
2/πσAdA

+ (1− 2

π
)σ2
AdA ·

√
2σAΓ(dA+1

2)/Γ(dA2)

[
√

2/πσAdA]3

from Proposition. 1

≈ O(
1√
dA

) +O(
1

d1.5
A

) from Eq. (20)

B The relaxation for CWDA

(Convolution Weight Distribution Assumption) Let Fij ∈ RNi×k×k be the jth well-trained filter
of the ith convolutional layer. In general7, in ith layer, Fij (j = 1, 2, ..., Ni+1) are i.i.d and follow
such a distribution:

Fij ∼ N(0,Σi
diag + ε ·Σi

block), (33)

where Σi
block = diag(K1,K2, ...,KNi

) is a block diagonal matrix and the diagonal elements of
Σi

block are 0. ε is a small constant. The values of the off-block-diagonal elements are 0 and Kl ∈
Rk

2×k2 , l = 1, 2, ..., Ni. Σi
diag = diag(a1, a2, ..., aNi×k×k) is a diagonal matrix and the elements of

Σi
diag are close enough.

In Section 2, we propose CWDA. In order to use this assumption conveniently, we give the following
relaxation of CWDA:

(Convolution Weight Distribution Assumption-Relaxation) Let Fij ∈ RNi×k×k be the jth well-
trained filter of the ith convolutional layer. In general, in ith layer, Fij (j = 1, 2, ..., Ni+1) are i.i.d
and follow such a distribution:

Fij ∼ N(0, σ2
layer · INi×k×k), (34)

where σ2
layer is the variance of the weights in ith convolutional layer.

Next, we analyze the gap between CWDA and CWDA-Relaxation, i.e., the difference between
N(0,Σi

diag + ε ·Σi
block) and N(0, σ2

layer · INi×k×k).

Lemma 4. Given two n-dimension Gaussian distributions N(0,Σdiag + ε ·Σblock) and N(0,Σdiag),
we can estimate the KL divergence of them:

KL[N(0,Σdiag + ε ·Σblock)||N(0,Σdiag)] ≈ 1

2
log[

1

1 +O(ε2)
] (35)

7In Section 6, we make further discussion and analysis on the conditions for CWDA to be satisfied.

19

where Σblock = diag(K1,K2, ...,KNi) is a block diagonal matrix and the diagonal elements of
Σblock are 0. ε is a small constant. The values of the off-block-diagonal elements are 0 and Kl ∈
Rk

2×k2 , l = 1, 2, ..., Ni. Σdiag = diag(a1, a2, ..., aNi×k×k) is a diagonal matrix and the elements
of Σdiag are close enough. n = Ni × k × k.

Proof. Since Proposition 9, we have:

2 KL = log
det[Σdiag]

det[Σdiag + ε ·Σblock]
− n+ 0 + tr{Σ−1

diag(Σdiag + ε ·Σblock)} (36)

= log
det[Σdiag]

det[Σdiag + ε ·Σblock]
− n+ tr{Ik + εΣ−1

diagΣblock} (37)

= log
det[Σdiag]

det[Σdiag + ε ·Σblock]
Since the diagonal elements of Σblock are 0

(38)
Let Σdiag = diag(S1, S2, ..., SNi), where Sj = diag(a(j−1)k2+1, a(j−1)k2+2, ..., a(j−1)k2+k2), j =
1, 2, ..., Ni.

2 KL = log
det[Σdiag]

det[Σdiag + ε ·Σblock]
(39)

= log

n∏
j=1

ak − log{
Ni∏
h=1

det[Sh + εKh]} (40)

= log

n∏
j=1

ak − log{
Ni∏
h=1

det[Sh]det[Ik2 + εS−1
h Kh]} Since Sh � 0

(41)
Note that Sh is a diagonal matrix and the diagonal elements of Kh are all zero. Therefore

tr(S−1
h Kh) = 0. (42)

Next,

2 KL = log

n∏
j=1

ak − log{
Ni∏
h=1

det[Sh]det[Ik2 + εS−1
h Kh]} (43)

= log

n∏
j=1

ak − log{
Ni∏
h=1

det[Sh] · (1 + ε tr(S−1
h Kh) +O(ε2))} Since Lemma 3

= log

n∏
j=1

ak − log{
Ni∏
h=1

det[Sh] · (1 +O(ε2))} Since Eq. (42)

= log

n∏
j=1

ak − log

n∏
j=1

ak(1 +O(ε2)) (44)

= log[
1

1 +O(ε2)
] (45)

According to Statistical test (2) in Section 2.1, N(0,Σdiag) can be approximate to
N(0, 1

n tr(Σdiag)In). In addition, from Propsition 12 and Lemma 4, while ε is small enough, the
distribution N(0,Σdiag + ε ·Σblock) can be approximate to N(0, σ2

layer · INi×k×k). The analysis in
this paper are based on Convolution Weight Distribution Assumption-Relaxation and we use it to
explain successfully many phenomena in the Similarity and Applicability problem of pruning criteria.

20

C Proof of Theorem 1

Theorem 1. Let n−dimension random variable X meet CWDA, and the pair of criteria (C1, C2) is
one of (`1, `2), (`2,Fermat) or (Fermat,GM), we have

max

{
VarX

(
Ĉ2(X)

Ĉ1(X)

)
,VarX

(
Ĉ1(X)

Ĉ2(X)

)}
. B(n). (46)

where Ĉ1(X) denotes C1(X)/E(C1(X)) and Ĉ2(X) denotes C2(X)/E(C2(X)). B(n) denotes the
upper bound of left-hand side and when n is large enough, B(n)→ 0.

For ith layer, we use vj to represent Fij , j = 1, 2, ...N . And vj meets CWDA. Since Appendix B,
we use the following three points to prove Theorem 1.

(1) For (`2, `1). In fact, `2 ∼= `1 (their importance rankings are similar) is not trivial. Generally
speaking, for convolutional filters, dim(vj) is large enough. Since vi satisfies CWDA, from Theorem
2, we know that the variance of ratio between ̂̀1 and ̂̀2 have a bound O(dim(vj)

−1), which means
`2 and `1 are appropriate monotonic. Specific numerical validation is shown in Fig. 9 of Appendix
D).
Theorem 2. Let X ∼ N(0, c2 · In), we have

max

{
VarX

(̂̀
2(X)̂̀
1(X)

)
,VarX

(̂̀
1(X)̂̀
2(X)

)}
.

1

n
. (47)

where ̂̀1(X) denotes `1(X)/E(`1(X)) and ̂̀2(X) denotes `2(X)/E(`2(X)). c is a constant.

Proof. (See Appendix D).

(2) For (`2,Fermat). Since vi satisfies CWDA, from Theorem 3, we know that the Fermat point of
vi and the origin 0 approximately coincide. According to Table 2, ||Fermat− vi||2 ≈ ||0− vi||2 =
||vi||2. Therefore, from Theorem 2, the bound B(n) for the (`1, Fermat) and (`2, Fermat) are 1

n

and 0, respectively. Moreover, since CWDA, the centroid of vi is G = 1
n

∑N
i=1 vi = 0. Hence,

G = 0 ≈ Fermat. (48)

Theorem 3. Let random variable vi ∈ Rk and they are i.i.d and follow normal distribution
N(0, σ2Ik). For F ∈ Rk, we have argminF

{
Evi∼N(0,σ2Ik)

∑n
i=1 ||F − vi||2

}
= 0.

Proof. (See Appendix E).

(3) For (GM,Fermat). First, we show the following two theorems:
Theorem 4. For n random variables ai ∈ Rk follow N(0, c2 · Ik).When k is large enough, we have
such an estimation:

Varai
F1(ai)

F2(ai)
≈ 1

2nk
, Varai

F2(ai)

F1(ai)
≈ 1

2nk
, (49)

where F1(ai) =
∑n
i=1 ||ai||2/E(

∑n
i=1 ||ai||2) and F2(ai) =

∑n
i=1 ||ai||22/E(

∑n
i=1 ||ai||22).

Proof. (See Appendix F).

Theorem 5. Let v0, v1, ..., vk be the k + 1 vectors in n dimensional Euclidean space En. For all P
in En,

k∑
i=0

||P − vi||22 =

k∑
i=0

||G− vi||22 + (k + 1)||P −G||22, (50)

where G is the centroid of vi, will hold if it satisfies one of the following conditions:

(1)if k ≥ n and rank(v1 − v0, v2 − v0, ..., vk − v0) = n.

(2)if k < n and (v1 − v0, v2 − v0, ..., vk − v0) are linearly independent.

(3)if vi ∼ N(0, c2 · In), Eq.(50) holds with probability 1.

21

Proof. (See Appendix G).

Let P ∈ {v1, v2, ..., vN}. Since vi ∼ N(0, c2 · I), we can obtain that ai = P − vi ∼ N(0, 2c2 · I)
if P 6= vi. According to the analysis in Section 3.1 and Theorem 4, we have

n∑
i=1

||ai||2 ∼=
n∑
i=1

||ai||22, (51)

Next, we can prove (k + 1)||P − F ||22 (Fermat) and
∑N
i=1 ||P − vi||2 (GM) are approximately

monotonic, where P ∈ {v1, v2, ..., vN}.

(k + 1)||P − F ||22 ∼= (k + 1)||P −G||22 Since Eq. (48)

=

N∑
i=1

||P − vi||22 −
N∑
i=1

||G− vi||22 Since Theorem 5

∼=
N∑
i=1

||P − vi||2 −
N∑
i=1

||G− vi||22 Since Eq. (51)

∼=
N∑
i=1

||P − vi||2 (52)

The reason for the last equation is that
∑N
i=1 ||G− vi||22 is a constant for given vi.

D Proof of Theorem 2

Theorem 2 Let X ∼ N(0, c2 · In), we have

max

{
VarX

(̂̀
2(X)̂̀
1(X)

)
,VarX

(̂̀
1(X)̂̀
2(X)

)}
.

1

n
.

where ̂̀1(X) denotes `1(X)/E(`1(X)) and ̂̀2(X) denotes `2(X)/E(`2(X)).

Proof. For the ratio ̂̀2(X)/̂̀1(X), we have

Var

(̂̀
2(X)̂̀
1(X)

)
=

(
E(`1(X))

E(`2(X))

)2

Var

(
`2(X)

`1(X)

)

≈
(
E(`1(X))

E(`2(X))

)2(E(`2(X))

E(`1(X))

)2(
Var`2(X)

E(`2(X))2
+

Var`1(X)

E(`1(X))2
− 2

Cov(`2(X), `1(X))

E(`2(X))E(`1(X))

)
from Lemma. 1

≤
(

Var`2(X)

E(`2(X))2
+

Var`1(X)

E(`1(X))2

)
. from Proposition. 7

similarly, we also have

Var

(̂̀
1(X)̂̀
2(X)

)
≤
(

Var`2(X)

E(`2(X))2
+

Var`1(X)

E(`1(X))2

)
. (53)

Therefore,

22

Figure 9: The approximation of Theorem 2: (Left) the example about ResNet56; (Right) the example
about ResNet110.

max

{
VarX

(̂̀
2(X)̂̀
1(X)

)
,VarX

(̂̀
1(X)̂̀
2(X)

)}
≤
(

Var`2(X)

E(`2(X))2
+

Var`1(X)

E(`1(X))2

)

=
2σ2

[
Γ(n

2 +1)

Γ(n
2) −

Γ(n+1
2)2

Γ(n
2)2

]
(
√

2σ · Γ(n+1
2)

Γ(n
2))2

+
σ2
(
1− 2

π

)
n

(n · σ
√

2/π)2

from Proposition. 5 and 4

≈
(

1

2n
+ (

π

2
− 1)

1

n

)
from Lemma 2

=
π − 1

2n

Because the approximation is widely used in the proof of Theorem 1, it is necessary to verify
it numerically. As shown in Fig. 9, we use ResNet56 on Cifar100 and ResNet110 on Cifar10
respectively to verify Theorem 1. From Fig. 9, we find that the estimationn of Theorem 1 is reliable,
i.e., the estimation O(1

n) for max
{

VarX

(̂̀
2(X)̂̀
1(X)

)
,VarX

(̂̀
1(X)̂̀
2(X)

)}
is appropriate.

E Proof of Theorem 3

Proposition 13. Let L(α)
p (x) denotes generalized Laguerre function, and it have following properties:

∂n

∂xn
L(α)
p = (−1)nL

(α+n)
p−n (x), (54)

and for α > 0,

L
(α)

− 1
2

(x) > 0. (55)

Theorem 3. Let random variable vi ∈ Rk. They are i.i.d and follow normal distribution N(0, σ2Ik).
For F in Rk, we have

argminF

{
Evi∼N(0,σ2Ik)

n∑
i=1

||F − vi||2

}
= 0.

23

Proof. Let wi = F − vi and we have wi ∼ N(F, σ2Ik), then

Evi∼N(0,σ2Ik)

n∑
i=1

||F − vi||2 =

n∑
i=1

Evi∼N(0,σ2Ik)||F − vi||2

=

n∑
i=1

Ewi∼N(F,σ2Ik)||wi||2

= n · σ2

√
π

2
· L(k

2−1)
1
2

(
−||F ||

2
2

2σ2

)
The reason for the last equation is that ||wi||2 follows scaled noncentral chi distribution8 when

wi ∼ N(F, σ2Ik). Let T (x) = L
(k
2−1)

1
2

(
− x2

2σ2

)
, we calculate the minimum of T (x). From Eq. (54),

d

dx
T (x) =

x

σ2
· L(k

2)

− 1
2

(
− x2

2σ2

)
. (56)

Since Eq. (55), we find that d
dxT (x) > 0 when x > 0 and if x ≤ 0, then d

dxT (x) ≤ 0. It means that
T (x) gets the minimizer at ||F ||2 = 0, i.e., F = 0.

F Proof of Theorem 4

Lemma 5. For two random variables X,Y ∈ Rk follow N(0, c2 · Ik) and they are i.i.d. When k is
large enough, we have:

E
(

(||X||22 − ||Y ||22)2

2||X||2 · ||Y ||2

)
≈ 2c2 +

4c2k + 1

2k2
, (57)

and

Var

(
(||X||22 − ||Y ||22)2

2||X||2 · ||Y ||2

)
. 8c4 +

16c4k + c2

k2
, (58)

Proof. According to Proposition 3 and Lemma 2, it is easy to know, when k is large enough, that
E (2||X||2 · ||Y ||2) = 2c2k, Var (2||X||2 · ||Y ||2) = c2 + 4c4k, (59)

and
E
(
(||X||22 − ||Y ||22)2

)
= 4c4k, Var

(
(||X||22 − ||Y ||22)2

)
= 16c8(2k2 + 3k). (60)

Since Lemma 1, we have an estimation

Var

(
(||X||22 − ||Y ||22)2

2||X||2 · ||Y ||2

)
≤
(
E(||X||22 − ||Y ||22)2

E2||X||2 · ||Y ||2

)2(
Var(||X||22 − ||Y ||22)2

E(||X||22 − ||Y ||22)2
+

Var(2||X||2 · ||Y ||2)2)

E(2||X||2 · ||Y ||2)2

)
≈
(

4c4k

2c2k

)2

·
(
c2 + 4c4k

4c4k
+

16c8(2k2 + 3k)

16c8k2

)
Since Eq.(59) and Eq.(60)

= 8c4 +
16c4k + c2

k2
.

Therefore,

E
(

(||X||22 − ||Y ||22)2

2||X||2 · ||Y ||2

)
≈ E(||X||22 − ||Y ||22)2

E2||X||2 · ||Y ||2
+ Var(2||X||2 · ||Y ||2) · E(||X||22 − ||Y ||22)2

(E2||X||2 · ||Y ||2)3

Since Eq.(19)

≈ 4c4k

2c2k
+

4c4k

8c6k3
· (c2 + 4c4k) Since Eq.(59) and Eq.(60)

= 2c2 +
4c2k + 1

2k2
.

8Survey of simple,continuous,uniariate probability distribution and Wikipredia.

24

https://pdfs.semanticscholar.org/cf53/f8c9dfa71bf17649feb86af5d7d8d294b06a.pdf
https://en.wikipedia.org/wiki/Noncentral_chi_distribution

Figure 10: (Left) The numerical verification of Eq.(57) and (Right) The numerical verification of
Eq.(58). X and Y follow N(0, c2 · Ik).

Note that, the approximation is widely used in the proof of Eq.(57) and Eq.(58). Hence, it is also
necessary to verify it numerically. As shown in Fig. 10, the estimation is appropriate. According
to Lemma 5, the mathematical expectation and variance of the ratio of (||X||22 − ||Y ||22)2 and
2||X||2 · ||Y ||2 are both close to 0 when k is large enough and c is small enough. that is,

2(||X||2 · ||Y ||2)� (||X||22 − ||Y ||22)2. (61)

By the way, the convolutional filters easily meet the condition that k is large enough.

Theorem 4. For n random variables ai ∈ Rk follow N(0, c2 · Ik).When k is large enough, we have
such an estimation:

Varai
F1(ai)

F2(ai)
≈ 1

2nk
, Varai

F2(ai)

F1(ai)
≈ 1

2nk
.

where F1(ai) =
∑n
i=1 ||ai||2/E(

∑n
i=1 ||ai||2) and F2(ai) =

∑n
i=1 ||ai||22/E(

∑n
i=1 ||ai||22).

Proof. Since Eq. (12) and Eq. (13), we have

Varai
F1(ai)

F2(ai)
=

(
nc2k

nc
√
k

)2

·Varai

(∑n
i=1 ||ai||2∑n
i=1 ||ai||22

)
. (62)

and

Varai
F2(ai)

F1(ai)
=

(
nc
√
k

nc2k

)2

·Varai

(∑n
i=1 ||ai||22∑n
i=1 ||ai||2

)
. (63)

According to Lagrange’s identity, we have(
n∑
i=1

||ai||22

)(
n∑
i=1

1

)
=

(
n∑
i=1

||ai||2

)2

+
∑

1≤i<j≤n

(||ai||22 − ||aj ||22)2

=

n∑
i=1

||ai||22 +
∑

1≤i<j≤n

(||ai||2 · ||aj ||2) + 2
∑

1≤i<j≤n

(||ai||22 − ||aj ||22)2

≈
n∑
i=1

||ai||22 + 2
∑

1≤i<j≤n

(||ai||2 · ||aj ||2) Since Eq. (61)

=

(
n∑
i=1

||ai||2

)2

so we have

Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||2∑n
i=1 ||ai||22

≈ Varai∼N(0,c2·Ik)
n∑n

i=1 ||ai||2
(64)

25

By central limit theorem, we have
√
n(1

n

∑n
i=1 ||ai||2 − µ) ∼ N(0, σ2). And let g(x) = 1

x , we can
use Delta method9 to find the distribution of g(1

n

∑n
i=1 ||ai||2):

√
n

(
g(

∑n
i=1 ||ai||2
n

)− g(µ))

)
∼ N(0, σ2 · [g′(µ)]2) = N(0, σ2 · 1

µ4
). (65)

where µ and σ2 denote the mean and variance of ||ai||2 respectively. From Eq. (64), we have

Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||2∑n
i=1 ||ai||22

≈ Varai∼N(0,c2·Ik)
n∑n

i=1 ||ai||2

= σ2 · 1

µ4 · n
Since Eq. (65)

= 2c2

[
Γ(k2 + 1)

Γ(k2)
−

Γ(k+1
2)2

Γ(k2)2

]
· 1

(
√

2c · Γ(k+1
2)

Γ(k
2)

)4 · n
Since Eq. (12) and Eq. (13)

=
1

2c2 · nk2
Since Lemma. 2

Since Eq. (62), we have

Varai
F1(ai)

F2(ai)
=

(
nc2k

nc
√
k

)2

·Varai

(∑n
i=1 ||ai||2∑n
i=1 ||ai||22

)
≈ 1

2nk
. (66)

Similar to Eq. (64),

Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||22∑n
i=1 ||ai||2

≈ Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||2
n

(67)

Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||22∑n
i=1 ||ai||2

≈ Varai∼N(0,c2·Ik)

∑n
i=1 ||ai||2
n

Similar to Eq. (64)

= σ2 · 1

n
Since central limit theorem

= 2c2

[
Γ(k2 + 1)

Γ(k2)
−

Γ(k+1
2)2

Γ(k2)2

]
· 1

n
Since Eq. (13)

=
c2

2n
Since Lemma. 2

Since Eq. (63), we have

Varai
F2(ai)

F1(ai)
=

(
nc
√
k

nc2k

)2

·Varai

(∑n
i=1 ||ai||22∑n
i=1 ||ai||2

)
≈ 1

2nk
. (68)

From Eq.(66) and Eq.(68), Theorem 4 holds.

In Fig. 11, we also show a numerical verification of Theorem 4.

9https://en.wikipedia.org/wiki/Delta_method

26

https://en.wikipedia.org/wiki/Delta_method

Figure 11: A numerical verification of Theorem 4, where F1 =
∑n
i=1 ||ai||2/E(

∑n
i=1 ||ai||2) and

F2 =
∑n
i=1 ||ai||22/E(

∑n
i=1 ||ai||22). ai follow N(0, 0.012 · Ik).

G Proof of Theorem 5

Proposition 14. For a n×m random matrix (aij)n×m, where aij ∼ N(0, σ2). And Eq. (14) holds
with probability 1.

rank((aij)n×m) = min(m,n). (69)

Lemma 6. Let v0, v1, ..., vk be the k + 1 vectors in n dimensional Euclidean space V and k ≤ n. If
rank(v1 − v0, v2 − v0, ..., vk − v0) = n, then ∀x ∈ V , ∃λi(0 ≤ i ≤ k), s.t.

x =

k∑
i=0

λi · vi, (70)

and
∑k
i=0 λi = 1. We call λ = (λ0, λ1, ..., λk) the generalized barycentric coordinate with respect

to (v0, v1, ..., vk). (In general, barycentric coordinate is a concept in Polytope)

Proof. Note that vi is the element of n dimensional linear space V and rank(v1−v0, v2−v0, ..., vk−
v0) = n. It means (v1 − v0, v2 − v0, ..., vk − v0) form a set of basis in the linear space V . ∀x ∈ V ,
x− v0 can be expressed linearly by them, i.e.,∃ti(1 ≤ i ≤ k) s.t.

x = v0 +

k∑
i=1

ti(vi − v0)

= (1−
k∑
i=1

ti)v0 +

k∑
i=1

tivi.

Let λ0 = (1−
∑k
i=1 ti) and λi = ti(1 ≤ i ≤ k), Lemma 6 holds.

Lemma 7. Let v0, v1, ..., vk be the k+1 vectors in n dimensional Euclidean space V . ∀a, b ∈ V , and
the generalized barycentric coordinate of a, b with respect to (v0, v1, ..., vk) are λ = (λ0, λ1, ..., λk)T

and µ = (µ0, µ1, ..., µk)T ,respectively. Then

||a− b||22 = (λ− µ)TD(λ− µ), (71)

where D = (− 1
2dij)(k+1)×(k+1), and dij = ||vi − vj ||22.

Proof. Since Lemma 6, letR = [v0, v1, ..., vk]n×(k+1), and we have a = Rλ and b = Rµ. Moreover,

||a− b||22 = (a− b)T (a− b) (72)

= [R(λ− µ)]T [R(λ− µ)] (73)

= (λ− µ)TRTR(λ− µ). (74)

27

Note that, for D = (− 1
2dij)(k+1)×(k+1),

−1

2
dij = −1

2
(vi − vj)T (vi − vj) (75)

= vTi vj −
1

2
(vTi vi + vTj vj). (76)

So we have D = RTR − 1
2

(
(vTi vi + vTj vj)(k+1)×(k+1)

)
. It can be further simplified to D =

RTR− 1
2 (V αT + αV T), where V = (vT0 v0, ..., v

T
k vk)T and α = (1, ..., 1)T . So

||a− b||22 = (λ− µ)TRTR(λ− µ) (77)

= (λ− µ)T (D +
1

2
(V αT + αV T))(λ− µ) (78)

= (λ− µ)TD(λ− µ) +
1

2
(λ− µ)T (V αT + αV T)(λ− µ), (79)

therefore, we only need to prove (λ − µ)T (V αT + αV T)(λ − µ) = 0. From Lemma 6, we have
αT (λ− µ) = (λ− µ)Tα = 0 and the Lemma 7 holds.

Definition 1 (Ultra dimension). For a set U composed of vectors in a n dimensional linear space V ,
we define d̂im(U) as the Ultra dimension of U . The definition is that if U has k linearly independent
vectors and there are no more, then d̂im(U) = k.

In fact, if U is a linear subspace in V , then the Ultra dimension and the dimensions of the linear
subspace are equivalent. If U is a linear manifold, U = {x + v0|x ∈ W}, where v0 and W are
non-zero vectors and linear subspaces in V , respectively. And dim(W) = r. Then

d̂im(U) =

{
r, v0 ∈W
r + 1, v0 /∈W (80)

In other words, d̂im(U) ≥ d̂im(W) always holds.
Lemma 8. For arbitrary k (1 ≤ k ≤ n− 1), let a1, a2, ..., ak be k linearly independent vectors in n
dimensional linear space V . Consider one n−1 dimensional linear subspaceW in V and a non-zero
vector v0 in V . They form a linear manifold P = {v0 +α|α ∈W}. If a1, a2, ..., ak do not all belong
to P , then there must exist n− k vectors p1, p2, ..., pn−k from P , s.t (a1, a2, ..., ak, p1, p2, ..., pn−k)
are a set of basis for the linear space V .

Proof. we use mathematical induction. First, show that the Lemma 8 holds for n− k = 1. it means
we need to find a vector p1 ∈ P s.t. a1, a2, ..., ak, p1 linearly independent. If p1 does not exist, then
∀p ∈ P would be linearly represented by a1, a2, ..., ak. In other word,

P ⊂ L = span(a1, a2, ..., ak), (81)

1© For the linear manifold P , if v0 ∈W . This means that P is equal to the linear subspace W . Since
Eq. (81), we have W ⊂ L and d̂im(W) = d̂im(L). Hence, P = W = L. However, a1, a2, ..., ak
do not all belong to P , a contradiction.

2© For the linear manifold P , if v0 /∈W , then d̂im(P) = n. Because v0 /∈W , that is, v0 cannot be
represented by a set of basis ofW . In other words, v0 and a set of basis ofW are linearly independent.
However, the dimension of W is n− 1, hence d̂im(P) = n. From Eq. (81), we have P ⊂ L, so

n = d̂im(P) ≤ d̂im(L) = k = n− 1, (82)

a contradiction. Therefore, Lemma 8 holds for n − k = 1. Assume the induction hypothesis that
Lemma 8 is true when n − k = l, where 1 ≤ l. when n − k = l + 1, i.e., k = n − (l + 1), we
also can find a vector p1 ∈ P s.t. a1, a2, ..., ak, p1 linearly independent. Otherwise, ∀p ∈ P would
be linearly represented by a1, a2, ..., ak. Similarly, we have Eq. (81). Note that, from Definition 1,
d̂im(P) ≥ n− 1, hence

n− 1 ≤ d̂im(P) ≤ d̂im(L) = k = n− (l + 1). (83)

28

a contradiction. At this time, we have k + 1 = n − (l + 1) + 1 = n − l vectors a1, a2, ..., ak, p1

which are not all on P . Note that n− (n− l) = l, using the induction hypothesis, the Lemma 8 also
holds for n− k = l. In summary, Lemma 8 holds.

Theorem 5. Let v0, v1, ..., vk be the k + 1 vectors in n dimensional Euclidean space En. For all P
in En,

k∑
i=0

||P − vi||22 =

k∑
i=0

||G− vi||22 + (k + 1)||P −G||22.

where G is the centroid of vi, will hold if it satisfies one of the following conditions:

(1)if k ≥ n and rank(v1 − v0, v2 − v0, ..., vk − v0) = n.

(2)if k < n and (v1 − v0, v2 − v0, ..., vk − v0) are linearly independent.

(3)if vi ∼ N(0, c · In), Eq.(50) holds with probability 1 where c is a constant.

Proof. For Theorem 5 (1). From Lemma 6, ∀P ∈ En ,∃γ = (γ0, ..., γk), s.t. P can be represented
by
∑k
i=0 γivi, where

∑k
i=0 γi = 1. In fact, for each vi, it also can be respresented by

∑k
j=0 βijvi,

where
∑k
i=0 βij = 1. We just take (βi0, βi1, ..., βik) as one of the standard orthogonal basis

εi = (0, 0, ..., 1i, ...0). According to lemma 7,

||P − vi||22 = (γ − εi)TD(γ − εi) (84)

= γTDγ − 2γTDεi + εTi Dεi (85)

= γTDγ − 2γTDεi. (86)

The final equation is because the diagonal elements of the matrix are all 0. On the other hand, we
have

||G− vi||22 = (
1

k + 1

k∑
i=0

εi − εi)TD(
1

k + 1

k∑
i=0

εi − εi) (87)

=
1

(k + 1)2
αTDα− 2

k + 1
αTDεi + εTi Dεi (88)

=
1

(k + 1)2
αTDα− 2

k + 1
αTDεi, (89)

where α =
∑k
i=0 εi, i.e.,α = (1, 1, ..., 1). Next, we consider ||P −G||22.

||P −G||22 = (γ − 1

k + 1
α)TD(γ − 1

k + 1
α) (90)

= γTDγ +
1

(k + 1)2
αTDα− 2

k + 1
γTDα. (91)

In summary, we have

k∑
i=0

||P − vi||22 − ||G− vi||22 = (k + 1)γTDγ − 2γTDα+
1

k + 1
αTDα (92)

= (k + 1)||P −G||22 (93)

Therefore, Theorem 5 (1) holds.

For Theorem 5 (2). Next, we prove the case of k < n. Obviously, Lemma 6 does not hold. We
consider about such a linear space W1 = span(P −G), i.e., a linear space expanded by P −G, and
its orthogonal complement W⊥1 (in En). Since dimension formula from linear space, it is easy to
konw that dim(W⊥1) = n− 1.

29

Two linear manifolds T1 and T2 are constructed as follows,

T1 = {x+G|x ∈W⊥1 } (94)

T2 = {x+G− v0|x ∈W⊥1 } (95)

∀vi ∈ T1, we have (vi −G)T (P −G) = 0, Furthermore,

||P − vi||22 = ||vi −G||22 + ||P −G||22. (96)

It is easy to know that G− v0 is not 0. If v1 − v0, ..., vk − v0 are all belong to T2, it means v1, .., vk
are all in T1. Hence, we have Eq. (96). By summing both sides of Eq. (96) for i, it is obvious find
that Theorem 5 (2) holds. If v1 − v0, ..., vk − v0 are not all belong to T2, since Lemma 8, there are
n− k vectors p1 − v0, p2 − v0, .., pn−k − v0 from T2 s.t. they and v1 − v0, ..., vk − v0 are linearly
independent, where pi obviously belongs to manifold T1.

At the same time, we have 2G−pi ∈ T1, we can also construct n−k new vectors 2G−pi−v0 ∈ T2

and calculate the rank that

rank(v1 − v0, ..., vk − v0, p1 − v0, ..., pn−k − v0, 2G− p1 − v0, ..., 2G− pn−k − v0)

= rank(v1 − v0, ..., vk − v0, p1 − v0, ..., pn−k − v0, 2(G− v0), ..., 2(G− v0)) (97)
= rank(v1 − v0, ..., vk − v0, p1 − v0, ..., pn−k − v0, 0, ..., 0) (98)
= n (99)

The reason of the final equation is that
∑k
i=1(vi − v0) = (k + 1)(G − v0). Note that there are a

total of k + (n− k) + (n− k) = n+ (n− k) ≥ n vectors, meets the lemma 6 condition. For the
convenience of description, we define

L
(1)
i = vi, (0 ≤ i ≤ k), (100)

L
(2)
i = pi, (1 ≤ i ≤ n− k), (101)

L
(3)
i = 2G− pi, (1 ≤ i ≤ n− k). (102)

And their centroid is

G′ =
1

2n− k + 1

(
k∑
i=0

vi +

n−k∑
i=1

(L
(2)
i + L

(3)
i)

)
(103)

=
1

2n− k + 1
((k + 1)G+ 2(n− k)G) (104)

= G (105)

That is, the newly added vector does not change the centroid of vi. On the other hand, since both
L

(2)
i and L(3)

i are in the linear manifold T1, and it meets the conditions of the Eq.(96). Similar to the
derivation in the Theorem 5 (1), we have

(2n− k + 1)||P −G||22 =
∑

t=L
(1)
i ,L

(2)
i ,L

(3)
i

(
||P − t||22 − ||G− t||22

)
(106)

=

k∑
i=0

(
||P − vi||22 − ||G− vi||22

)
+

∑
t=L

(2)
i ,L

(3)
i

(
||P − t||22 − ||G− t||22

)
(107)

=

k∑
i=0

(
||P − vi||22 − ||G− vi||22

)
+ 2(n− k)||P −G||22 (108)

The final equation is because both L(2)
i and L(3)

i are in the linear manifold T1 and satisfy Eq. (96).
To simplify Eq. (108), we obtain

∑k
i=0

(
||P − vi||22 − ||G− vi||22

)
= (k + 1)||P −G||22. Therefore,

Theorem 5 (2) holds.

30

For Theorem 5 (3). When k ≥ n, from Proposition 14, we know that rank(v1−v0, v2−v0, ..., vk−
v0) = n holds with probability 1. Hence, if we use the similar deduction from Theorem 5 (1), we can
find that Theorem 5 (3) holds when k ≥ n. On the other hand, when k < n, we can get the same
result also according to Proposition 14. The reason is that (v1 − v0, v2 − v0, ..., vk − v0) are linearly
independent with probability 1.

31

H The result of Sp

(a) Sp = 0.99 (b) Sp = 0.99

(c) Sp = 0.99 (d) Sp = 0.98

(e) Sp = 0.98 (f) Sp = 1.00

Figure 12: The Spearman’s rank correlation coefficient (Sp) for different criteria. (a-c) are Sp between
`1 and `2, GM and `2, Fermat and `2 from ResNet18 (12th Conv), respectively. The results of
VGG16 (3rd Conv) are shown in (d-f). If the Sp of two pruning criteria is close to 1, then the sequence
of their pruned filters may have strong similarity.

32

I Other result

Figure 13: The distribution about other learnable parameters. (Left): The disrtibution about the
learnable parameters of batch normalization. (Rihgt): The parameters distribution of the fully-
connected layers (FC). For FC, the Sp between the criteria in Table2 are greater than 0.9.

In Fig 13, we show the other learnable parameters (i.e. Batch normalization (BN) and fully connected
neural network (FC)) in VGG16-BN. For BN, the distribution of its parameters does not satisfy
CWDA, and similar results are shown in [34, 35]. Moreover, the learnable parameters of fully-
connected layers also do not follow a Gaussian-alike distribution, which is consistent with the
conclusion in previous work [36, 37, 38].

Figure 14: The distribution of the convolutional filter (141th Conv) with kaiming-uniform initializa-
tion for each epoch.

33

J An interesting case for Importance Score measured by different criteria

The following results are the index of pruned filters obtained by the filters’ Importance Score from
different types of pruning criteria. We take VGG16 (2nd) as an example. The 5th filter in this layer is
regarded as a redundant convolutional filter for APoZ criterion, but other criteria consider it to be
almost the most important.

Taylor `1: [27, 36, 25, 11, 6, 23, 24, 16, 0, 57, 48, 53, 1, 61, 18, 55, 34, 15, 51, 58, 31, 3, 12, 21, 59,
30, 7, 38, 41, 50, 10, 33, 17, 46, 62, 13, 49, 43, 42, 47, 2, 32, 44, 20, 39, 52, 56, 40, 9, 26, 37, 22, 29,
54, 60, 8, 14, 45, 4, 63, 19, 35, 28, 5]

Taylor `2: [23, 32, 36, 11, 62, 16, 30, 59, 10, 13, 2, 50, 38, 0, 46, 43, 21, 26, 15, 22, 7, 51, 39, 33, 14,
58, 9, 40, 57, 6, 61, 44, 20, 48, 3, 53, 41, 56, 17, 12, 18, 31, 4, 1, 25, 19, 63, 24, 54, 45, 52, 37, 55, 47,
34, 35, 8, 29, 42, 27, 49, 28, 60, 5]

BN_β: [52, 46, 32, 21, 14, 29, 17, 0, 19, 36, 1, 51, 44, 40, 41, 60, 57, 27, 22, 53, 63, 8, 30, 26, 23, 58,
39, 18, 9, 47, 31, 35, 11, 37, 55, 45, 3, 61, 6, 4, 33, 25, 15, 48, 43, 28, 56, 2, 13, 16, 34, 20, 59, 10, 7,
24, 50, 62, 12, 49, 38, 42, 5, 54]

APoZ: [5, 10, 38, 42, 62, 24, 13, 12, 7, 28, 59, 15, 23, 11, 16, 56, 34, 35, 57, 19, 2, 49, 43, 25, 6, 63,
61, 36, 9, 27, 33, 20, 48, 58, 55, 18, 51, 31, 1, 0, 53, 37, 26, 29, 47, 60, 8, 44, 41, 46, 21, 17, 14, 32,
52, 22, 39, 3, 40, 30, 4, 45, 50, 54]

34

K The details of other pruning criteria

For notation, we denote ith convolutional filter in layer l as F li and the input feature maps in layer l
as Il ∈ RN×Il×Hl×W l

, where N, I l, H l,Wl mean the train set size, number of channels, height and
width respectively, i = 1, 2, · · · , λl, and l = 1, 2, · · · , L. The formulation of the filters’ Importance
Score under each pruning criteria are illustrated as follows:

Norm-based criteria:

• `1-Norm [5]: ||F li ||1;

• `2-Norm [7]: ||F li ||2;

BN-based criteria [12]:

• BN_γ: |γli|, where γli is the scaling factor in the Batch Normalization layer l;

• BN_β: |βli|, where βli is the shifting factor in the Batch Normalization layer l.

Activation-based criteria:

• APoZ [8]:
∑

p,q 1((|Il∗F l
i |)p,q>σ)

N×Il×Hl×W l , where we set σ = 0.0001 same as [9], and 1(·) is the
indicator function, ∗ is convolution operator and Il ∗ F li is the i-th output feature map;

• Entropy [9]: we first prepare Gl
i = GAP (Il ∗ F li), where Gl

i ∈ RN×1 and GAP (·) is the
Global Average Pooling. Then, we estimate statistical distribution for Gl

i by dividing all
elements in Gl

i into m bins. Let pj is the probability of bin j, and the the Importance Score
score is −

∑m
j=1 pj log pj .

First order Taylor based criteria [10, 11, 26]:

• Taylor `1-Norm: ||∂loss
∂F l

i

· F li ||1;

• Taylor `2-Norm: ||∂loss
∂F l

i

· F li ||2;

The loss is the Cross Entropy Loss on the split training set from the original training set.

35

L Additional experiments about image clasification

Table 5: The accuracy(%) of several networks and datasets using different pruning criteria.
Experiment (1) Experiment (2) Experiment (3)

Trained Pruned Fine-tuned Trained Pruned Fine-tuned Trained Pruned Fine-tuned
CIFAR10 `1 93.61 61.21 93.51 93.21 54.31 93.22 93.26 57.74 93.32
VGG16 `2 93.61 63.41 93.32 93.21 54.61 93.42 93.26 57.42 93.29

GM 93.61 61.22 93.41 93.21 53.71 93.25 93.26 57.46 93.36
CIFAR100 `1 72.67 25.91 71.50 72.99 20.43 71.36 72.56 24.01 71.07
VGG16 `2 72.67 27.07 71.28 72.99 22.31 71.12 72.56 24.45 70.92

GM 72.67 26.37 71.27 72.99 21.67 71.26 72.56 24.26 70.78
ImageNet `1 71.58 30.33 71.02 71.33 40.33 70.12 72.01 28.07 70.93
VGG16 `2 71.58 29.47 70.83 71.33 40.45 70.13 72.01 27.89 71.02

GM 71.58 30.76 70.95 71.33 39.86 70.33 72.01 28.01 70.74
CIFAR10 `1 92.98 77.73 93.08 92.97 76.02 92.82 93.01 79.93 92.81
ResNet56 `2 92.98 79.02 92.83 92.97 77.91 92.72 93.01 82.43 92.81

GM 92.98 74.26 92.77 93.2 73.93 92.61 93.01 80.48 92.84
CIFAR100 `1 71.36 50.64 70.15 70.02 52.41 69.19 70.48 52.19 69.77
ResNet56 `2 71.36 53.44 70.16 70.02 52.73 69.31 70.48 52.16 69.62

GM 71.36 45.12 70.22 70.02 52.62 69.54 70.48 50.74 69.69
ImageNet `1 73.31 62.22 73.06 73.16 54.24 72.99 73.21 63.12 73.02
ResNet34 `2 73.31 62.02 72.91 73.16 53.64 72.78 73.21 62.98 72.86

GM 73.31 61.88 72.96 73.16 53.48 72.94 73.21 62.36 73.04

All the setting of these experiments are under can be found in https://github.com/bearpaw/
pytorch-classification. Specifically, for pruning ratio:

VGG16 on CIFAR10, CIFAR100 and ImageNet:

https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/
cifar/l1-norm-pruning/vggprune.py#L84

ResNet56 on CIFAR10 and CIFAR100:

https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/
cifar/l1-norm-pruning/res56prune.py#L94

ResNet34 on ImageNet:

https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/
imagenet/l1-norm-pruning/prune.py#L138

36

https://github.com/bearpaw/pytorch-classification
https://github.com/bearpaw/pytorch-classification
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/cifar/l1-norm-pruning/vggprune.py#L84
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/cifar/l1-norm-pruning/vggprune.py#L84
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/cifar/l1-norm-pruning/res56prune.py#L94
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/cifar/l1-norm-pruning/res56prune.py#L94
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/imagenet/l1-norm-pruning/prune.py#L138
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/imagenet/l1-norm-pruning/prune.py#L138

M About weight decay

Figure 15: KS test [39] while using different settings of weight decay.

We train the ResNet110 and WRN-28-10 on CIFAR100 with different weight decay (1e-3, 3e-4 and
0) and use KS test to verify whether the parameters of different layers follow a normal distribution.
In Fig. 15, we can find

(1) When weight decay (wd) is non-zero, the normality is higher than that when weight decay is 0.

(2) If weight decay is 0, the p-value can still be much greater than 0.05, which means that the
regularization of weight decay may not be the key reason for CWDA. The distribution of the
parameters in these two networks (weight decay is 0) are shown in Fig. 17 and Fig. 16.

Figure 16: The distribution of parameters in different convolutional filters (WRN-28-10, wd = 0).

Figure 17: The distribution of parameters in different convolutional filters (ResNet110, wd = 0).

37

N More visualizations of correlation matrix

N.1 VGG16

38

N.2 VGG19

39

N.3 ResNet18

40

N.4 ResNet50

41

N.5 AlexNet

42

N.6 DenseNet

43

N.7 ResNext

44

N.8 MobileNet

45

O More experiments for supporting our analysis in global pruning

Figure 18: Global pruning with different start layer.

For VGG16. As shown in Fig.6 (a-b), compared with ResNet56, VGG16 has some layers with
different dimensions but similar Importance Score measured by `1 or `2, such as “layer 2” and “layer
8” for `2 criterion in Fig.6 (a). From Table 3 (3-4), these pairs of layers make the Sp small, which
explain why the result of `1 and `2 pruning is not similar in Fig. 5 (e) for VGG16. We consider a
special class of global pruning, i.e., the convolutional filters from one middle layer (called “Start
layer”) to the last layer are pruned globally. According to our analysis and Fig.6 (a-b), we can deduce
that when “Start layer” ≥ 4, the Sp between `1 and `2 is large enough. The experiments in Fig.18 are
consistent with our analysis, which imply our analysis is reasonable.

46

P Statistical Test

In this section, according to Section 2.1, we have a series of statistical tests for the necessary
conditions of CWDA. let Fij ∈ RNi×k×k represent the jth filter of the ith convolutional layer.10

(1) Gaussian. We verify whether Fij approximatively follow a Gaussian-alike distribution. In ith
layer, we use Kolmogorov–Smirnov (KS) test [39] to check if all the weights in the same layer follow
a normal distribution.

(2) Variance. We verify whether the variance of the diagonal elements of Σdiag are small enough.
Since Appendix B, Let σj denotes the standard deviation of all the weights of filter Fij in ith layer.
We use Student’s t test [40] to check if the variance of these σj is small enough. The null hypothesis
H0 and the alternative hypothesis H1 are:

H0 : Var(σ2
1 , σ

2
2 , .., σ

2
Ni

) ≤ σ2
0 , H1 : Var(σ2

1 , σ
2
2 , .., σ

2
Ni

) > σ2
0 .

where Ni denotes the number of the filters in ith layer and σ0 is a given real number which is small
enough, like σ2

0 = 0.0001.

(3) Mean. We verify whether the mean of Fij is 0. Let the mean of all the weights in the same layer is
µ. We use Student’s t test [40] to check if µ is close to 0. First, we check the upper bound (Mean-Left)
of µ, i.e.,

H0 : µ ≤ ε0, H1 : µ > ε0.

where ε0 is a small constant, like ε0 = 0.01. Next, we check the lower bound (Mean-Right) and the
null hypothesis H0 and the alternative hypothesis H1 are:

H0 : µ ≥ −ε0, H1 : µ < −ε0.

(4) Magnitude. We verify whether ε is small enough. Let h denote the mean of the off-diagonal
elements of Σdiag + ε ·Σblock.

H0 : h ≤ ε0, H1 : h > ε0.

Table 6: The experiments for having the comprehensive statistical tests on CWDA.
NETWORK STRUCTURE OPTIMIZER REGULARIZATION
ResNet [41] SGD [42] L1 norm
VGG [43] ASGD [44] L2 norm
AlexNet [45] Adam [46] RReLu [47]
DenseNet [48] Adagrad [49] Dropact [50]
PreResNet [51] Adamax [46] Autoaug [52]
WRN [53] Adadelta [54] Cutout [55]
ResNext [56] Cutmix [57]
ATTENTION MECHANISM INITIALIZATION DATASET
SENet [58] Kaiming-normal [59] CIFAR10 [60]
DIANet [61] Kaiming-uniform [59] CIFAR100 [60]
SRMNet [62] Xavier-normal [63] ImageNet [64]
CBAM [65] Xavier-uniform [63] MNIST [66]
IEBN [67] Orthogonal [68]
SGENet [69]
SEGMENTATION DETECTION BATCH NORMALIZATION
SegNet [70] Faster RCNN [71] VGG
PSPNet [72] VGG-bn
PYTORCH PRETRAIN MATTING LEARNING RATE
ResNet18/34/50 Deep image matting [73] Schedule150-225
VGG11/16/19 AlphaGAN matting [74] Schedule82-164
STYLE TRANSFER GAN Schedule60-120
Fast neural style [75] DCGAN [76] Cos-lr [77]

10The statistical tests about the situation with or without weight decay can be found in Appendix M.

47

Next, we show the passing rate about the statistical tests for different situations. “in the front of
network” denotes whether all the failed cases are the layers whose position is in the front of the
network.

For Network structure: https://github.com/bearpaw/pytorch-classification.

Table 7: Network structure.

Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
ResNet164 CIFAR100 98.77% 97.55% 100% 97.55% !

VGG16 CIFAR100 100% 93.75% 100% 100% !

AlexNet CIFAR100 100% 100% 100% 100% !

DenseNet-BC-100-12 CIFAR100 100% 98.99% 100% 98.99% !

PreResNet110 CIFAR100 100% 99.08% 100% 100% !

WRN28-10 CIFAR100 100% 100% 100% 100% !

ResNext-16x64d CIFAR100 100% 100% 100% 100% !

ResNet164 CIFAR10 100.00% 97.55% 100% 97.55% !

VGG16 CIFAR10 100% 93.75% 100% 93.75% !

AlexNet CIFAR10 100% 100% 100% 100% !

DenseNet-BC-100-12 CIFAR10 100% 100% 100% 98.99% !

PreResNet110 CIFAR10 100% 99.08% 100% 100% !

WRN28-10 CIFAR10 100% 100% 100% 100% !

ResNext-16x64d CIFAR10 100% 100% 100% 100% !

For Optimizer: https://pytorch.org/docs/master/optim.html#torch-optim.

Table 8: Optimizer

Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
ASGD ResNet164 100% 99.39% 99.39% 100% !

Adam ResNet164 99.39% 90.18% 100% 99.39% %

Adagrad ResNet164 100% 99.39% 100% 100% !

Adamax ResNet164 100% 96.93% 100% 99.39% %

Adadelta ResNet164 100% 100% 100% 100% !

SGD ResNet164 98.77% 97.55% 100% 97.53% !

ASGD VGG16 100% 100% 93.75% 100% !

Adam VGG16 93.75% 93.75% 100% 100.00% !

Adagrad VGG16 100% 100% 100% 100% !

Adamax VGG16 100% 100% 100% 93.75% %

Adadelta VGG16 100% 100% 100% 100% !

SGD VGG16 100% 93.75% 100% 100% !

ASGD AlexNet 100% 100% 100% 100% !

Adam AlexNet 100% 100% 100% 100% !

Adagrad AlexNet 100% 100% 100% 100% !

Adamax AlexNet 100% 100% 100% 100% !

Adadelta AlexNet 100% 100% 100% 100% !

SGD AlexNet 100% 100% 100% 100% !

For Regularization:https://github.com/LeungSamWai/Drop-Activation

https://github.com/uoguelph-mlrg/Cutout

https://github.com/clovaai/CutMix-PyTorch

https://github.com/DeepVoltaire/AutoAugment

For Attention:https://github.com/moskomule/senet.pytorch

https://github.com/gbup-group/DIANet

https://github.com/EvgenyKashin/SRMnet

48

https://github.com/bearpaw/pytorch-classification
https://pytorch.org/docs/master/optim.html#torch-optim.
https://github.com/LeungSamWai/Drop-Activation
https://github.com/uoguelph-mlrg/Cutout
https://github.com/clovaai/CutMix-PyTorch
https://github.com/DeepVoltaire/AutoAugment
https://github.com/moskomule/senet.pytorch
https://github.com/gbup-group/DIANet
https://github.com/EvgenyKashin/SRMnet

Table 9: Regularization

Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
L1 norm ResNet164 100% 99.39% 99.39% 100% !

L2 norm ResNet164 98.77% 97.53% 100% 97.53% !

RReLU ResNet164 100% 99.39% 100% 100% !

Dropact ResNet164 100% 96.93% 100% 99.39% !

Autoaugment ResNet164 100% 96.93% 100% 99.39% !

Cutout ResNet164 100% 100% 100% 100% !

Cutmix ResNet164 98.77% 97.53% 100% 97.53% !

L1 norm WRN28-10 100% 96.43% 100% 96.43% !

L2 norm WRN28-10 100% 100% 100% 100% !

RReLU WRN28-10 100% 96.43% 100% 100% !

Dropact WRN28-10 100% 96.43% 100% 100% !

Autoaugment WRN28-10 100% 96.43% 100% 100% !

Cutout WRN28-10 100% 96.43% 100% 100% !

Cutmix WRN28-10 100% 100% 100% 100% !

L1 norm VGG16 100% 93.75% 100% 100% !

L2 norm VGG16 100% 93.75% 100% 100% !

RReLU VGG16 100% 93.75% 100% 93.75% !

Dropact VGG16 100% 93.75% 100% 100% !

Autoaugment VGG16 100% 93.75% 100% 100% !

Cutout VGG16 100% 93.75% 93.75% 93.75% !

Cutmix VGG16 100% 93.75% 100% 100% !

L1 norm PreResNet110 100% 99.08% 100% 100% !

L2 norm PreResNet110 100% 99.08% 100% 100% !

RReLU PreResNet110 100% 100% 100% 100% !

Dropact PreResNet110 100% 99.08% 100% 100% !

Autoaugment PreResNet110 100% 100% 100% 100% !

Cutout PreResNet110 100% 99.08% 99.08% 99.08% !

Cutmix PreResNet110 100% 99.08% 100% 100% !

L1 norm AlexNet 100% 100% 100% 100% !

L2 norm AlexNet 100% 100% 100% 100% !

RReLU AlexNet 100% 100% 100% 100% !

Dropact AlexNet 100% 100% 100% 100% !

Autoaugment AlexNet 100% 100% 100% 100% !

Cutout AlexNet 100% 100% 100% 100% !

Cutmix AlexNet 100% 100% 100% 100% !

L1 norm DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

L2 norm DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

RReLU DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Dropact DenseNet-BC-100-12 98.99% 98.99% 98.99% 98.99% !

Autoaugment DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Cutout DenseNet-BC-100-12 100% 98.99% 98.99% 98.99% !

Cutmix DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

49

https://github.com/luuuyi/CBAM.PyTorch

https://github.com/gbup-group/IEBN

https://github.com/implus/PytorchInsight

Table 10: Attention
Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
SENet ResNet164 99.39% 99.39% 100% 100% !

DIANet ResNet164 99.39% 99.39% 100% 100% !

SRMNet ResNet164 99.39% 97.55% 100% 99.39% !

CBAM ResNet164 99.39% 99.39% 100% 100% !

IEBN ResNet164 99.39% 99.39% 99.39% 99.39% !

SGENet ResNet164 99.39% 98.77% 100% 100% !

SENet VGG16 100% 93.75% 100% 100% !

DIANet VGG16 100% 93.75% 100% 93.75% !

SRMNet VGG16 100% 100% 100% 100% !

CBAM VGG16 100% 93.75% 100% 100% !

IEBN VGG16 100% 93.75% 93.75% 93.75% !

SGENet VGG16 100% 93.75% 100% 100% !

SENet PreResNet110 99.08% 100% 100% 100% !

DIANet PreResNet110 100% 99.08% 100% 100% !

SRMNet PreResNet110 100% 99.08% 99.08% 100% !
CBAM PreResNet110 100% 100% 100% 100% -
IEBN PreResNet110 100% 99.08% 100% 99.08% !

SGENet PreResNet110 100% 100% 100% 99.08% !

SENet DenseNet-BC-100-12 100% 100% 100% 100% !

DIANet DenseNet-BC-100-12 98.99% 98.99% 100% 100% !

SRMNet DenseNet-BC-100-12 100% 98.99% 98.99% 98.99% !

CBAM DenseNet-BC-100-12 100% 100% 100% 98.99% !

IEBN DenseNet-BC-100-12 100% 98.99% 100% 100% !

SGENet DenseNet-BC-100-12 100% 100% 98.99% 100% !

SENet WRN28-10 100% 96.43% 100% 100% !

DIANet WRN28-10 100% 96.43% 100% 100% !

SRMNet WRN28-10 100% 96.43% 100% 100% !

CBAM WRN28-10 100% 96.43% 100% 100% !

IEBN WRN28-10 100% 96.43% 100% 100% !

SGENet WRN28-10 100% 96.43% 100% 100% !

For initialization:

https://pytorch.org/docs/master/nn.init.html#nn-init-doc.

For dataset:

For other tasks:

https://github.com/meetshah1995/pytorch-semse

https://github.com/jwyang/faster-rcnn.pytorch

https://github.com/speedinghzl/pytorch-segmentation-toolbox

https://github.com/foamliu/Deep-Image-Matting-PyTorch

https://github.com/CDOTAD/AlphaGAN-Matting

https://github.com/abhiskk/fast-neural-style

50

https://github.com/luuuyi/CBAM.PyTorch
https://github.com/gbup-group/IEBN
https://github.com/implus/PytorchInsight
https://pytorch.org/docs/master/nn.init.html#nn-init-doc.
https://github.com/meetshah1995/pytorch-semse
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/speedinghzl/pytorch-segmentation-toolbox
https://github.com/foamliu/Deep-Image-Matting-PyTorch
https://github.com/CDOTAD/AlphaGAN-Matting
https://github.com/abhiskk/fast-neural-style

Table 11: Initialization
Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
Kaiming-uniform ResNet164 98.77% 97.55% 100% 100% !

Kaiming-normal ResNet164 98.77% 97.53% 100% 97.55% !

Xavier-normal ResNet164 98.77% 96.32% 100% 97.55% !

Xarier-uniform ResNet164 98.16% 96.32% 100% 99.39% !

Orthogonal ResNet164 97.55% 96.32% 100% 100% !

Kaiming-uniform VGG16 100% 93.75% 100% 100% !

Kaiming-normal VGG16 100% 93.75% 100% 100% !

Xavier-normal VGG16 100% 93.75% 100% 93.75% !

Xarier-uniform VGG16 100% 93.75% 100% 93.75% !

Orthogonal VGG16 100% 93.75% 93.75% 93.75% !

Kaiming-uniform WRN28-10 100% 96.43% 100% 100% !

Kaiming-normal WRN28-10 100% 100% 100% 100% !

Xavier-normal WRN28-10 100% 96.43% 100% 100% !

Xarier-uniform WRN28-10 100% 96.43% 100% 100% !

Orthogonal WRN28-10 100% 96.43% 100% 100% !

Kaiming-uniform PreResNet110 100% 99.08% 100% 100% !

Kaiming-normal PreResNet110 100% 99.08% 100% 100% !

Xavier-normal PreResNet110 100% 100% 100% 100% !

Xarier-uniform PreResNet110 100% 99.08% 100% 100% !

Orthogonal PreResNet110 100% 100% 100% 100% !

Kaiming-uniform AlexNet 100% 100% 100% 100% !

Kaiming-normal AlexNet 100% 100% 100% 100% !

Xavier-normal AlexNet 100% 100% 100% 100% !

Xarier-uniform AlexNet 100% 100% 100% 100% !

Orthogonal AlexNet 100% 100% 100% 100% !

Kaiming-uniform DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Kaiming-normal DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Xavier-normal DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Xarier-uniform DenseNet-BC-100-12 98.99% 98.99% 98.99% 98.99% !

Orthogonal DenseNet-BC-100-12 100% 98.99% 100% 98.99% !

Table 12: Dataset
Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
CIFAR10 WRN28-10 100% 96.43% 100% 100% !

CIFAR100 WRN28-10 100% 100% 100% 100% !

ImageNet WRN28-10 100% 96.43% 100% 100% !

MINIST WRN28-10 100% 96.43% 100% 96% !

51

https://github.com/csinva/gan-pretrained-pytorch

Table 13: Other tasks
Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
SgeNet(Cityscapes) Segmentation 100% 100% 100% 100% !

PSPNet(Cityscapes) Segmentation 100% 99.12% 100% 99.12% !

ResNet101(COCO) Faster RCNN 100% 99.05% 100% 100% %

ResNet101(VOC2007) Faster RCNN 100% 99.05% 100% 100% %

VGG16(Visual Genome) Faster RCNN 100% 93.75% 100% 100% !

AlphaGAN Image matting 100% 95.00% 100% 95.00% !

Deep image matting Image matting 100% 100% 100% 100% !

Fast neural style candy 86.67% 100% 100% 100% %

Fast neural style mosaic 93.33% 100% 100% 100% !

Fast neural style starry night 86.67% 100% 100% 100% %

Fast neural style udnie 66.67% 100% 100% 100% %

DCGAN(MNIST) GAN 100% 100% 100% 100% !

DCGAN(CIFAR10) GAN 100% 100% 100% 100% !

DCGAN(CIFAR100) GAN 100% 100% 100% 100% !

VGG19(CIFAR10) without BN 100% 100% 100% 100% !

VGG19(CIFAR10) with BN 93.75% 100% 100% 100% !

VGG19(CIFAR10-lr) schedule(82-164) 93.75% 100% 100% 100% !

VGG19(CIFAR10-lr) schedule(60-120) 93.75% 100% 100% 100% !

VGG19(CIFAR10-lr) coslr 93.75% 100% 100% 100% !

For pytorch pretrain:http://pytorch.org/docs/master/torchvision/index.html.

Table 14: Pytorch pretrian

Experiments Remark Gaussian Variance Mean Magnitude in the front of network?
VGG11 ImageNet 100% 75.00% 100% 75.00% !

VGG16 ImageNet 100% 84.62% 100% 100% !

VGG19 ImageNet 100% 87.50% 100% 100% !

ResNet18 ImageNet 100% 88.24% 100% 100% !

ResNet34 ImageNet 100% 88.24% 100% 96.97% !

ResNet50 ImageNet 100% 83.67% 100% 100% %

52

https://github.com/csinva/gan-pretrained-pytorch
http://pytorch.org/docs/master/torchvision/index.html.

Q Training through slimming

Figure 19: The Similarity for different criteria with/without slimming [34].

As a representative of the BN-based pruning method, slimming pruning[34] can not be directly
compared with the criteria mentioned in the paper because it adopts a special training method.
Therefore, we use the training method in [34] to train another ResNet56 on cifar100. Then, the
analysis of similarities between 8 different pruning criteria on such a model is shown in Fig. 19.

In this situation, the fifth criterion BN_γ is the method introduced in [34]. From Fig. 19, there is no
significant difference in the result of the similarity between ResNet56 obtained by slimming method
and resnet56 trained in general.

53

Figure 21: Optimizer

R More experiments of Sp in Norm-based criteria

Figure 20: Network Structure

54

Figure 22: Initialization

55

Figure 23: Attention mechanism

56

Figure 24: Other task: segmentation

Figure 25: Other task: Faster RCNN

57

Figure 26: Other task: style transfer

58

Figure 27: Other task: GAN

59

Figure 28: Other task: Regularization

60

Figure 29: Dataset

Figure 30: Batch normalization

61

Figure 31: Pytorch pre-trained Model

62

Figure 32: Learning rate

63

