A Related Proposition

Proposition 3 (Amoroso distribution). The Amoroso distribution is a four parameter, continuous, univariate, unimodal probability density, with semi-infinite range [30]. And its probability density function is

$$
\begin{equation*}
\operatorname{Amoroso}(X \mid a, \theta, \alpha, \beta)=\frac{1}{\Gamma(\alpha)}\left|\frac{\beta}{\theta}\right|\left(\frac{X-a}{\theta}\right)^{\alpha \beta-1} \exp \left\{-\left(\frac{X-a}{\theta}\right)^{\beta}\right\} \tag{7}
\end{equation*}
$$

for $x, a, \theta, \alpha, \beta \in \mathbb{R}, \alpha>0$ and range $x \geq a$ if $\theta>0, x \leq a$ if $\theta<0$. The mean and variance of Amoroso distribution are

$$
\begin{equation*}
\mathbb{E}_{X \sim \operatorname{Amoroso}(X \mid a, \theta, \alpha, \beta)} X=a+\theta \cdot \frac{\Gamma\left(\alpha+\frac{1}{\beta}\right)}{\Gamma(\alpha)} \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}_{X \sim \operatorname{Amoroso}(X \mid a, \theta, \alpha, \beta)} X=\theta^{2}\left[\frac{\Gamma\left(\alpha+\frac{2}{\beta}\right)}{\Gamma(\alpha)}-\frac{\Gamma\left(\alpha+\frac{1}{\beta}\right)^{2}}{\Gamma(\alpha)^{2}}\right] \tag{9}
\end{equation*}
$$

Proposition 4 (Half-normal distribution). Let random variable X follow a normal distribution $N\left(0, \sigma^{2}\right)$, then $Y=|X|$ follows a half-normal distribution [31]. Moreover, Y also follows $\operatorname{Amoroso}\left(x \mid 0, \sqrt{2} \sigma, \frac{1}{2}, 2\right)$. By Eq. 8) and Eq. (9), the mean and variance of half-normal distribution are

$$
\begin{equation*}
\mathbb{E}_{X \sim N\left(0, \sigma^{2}\right)}|X|=\sigma \sqrt{2 / \pi}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}_{X \sim N\left(0, \sigma^{2}\right)}|X|=\sigma^{2}\left(1-\frac{2}{\pi}\right) \tag{11}
\end{equation*}
$$

Proposition 5 (Scaled Chi distribution). Let $X=\left(x_{1}, x_{2}, \ldots x_{k}\right)$ and $x_{i}, i=1, \ldots, k$ are k independent, normally distributed random variables with mean 0 and standard deviation σ. The statistic $\ell_{2}(X)=\sqrt{\sum_{i=1}^{k} x_{i}^{2}}$ follows Scaled Chi distribution [30]. Moreover, $\ell_{2}(X)$ also follows $\operatorname{Amoroso}\left(x \mid 0, \sqrt{2} \sigma, \frac{k}{2}, 2\right)$. By Eq. (8) and Eq. (9), the mean and variance of Scaled Chi distribution are

$$
\begin{equation*}
\mathbb{E}_{X \sim N\left(\mathbf{0}, \sigma^{2} \cdot \mathbf{I}_{\mathbf{k}}\right)}\left[\ell_{2}(X)\right]^{j}=2^{j / 2} \sigma^{j} \cdot \frac{\Gamma\left(\frac{k+j}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}_{X \sim N\left(\mathbf{0}, \sigma^{2} \cdot \mathbf{I}_{\mathbf{k}}\right)} \ell_{2}(X)=2 \sigma^{2}\left[\frac{\Gamma\left(\frac{k}{2}+1\right)}{\Gamma\left(\frac{k}{2}\right)}-\frac{\Gamma\left(\frac{k+1}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\right] \tag{13}
\end{equation*}
$$

Proposition 6 (Stirling's formula). ${ }^{6}$ For big enough x and $x \in \mathbb{R}^{+}$, we have an approximation of Gamma function:

$$
\begin{equation*}
\Gamma(x+1) \approx \sqrt{2 \pi x}\left(\frac{x}{e}\right)^{x} \tag{14}
\end{equation*}
$$

Proposition 7 (FKG inequality). If f and g are increasing functions on \mathbb{R}^{n} [32], we have

$$
\begin{equation*}
\mathbb{E}(f) \mathbb{E}(g) \leq \mathbb{E}(f g) \tag{15}
\end{equation*}
$$

Say that a function on \mathbb{R}^{n} is increasing if it is an increasing function in each of its arguments.(i.e., for fixed values of the other arguments).

[^0]Proposition 8. Let $f(X, Y)$ is a two dimensional differentiable function. According to Taylor theorem [33], we have

$$
\begin{align*}
f(X, Y)= & f(\mathbb{E}(X), \mathbb{E}(Y))+\sum_{c y c}(X-\mathbb{E}(X)) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))+\text { Remainder } 1, \tag{16}\\
f(X, Y) & =f(\mathbb{E}(X), \mathbb{E}(Y))+\sum_{c y c}(X-\mathbb{E}(X)) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))+ \\
& \frac{1}{2} \sum_{c y c}(X-\mathbb{E}(X))^{T} \frac{\partial^{2}}{\partial X^{2}} f(\mathbb{E}(X), \mathbb{E}(Y))(X-\mathbb{E}(X))+\text { Remainder } 2 \tag{17}
\end{align*}
$$

Lemma 1. Let X and Y are random variables. Then we have such an estimation

$$
\begin{equation*}
\operatorname{Var}\left(\frac{X}{Y}\right) \approx\left(\frac{\mathbb{E}(X)}{\mathbb{E}(Y)}\right)^{2}\left(\frac{\operatorname{Var} X}{\mathbb{E}(X)^{2}}+\frac{\operatorname{Var} Y}{\mathbb{E}(Y)^{2}}-2 \frac{\operatorname{Cov}(X, Y)}{\mathbb{E}(X) \mathbb{E}(Y)}\right) \tag{18}
\end{equation*}
$$

Proof. Let $f(X, Y)=X / Y$, according to the definition of variance, we have

$$
\begin{aligned}
\operatorname{Var} f(X, Y) & =\mathbb{E}[f(X, Y)-\mathbb{E}(f(X, Y))]^{2} \\
& \approx \mathbb{E}\left[f(X, Y)-\mathbb{E}\left\{f(\mathbb{E}(X), \mathbb{E}(Y))+\sum_{c y c}(X-\mathbb{E}(X)) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))\right\}\right]^{2}
\end{aligned}
$$

$$
\text { from Eq. } 16
$$

$$
=\mathbb{E}\left[f(X, Y)-f(\mathbb{E}(X), \mathbb{E}(Y))-\sum_{c y c} \mathbb{E}(X-\mathbb{E}(X)) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))\right]^{2}
$$

$$
=\mathbb{E}[f(X, Y)-f(\mathbb{E}(X), \mathbb{E}(Y))]^{2}
$$

$$
\approx \mathbb{E}\left[\sum_{c y c}(X-\mathbb{E}(X)) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))\right]^{2} \quad \text { from Eq. }
$$

$$
=2 \operatorname{Cov}(X, Y) \frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y)) \frac{\partial}{\partial Y} f(\mathbb{E}(X), \mathbb{E}(Y))+\sum_{c y c}\left[\frac{\partial}{\partial X} f(\mathbb{E}(X), \mathbb{E}(Y))\right]^{2} \cdot \operatorname{Var} X
$$

$$
=2 \operatorname{Cov}(X, Y) \cdot \frac{1}{\mathbb{E}(Y)} \cdot\left(-\frac{\mathbb{E}(X)}{(\mathbb{E}(Y))^{2}}\right)+\frac{1}{(\mathbb{E}(Y))^{2}} \cdot \operatorname{Var} X+\frac{(\mathbb{E} X)^{2}}{(\mathbb{E} Y)^{4}} \cdot \operatorname{Var} Y
$$

$$
=\left(\frac{\mathbb{E}(X)}{\mathbb{E}(Y)}\right)^{2}\left(\frac{\operatorname{Var} X}{\mathbb{E}(X)^{2}}+\frac{\operatorname{Var} Y}{\mathbb{E}(Y)^{2}}-2 \frac{\operatorname{Cov}(X, Y)}{\mathbb{E}(X) \mathbb{E}(Y)}\right)
$$

From Eq. 17 , and Lemma 1, we also can obtain an estimation of $\mathbb{E}(\mathbf{A} / \mathbf{B})$, where \mathbf{A} and \mathbf{B} are two random variables. i.e.,

$$
\begin{equation*}
\mathbb{E}\left(\frac{\mathbf{A}}{\mathbf{B}}\right) \approx \frac{\mathbb{E} \mathbf{A}}{\mathbb{E} \mathbf{B}}+\operatorname{Var}(\mathbf{B}) \cdot \frac{\mathbb{E} \mathbf{A}}{(\mathbb{E} \mathbf{B})^{3}} \tag{19}
\end{equation*}
$$

Lemma 2. For big enough x and $x \in \mathbb{R}^{+}$, we have

$$
\begin{equation*}
\lim _{x \rightarrow+\infty}\left[\frac{\Gamma\left(\frac{x+1}{2}\right)}{\Gamma\left(\frac{x}{2}\right)}\right]^{2} \cdot \frac{1}{x}=\frac{1}{2} \tag{20}
\end{equation*}
$$

And

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \frac{\Gamma\left(\frac{x}{2}+1\right)}{\Gamma\left(\frac{x}{2}\right)}-\left[\frac{\Gamma\left(\frac{x+1}{2}\right)}{\Gamma\left(\frac{x}{2}\right)}\right]^{2}=\frac{1}{4} \tag{21}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\lim _{x \rightarrow+\infty}\left[\frac{\Gamma\left(\frac{x+1}{2}\right)}{\Gamma\left(\frac{x}{2}\right)}\right]^{2} \cdot \frac{1}{x} & \approx \lim _{x \rightarrow+\infty}\left(\frac{\sqrt{2 \pi\left(\frac{x-1}{2}\right)} \cdot\left(\frac{x-1}{2 e}\right)^{\frac{x-1}{2}}}{\sqrt{2 \pi\left(\frac{x-2}{2}\right)} \cdot\left(\frac{x-2}{2 e}\right)^{\frac{x-2}{2}}}\right)^{2} \cdot \frac{1}{x} \quad \text { from Proposition. } 6 \\
& =\lim _{x \rightarrow+\infty}\left(\frac{x-1}{x-2}\right) \cdot \frac{\left(\frac{x-1}{2 e}\right)^{x-2}}{\left(\frac{x-2}{2 e}\right)^{x-2}} \cdot\left(\frac{x-1}{2 e}\right) \cdot \frac{1}{x} \\
& =\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x-2}\right)^{x-2} \cdot \frac{x-1}{x-2} \cdot \frac{x-1}{2 e} \cdot \frac{1}{x} \\
& =\frac{1}{2}
\end{aligned}
$$

on the other hand, we have

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} \frac{\Gamma\left(\frac{x}{2}+1\right)}{\Gamma\left(\frac{x}{2}\right)}-\left[\frac{\Gamma\left(\frac{x+1}{2}\right)}{\Gamma\left(\frac{x}{2}\right)}\right]^{2} & =\lim _{x \rightarrow+\infty} \frac{x}{2}-\left(1+\frac{1}{x-2}\right)^{x-2} \cdot \frac{x-1}{x-2} \cdot \frac{x-1}{2 e} \\
& =\lim _{x \rightarrow+\infty} \frac{x}{2 e}\left(e-\left(1+\frac{1}{x}\right)^{x}\right) \\
& =\frac{1}{2}\left(-\frac{\frac{1}{e}(-e)}{2}\right) \\
& =\frac{1}{4}
\end{aligned}
$$

Proposition 9. KL divergence between two distributions P and Q of a continuous random variable is given by $D_{K L}(p \| q)=\int_{x} p(x) \log \frac{p(x)}{q(x)}$. And probabilty density function of multivariate Normal distribution is given by $p(\mathbf{x})=\frac{1}{(2 \pi)^{k / 2}|\Sigma|^{1 / 2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \Sigma^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)$. Let our two Normal distributions be $\mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{p}}, \Sigma_{p}\right)$ and $\mathcal{N}\left(\boldsymbol{\mu}_{q}, \Sigma_{q}\right)$, both k dimensional. we have

$$
\begin{equation*}
D_{K L}(p \| q)=\frac{1}{2}\left[\log \frac{\left|\Sigma_{q}\right|}{\left|\Sigma_{p}\right|}-k+\left(\boldsymbol{\mu}_{\boldsymbol{p}}-\boldsymbol{\mu}_{\boldsymbol{q}}\right)^{T} \Sigma_{q}^{-1}\left(\boldsymbol{\mu}_{\boldsymbol{p}}-\boldsymbol{\mu}_{\boldsymbol{q}}\right)+\operatorname{tr}\left\{\Sigma_{q}^{-1} \Sigma_{p}\right\}\right] . \tag{22}
\end{equation*}
$$

Proposition 10 (Jacobi's formula). If A is a differentiable map from the real numbers to $n \times n$ matrices,

$$
\begin{equation*}
\frac{d}{d t} \operatorname{det} A(t)=\operatorname{tr}\left(\operatorname{adj}(A(t)) \frac{d A(t)}{d t}\right) \tag{23}
\end{equation*}
$$

Proposition 11. For random variable X with μ and σ^{2} as mean and variance, then we can use Taylor expansion to obtain:

$$
\left\{\begin{array}{l}
\mathbb{E}(\log X) \approx \log \mu-\frac{\sigma^{2}}{2 \mu^{2}} \tag{24}\\
\operatorname{Var}(\log X) \approx \frac{\sigma^{2}}{\mu^{2}}
\end{array}\right.
$$

Proposition 12. Given n normal distributions $N\left(0, \sigma_{i}^{2}\right), 1 \leq i \leq n$ and $\left(X_{i 1}, X_{i 2}, \ldots, X_{i m}\right)$ are sample from $N\left(0, \sigma_{i}^{2}\right), 1 \leq j \leq m$. then

$$
\begin{equation*}
\operatorname{Var}_{1 \leq i \leq n, 1 \leq j \leq m}\left(X_{i j}\right)=\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2} \tag{25}
\end{equation*}
$$

Proof.

$$
\begin{align*}
\operatorname{Var}_{1 \leq i \leq n, 1 \leq j \leq m}\left(X_{i j}\right) & =\frac{1}{m n} \sum_{i=1}^{n} \sum_{j=1}^{m}\left[X_{i j}-\mathbb{E}\left(X_{i j}\right)\right]^{2} \tag{26}\\
& =\frac{1}{n}\left\{\frac{1}{m} \sum_{j=1}^{m}\left[X_{i j}-\mathbb{E}\left(X_{1 j}\right)\right]^{2}+\ldots+\frac{1}{m} \sum_{j=1}^{m}\left[X_{n j}-\mathbb{E}\left(X_{n j}\right)\right]^{2}\right\} \\
& =\frac{1}{n}\left\{\sigma_{1}^{2}+\ldots+\sigma_{n}^{2}\right\}
\end{align*}
$$

Lemma 3. For a matrix $\mathbf{B} \in R^{n \times n}$ and a small constant ϵ, we have:

$$
\begin{equation*}
\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)=1+\epsilon \operatorname{tr}(\mathbf{B})+O\left(\epsilon^{2}\right) \tag{28}
\end{equation*}
$$

Proof. First, we regard $\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)$ as a function w.r.t ϵ. Since Proposition 10, we have:

$$
\begin{align*}
\left.\frac{d}{d \epsilon} \operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)\right|_{\epsilon=0} & =\left.\operatorname{tr}\left\{\operatorname{adj}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right) \mathbf{B}\right\}\right|_{\epsilon=0} \tag{29}\\
& =\left.\operatorname{tr}\left\{\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right) \cdot\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)^{-1} \mathbf{B}\right\}\right|_{\epsilon=0} \tag{30}\\
& =\left.\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right) \cdot \operatorname{tr}\left\{\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)^{-1} \mathbf{B}\right\}\right|_{\epsilon=0} \tag{31}\\
& =\operatorname{tr}(\mathbf{B}) \tag{32}
\end{align*}
$$

Using Taylor expansion for $\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)$, we have $\frac{d}{d \epsilon} \operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)=\operatorname{det}\left(\mathbf{I}_{n}\right)+\left.\frac{d}{d \epsilon} \operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)\right|_{\epsilon=0}$. $\epsilon+O\left(\epsilon^{2}\right)$. In other words, $\operatorname{det}\left(\mathbf{I}_{n}+\epsilon \mathbf{B}\right)=1+\epsilon \operatorname{tr}(\mathbf{B})+O\left(\epsilon^{2}\right)$.

A. 1 The proof of Proposition 1

(Proposition 1] If the convolutional filters F_{A} in layer A meet CWDA, then we have following estimations:

Criterion	Mean	Variance
$\ell_{1}\left(F_{A}\right)$	$\sqrt{2 / \pi} \sigma_{A} d_{A}$	$\left(1-\frac{2}{\pi}\right) \sigma_{A}^{2} d_{A}$
$\ell_{2}\left(F_{A}\right)$	$\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{{ }^{2}}\right) / \Gamma\left(\frac{d_{A}}{2}\right)$	$\sigma_{A}^{2} / 2$
Fermat $\left(F_{A}\right)$	$\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{2}\right) / \Gamma\left(\frac{d_{A}}{2}\right)$	$\sigma_{A}^{2} / 2$

where d_{A} and σ_{A}^{2} denote the dimension of F_{A} and the variance of the weights in layer A, respectively.
Proof. According to Appendix B. Eq. 21, Proposition 4 and Proposition5 we can obtain the mean and variance of $\ell_{1}\left(F_{A}\right)$ and $\ell_{2}\left(F_{A}\right)$. Moreover, From the Theorem 3 , we know that the Fermat point \mathbf{F} of F_{A} and the origin $\mathbf{0}$ approximately coincide. According to Table $1,\left\|\mathbf{F}-F_{A}\right\|_{2} \approx$ $\left\|\mathbf{0}-F_{A}\right\|_{2}=\left\|F_{A}\right\|_{2}$. Therefore, the mean and variance of $\operatorname{Fermat}\left(F_{A}\right)$ are the same as $\ell_{2}\left(F_{A}\right)$'s in Proposition 1 .

A. 2 The proof of Proposition 2

(Proposition 2 If the convolutional filters F_{A} in layer A meet CWDA, then $\mathbb{E}\left[\ell_{1}\left(F_{A}\right) / \ell_{2}\left(F_{A}\right)\right]$ and $\mathbb{E}\left[\ell_{2}\left(F_{A}\right) / \ell_{1}\left(F_{A}\right)\right]$ only depend on their dimension d_{A}.

Proof. From Eq. 19, we have:

$$
\begin{aligned}
\mathbb{E}\left[\frac{\ell_{1}\left(F_{A}\right)}{\ell_{2}\left(F_{A}\right)}\right] & \approx \frac{\mathbb{E}\left[\ell_{1}\left(F_{A}\right)\right]}{\mathbb{E}\left[\ell_{2}\left(F_{A}\right)\right]}+\operatorname{Var}\left[\ell_{2}\left(F_{A}\right)\right] \cdot \frac{\mathbb{E}\left[\ell_{1}\left(F_{A}\right)\right]}{\mathbb{E}\left[\ell_{2}\left(F_{A}\right)\right]^{3}} \\
& =\frac{\sqrt{2 / \pi} \sigma_{A} d_{A}}{\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{2}\right) / \Gamma\left(\frac{d_{A}}{2}\right)}+\sigma_{A}^{2} / 2 \cdot \frac{\sqrt{2 / \pi} \sigma_{A} d_{A}}{\left[\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{2}\right) / \Gamma\left(\frac{d_{A}}{2}\right)\right]^{3}} \\
& \text { from Proposition. } 1
\end{aligned}
$$

Similarly, we can prove that $\mathbb{E}\left[\ell_{2}\left(F_{A}\right) / \ell_{1}\left(F_{A}\right)\right]$ also only depend on their dimension d_{A}.

$$
\begin{aligned}
& \mathbb{E}\left[\frac{\ell_{2}\left(F_{A}\right)}{\ell_{1}\left(F_{A}\right)}\right] \approx \frac{\mathbb{E}\left[\ell_{2}\left(F_{A}\right)\right]}{\mathbb{E}\left[\ell_{1}\left(F_{A}\right)\right]}+\operatorname{Var}\left[\ell_{1}\left(F_{A}\right)\right] \cdot \frac{\mathbb{E}\left[\ell_{2}\left(F_{A}\right)\right]}{\mathbb{E}\left[\ell_{1}\left(F_{A}\right)\right]^{3}} \\
&=\frac{\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{2}\right) / \Gamma\left(\frac{d_{A}}{2}\right)}{\sqrt{2 / \pi} \sigma_{A} d_{A}}+\left(1-\frac{2}{\pi}\right) \sigma_{A}^{2} d_{A} \cdot \frac{\sqrt{2} \sigma_{A} \Gamma\left(\frac{d_{A}+1}{2}\right) / \Gamma\left(\frac{d_{A}}{2}\right)}{\left[\sqrt{2 / \pi} \sigma_{A} d_{A}\right]^{3}} \\
& \text { from Proposition. } 1 \\
& \approx O\left(\frac{1}{\sqrt{d_{A}}}\right)+O\left(\frac{1}{d_{A}^{1.5}}\right)
\end{aligned}
$$

B The relaxation for CWDA

(Convolution Weight Distribution Assumption) Let $F_{i j} \in \mathbb{R}^{N_{i} \times k \times k}$ be the $j^{\text {th }}$ well-trained filter of the $i^{\text {th }}$ convolutional layer. In genera ${ }^{7}$, in $i^{\text {th }}$ layer, $F_{i j}\left(j=1,2, \ldots, N_{i+1}\right)$ are i.i.d and follow such a distribution:

$$
\begin{equation*}
F_{i j} \sim \mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}^{i}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}^{i}\right) \tag{33}
\end{equation*}
$$

where $\boldsymbol{\Sigma}_{\text {block }}^{i}=\operatorname{diag}\left(K_{1}, K_{2}, \ldots, K_{N_{i}}\right)$ is a block diagonal matrix and the diagonal elements of $\boldsymbol{\Sigma}_{\text {block }}^{i}$ are $0 . \epsilon$ is a small constant. The values of the off-block-diagonal elements are 0 and $K_{l} \in$ $R^{k^{2} \times k^{2}}, l=1,2, \ldots, N_{i} . \boldsymbol{\Sigma}_{\text {diag }}^{i}=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{N_{i} \times k \times k}\right)$ is a diagonal matrix and the elements of $\Sigma_{\text {diag }}^{i}$ are close enough.
In Section 2, we propose CWDA. In order to use this assumption conveniently, we give the following relaxation of CWDA:
(Convolution Weight Distribution Assumption-Relaxation) Let $F_{i j} \in \mathbb{R}^{N_{i} \times k \times k}$ be the $j^{\text {th }}$ welltrained filter of the $i^{\text {th }}$ convolutional layer. In general, in $i^{\text {th }}$ layer, $F_{i j}\left(j=1,2, \ldots, N_{i+1}\right)$ are i.i.d and follow such a distribution:

$$
\begin{equation*}
F_{i j} \sim \mathbf{N}\left(\mathbf{0}, \sigma_{\text {layer }}^{2} \cdot \mathbf{I}_{N_{i} \times k \times k}\right) \tag{34}
\end{equation*}
$$

where $\sigma_{\text {layer }}^{2}$ is the variance of the weights in $i^{\text {th }}$ convolutional layer.
Next, we analyze the gap between CWDA and CWDA-Relaxation, i.e., the difference between $\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}^{i}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}^{i}\right)$ and $\mathbf{N}\left(\mathbf{0}, \sigma_{\text {layer }}^{2} \cdot \mathbf{I}_{N_{i} \times k \times k}\right)$.

Lemma 4. Given two n-dimension Gaussian distributions $\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right)$ and $\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}\right)$, we can estimate the KL divergence of them:

$$
\begin{equation*}
\mathrm{KL}\left[\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right) \| \mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}\right)\right] \approx \frac{1}{2} \log \left[\frac{1}{1+O\left(\epsilon^{2}\right)}\right] \tag{35}
\end{equation*}
$$

[^1]where $\boldsymbol{\Sigma}_{\text {block }}=\operatorname{diag}\left(K_{1}, K_{2}, \ldots, K_{N_{i}}\right)$ is a block diagonal matrix and the diagonal elements of $\Sigma_{\text {block }}$ are $0 . \epsilon$ is a small constant. The values of the off-block-diagonal elements are 0 and $K_{l} \in$ $R^{k^{2} \times k^{2}}, l=1,2, \ldots, N_{i} . \boldsymbol{\Sigma}_{\text {diag }}=\operatorname{diag}\left(a_{1}, a_{2}, \ldots, a_{N_{i} \times k \times k}\right)$ is a diagonal matrix and the elements of $\boldsymbol{\Sigma}_{\text {diag }}$ are close enough. $n=N_{i} \times k \times k$.

Proof. Since Proposition 9, we have:

$$
\begin{align*}
2 \mathrm{KL} & =\log \frac{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}\right]}{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right]}-n+0+\operatorname{tr}\left\{\boldsymbol{\Sigma}_{\text {diag }}^{-1}\left(\boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right)\right\} \tag{36}\\
& =\log \frac{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}\right]}{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right]}-n+\operatorname{tr}\left\{\mathbf{I}_{k}+\epsilon \boldsymbol{\Sigma}_{\text {diag }}^{-1} \boldsymbol{\Sigma}_{\text {block }}\right\} \tag{37}\\
& =\log \frac{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}\right]}{\operatorname{det}\left[\boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right]} \quad \text { Since the diagonal elements of } \boldsymbol{\Sigma}_{\text {block }} \text { are } 0 \tag{38}
\end{align*}
$$

Let $\boldsymbol{\Sigma}_{\text {diag }}=\operatorname{diag}\left(S_{1}, S_{2}, \ldots, S_{N_{i}}\right)$, where $S_{j}=\operatorname{diag}\left(a_{(j-1) k^{2}+1}, a_{(j-1) k^{2}+2}, \ldots, a_{(j-1) k^{2}+k^{2}}\right), j=$ $1,2, \ldots, N_{i}$.

$$
\begin{align*}
2 \mathrm{KL} & =\log \frac{\operatorname{det}\left[\boldsymbol{\Sigma}_{\mathrm{diag}}\right]}{\operatorname{det}\left[\boldsymbol{\Sigma}_{\mathrm{diag}}+\epsilon \cdot \boldsymbol{\Sigma}_{\mathrm{block}}\right]} \tag{39}\\
& =\log \prod_{j=1}^{n} a_{k}-\log \left\{\prod_{h=1}^{N_{i}} \operatorname{det}\left[S_{h}+\epsilon K_{h}\right]\right\} \tag{40}\\
& =\log \prod_{j=1}^{n} a_{k}-\log \left\{\prod_{h=1}^{N_{i}} \operatorname{det}\left[S_{h}\right] \operatorname{det}\left[\mathbf{I}_{k^{2}}+\epsilon S_{h}^{-1} K_{h}\right]\right\} \tag{41}
\end{align*}
$$

Note that S_{h} is a diagonal matrix and the diagonal elements of K_{h} are all zero. Therefore

$$
\begin{equation*}
\operatorname{tr}\left(S_{h}^{-1} K_{h}\right)=0 \tag{42}
\end{equation*}
$$

Next,

$$
\begin{align*}
2 \mathrm{KL} & =\log \prod_{j=1}^{n} a_{k}-\log \left\{\prod_{h=1}^{N_{i}} \operatorname{det}\left[S_{h}\right] \operatorname{det}\left[\mathbf{I}_{k^{2}}+\epsilon S_{h}^{-1} K_{h}\right]\right\} \tag{43}\\
& =\log \prod_{j=1}^{n} a_{k}-\log \left\{\prod_{h=1}^{N_{i}} \operatorname{det}\left[S_{h}\right] \cdot\left(1+\epsilon \operatorname{tr}\left(S_{h}^{-1} K_{h}\right)+O\left(\epsilon^{2}\right)\right)\right\} \\
& =\log \prod_{j=1}^{n} a_{k}-\log \left\{\prod_{h=1}^{N_{i}} \operatorname{det}\left[S_{h}\right] \cdot\left(1+O\left(\epsilon^{2}\right)\right)\right\} \\
& =\log \prod_{j=1}^{n} a_{k}-\log \prod_{j=1}^{n} a_{k}\left(1+O\left(\epsilon^{2}\right)\right) \tag{44}\\
& =\log \left[\frac{1}{1+O\left(\epsilon^{2}\right)}\right] \tag{45}
\end{align*}
$$

According to Statistical test (2) in Section 2.1. $\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}\right)$ can be approximate to $\mathbf{N}\left(\mathbf{0}, \frac{1}{n} \operatorname{tr}\left(\boldsymbol{\Sigma}_{\text {diag }}\right) \mathbf{I}_{n}\right)$. In addition, from Propsition 12 and Lemma 4 , while ϵ is small enough, the distribution $\mathbf{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}\right)$ can be approximate to $\mathbf{N}\left(\mathbf{0}, \sigma_{\text {layer }}^{2} \cdot \mathbf{I}_{N_{i} \times k \times k}\right)$. The analysis in this paper are based on Convolution Weight Distribution Assumption-Relaxation and we use it to explain successfully many phenomena in the Similarity and Applicability problem of pruning criteria.

C Proof of Theorem 1

Theorem 1. Let n-dimension random variable X meet CWDA, and the pair of criteria $\left(C_{1}, C_{2}\right)$ is one of $\left(\ell_{1}, \ell_{2}\right)$, (ℓ_{2}, Fermat) or (Fermat, GM), we have

$$
\begin{equation*}
\max \left\{\operatorname{Var}_{X}\left(\frac{\widehat{C}_{2}(X)}{\widehat{C}_{1}(X)}\right), \operatorname{Var}_{X}\left(\frac{\widehat{C}_{1}(X)}{\widehat{C}_{2}(X)}\right)\right\} \lesssim B(n) \tag{46}
\end{equation*}
$$

where $\widehat{C}_{1}(X)$ denotes $C_{1}(X) / \mathbb{E}\left(C_{1}(X)\right)$ and $\widehat{C}_{2}(X)$ denotes $C_{2}(X) / \mathbb{E}\left(C_{2}(X)\right) . B(n)$ denotes the upper bound of left-hand side and when n is large enough, $B(n) \rightarrow 0$.
For $i^{\text {th }}$ layer, we use v_{j} to represent $F_{i j}, j=1,2, \ldots N$. And v_{j} meets CWDA. Since Appendix B we use the following three points to prove Theorem 1
(1) For $\left(\ell_{2}, \ell_{1}\right)$. In fact, $\ell_{2} \cong \ell_{1}$ (their importance rankings are similar) is not trivial. Generally speaking, for convolutional filters, $\operatorname{dim}\left(v_{j}\right)$ is large enough. Since v_{i} satisfies CWDA, from Theorem 2. we know that the variance of ratio between $\widehat{\ell}_{1}$ and $\widehat{\ell}_{2}$ have a bound $O\left(\operatorname{dim}\left(v_{j}\right)^{-1}\right)$, which means ℓ_{2} and ℓ_{1} are appropriate monotonic. Specific numerical validation is shown in Fig. 9 of Appendix D.

Theorem 2. Let $X \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{n}\right)$, we have

$$
\begin{equation*}
\max \left\{\operatorname{Var}_{X}\left(\frac{\widehat{\ell}_{2}(X)}{\hat{\ell}_{1}(X)}\right), \operatorname{Var}_{X}\left(\frac{\hat{\ell}_{1}(X)}{\widehat{\ell}_{2}(X)}\right)\right\} \lesssim \frac{1}{n} \tag{47}
\end{equation*}
$$

where $\widehat{\ell}_{1}(X)$ denotes $\ell_{1}(X) / \mathbb{E}\left(\ell_{1}(X)\right)$ and $\widehat{\ell}_{2}(X)$ denotes $\ell_{2}(X) / \mathbb{E}\left(\ell_{2}(X)\right)$. c is a constant.
Proof. (See Appendix D.
(2) For $\left(\ell_{2}\right.$, Fermat). Since v_{i} satisfies CWDA, from Theorem3, we know that the Fermat point of v_{i} and the origin $\mathbf{0}$ approximately coincide. According to Table $2 \| \mid$ Fermat $-v_{i}\left\|_{2} \approx\right\| \mathbf{0}-v_{i} \|_{2}=$ $\left\|v_{i}\right\|_{2}$. Therefore, from Theorem 2, the bound $B(n)$ for the (ℓ_{1}, Fermat) and (ℓ_{2}, Fermat) are $\frac{1}{n}$ and 0 , respectively. Moreover, since CWDA, the centroid of v_{i} is $\mathbf{G}=\frac{1}{n} \sum_{i=1}^{N} v_{i}=\mathbf{0}$. Hence,

$$
\begin{equation*}
\mathrm{G}=\mathbf{0} \approx \text { Fermat. } \tag{48}
\end{equation*}
$$

Theorem 3. Let random variable $v_{i} \in \mathbb{R}^{k}$ and they are i.i.d and follow normal distribution $N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)$. For $F \in \mathbb{R}^{k}$, we have $\operatorname{argmin}_{F}\left\{\mathbb{E}_{v_{i} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)} \sum_{i=1}^{n}\left\|F-v_{i}\right\|_{2}\right\}=\mathbf{0}$.

Proof. (See Appendix E).
(3) For (GM, Fermat). First, we show the following two theorems:

Theorem 4. For n random variables $a_{i} \in \mathbb{R}^{k}$ follow $N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)$. When k is large enough, we have such an estimation:

$$
\begin{equation*}
\operatorname{Var}_{a_{i}} \frac{F_{1}\left(a_{i}\right)}{F_{2}\left(a_{i}\right)} \approx \frac{1}{2 n k}, \quad \operatorname{Var}_{a_{i}} \frac{F_{2}\left(a_{i}\right)}{F_{1}\left(a_{i}\right)} \approx \frac{1}{2 n k} \tag{49}
\end{equation*}
$$

where $F_{1}\left(a_{i}\right)=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)$ and $F_{2}\left(a_{i}\right)=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}\right)$.
Proof. (See Appendix F).
Theorem 5. Let $v_{0}, v_{1}, \ldots, v_{k}$ be the $k+1$ vectors in n dimensional Euclidean space \mathbb{E}^{n}. For all P in \mathbb{E}^{n},

$$
\begin{equation*}
\sum_{i=0}^{k}\left\|P-v_{i}\right\|_{2}^{2}=\sum_{i=0}^{k}\left\|G-v_{i}\right\|_{2}^{2}+(k+1)\|P-G\|_{2}^{2} \tag{50}
\end{equation*}
$$

where G is the centroid of v_{i}, will hold if it satisfies one of the following conditions:
(1)if $k \geq n$ and $\operatorname{rank}\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)=n$.
(2)if $k<n$ and $\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)$ are linearly independent.
(3)if $v_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{n}\right)$, Eq. (50) holds with probability 1 .

Proof. (See Appendix G).

Let $P \in\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$. Since $v_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}\right)$, we can obtain that $a_{i}=P-v_{i} \sim N\left(\mathbf{0}, 2 c^{2} \cdot \mathbf{I}\right)$ if $P \neq v_{i}$. According to the analysis in Section 3.1 and Theorem 4, we have

$$
\begin{equation*}
\sum_{i=1}^{n}\left\|a_{i}\right\|_{2} \cong \sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2} \tag{51}
\end{equation*}
$$

Next, we can prove $(k+1)\|P-F\|_{2}^{2}$ (Fermat) and $\sum_{i=1}^{N}\left\|P-v_{i}\right\|_{2}$ (GM) are approximately monotonic, where $P \in\left\{v_{1}, v_{2}, \ldots, v_{N}\right\}$.

$$
\begin{array}{rlr}
(k+1)\|P-F\|_{2}^{2} & \cong(k+1)\|P-G\|_{2}^{2} & \text { Since Eq. } \\
& =\sum_{i=1}^{N}\left\|P-v_{i}\right\|_{2}^{2}-\sum_{i=1}^{N}\left\|G-v_{i}\right\|_{2}^{2} \\
& \cong \sum_{i=1}^{N}\left\|P-v_{i}\right\|_{2}-\sum_{i=1}^{N}\left\|G-v_{i}\right\|_{2}^{2} & \text { Since Theorem } 5 \\
& \cong \sum_{i=1}^{N}\left\|P-v_{i}\right\|_{2}
\end{array}
$$

The reason for the last equation is that $\sum_{i=1}^{N}\left\|G-v_{i}\right\|_{2}^{2}$ is a constant for given v_{i}.

D Proof of Theorem 2

Theorem 2 Let $X \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{n}\right)$, we have

$$
\max \left\{\operatorname{Var}_{X}\left(\frac{\hat{\ell}_{2}(X)}{\hat{\ell}_{1}(X)}\right), \operatorname{Var}_{X}\left(\frac{\hat{\ell}_{1}(X)}{\hat{\ell}_{2}(X)}\right)\right\} \lesssim \frac{1}{n} .
$$

where $\widehat{\ell}_{1}(X)$ denotes $\ell_{1}(X) / \mathbb{E}\left(\ell_{1}(X)\right)$ and $\widehat{\ell}_{2}(X)$ denotes $\ell_{2}(X) / \mathbb{E}\left(\ell_{2}(X)\right)$.

Proof. For the ratio $\widehat{\ell}_{2}(X) / \widehat{\ell}_{1}(X)$, we have

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\widehat{\ell}_{2}(X)}{\widehat{\ell}_{1}(X)}\right) & =\left(\frac{\mathbb{E}\left(\ell_{1}(X)\right)}{\mathbb{E}\left(\ell_{2}(X)\right)}\right)^{2} \operatorname{Var}\left(\frac{\ell_{2}(X)}{\ell_{1}(X)}\right) \\
& \approx\left(\frac{\mathbb{E}\left(\ell_{1}(X)\right)}{\mathbb{E}\left(\ell_{2}(X)\right)}\right)^{2}\left(\frac{\mathbb{E}\left(\ell_{2}(X)\right)}{\mathbb{E}\left(\ell_{1}(X)\right)}\right)^{2}\left(\frac{\operatorname{Var} \ell_{2}(X)}{\mathbb{E}\left(\ell_{2}(X)\right)^{2}}+\frac{\operatorname{Var} \ell_{1}(X)}{\mathbb{E}\left(\ell_{1}(X)\right)^{2}}-2 \frac{\operatorname{Cov}\left(\ell_{2}(X), \ell_{1}(X)\right)}{\mathbb{E}\left(\ell_{2}(X)\right) \mathbb{E}\left(\ell_{1}(X)\right)}\right) \\
& \leq\left(\frac{\operatorname{Var} \ell_{2}(X)}{\mathbb{E}\left(\ell_{2}(X)\right)^{2}}+\frac{\operatorname{Var} \ell_{1}(X)}{\mathbb{E}\left(\ell_{1}(X)\right)^{2}}\right) . \quad \text { from Proposition. } 7 \text {. }
\end{aligned}
$$

similarly, we also have

$$
\begin{equation*}
\operatorname{Var}\left(\frac{\hat{\ell}_{1}(X)}{\hat{\ell}_{2}(X)}\right) \leq\left(\frac{\operatorname{Var} \ell_{2}(X)}{\mathbb{E}\left(\ell_{2}(X)\right)^{2}}+\frac{\operatorname{Var} \ell_{1}(X)}{\mathbb{E}\left(\ell_{1}(X)\right)^{2}}\right) \tag{53}
\end{equation*}
$$

Therefore,

Figure 9: The approximation of Theorem 2 (Left) the example about ResNet56; (Right) the example about ResNet110.

$$
\begin{aligned}
& \max \left\{\operatorname{Var}_{X}\left(\frac{\widehat{\ell}_{2}(X)}{\widehat{\ell}_{1}(X)}\right), \operatorname{Var}_{X}\left(\frac{\widehat{\ell}_{1}(X)}{\widehat{\ell}_{2}(X)}\right)\right\} \leq\left(\frac{\operatorname{Var}_{2}(X)}{\mathbb{E}\left(\ell_{2}(X)\right)^{2}}+\frac{\operatorname{Var} \ell_{1}(X)}{\mathbb{E}\left(\ell_{1}(X)\right)^{2}}\right) \\
&=\frac{2 \sigma^{2}\left[\frac{\Gamma\left(\frac{n}{2}+1\right)}{\Gamma\left(\frac{n}{2}\right)}-\frac{\Gamma\left(\frac{n+1}{2}\right)^{2}}{\left.\Gamma \frac{2}{2}\right)^{2}}\right]}{\left(\sqrt{2} \sigma \cdot \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\right)^{2}}+\frac{\sigma^{2}\left(1-\frac{2}{\pi}\right) n}{(n \cdot \sigma \sqrt{2 / \pi})^{2}} \\
& \text { from Proposition. } 5 \operatorname{and} 4 \\
& \approx\left(\frac{1}{2 n}+\left(\frac{\pi}{2}-1\right) \frac{1}{n}\right) \quad \text { from Lemma } 2 \\
&=\frac{\pi-1}{2 n}
\end{aligned}
$$

Because the approximation is widely used in the proof of Theorem 1, it is necessary to verify it numerically. As shown in Fig. 9, we use ResNet56 on Cifar100 and ResNet110 on Cifar10 respectively to verify Theorem 1. From Fig. 9, we find that the estimationn of Theorem 1 is reliable, i.e., the estimation $O\left(\frac{1}{n}\right)$ for $\max \left\{\operatorname{Var}_{X}\left(\frac{\widehat{\ell}_{2}(X)}{\widehat{\ell}_{1}(X)}\right), \operatorname{Var}_{X}\left(\frac{\widehat{\ell}_{1}(X)}{\widehat{\ell}_{2}(X)}\right)\right\}$ is appropriate.

E Proof of Theorem 3

Proposition 13. Let $L_{p}^{(\alpha)}(x)$ denotes generalized Laguerre function, and it have following properties:

$$
\begin{equation*}
\frac{\partial^{n}}{\partial x^{n}} L_{p}^{(\alpha)}=(-1)^{n} L_{p-n}^{(\alpha+n)}(x) \tag{54}
\end{equation*}
$$

and for $\alpha>0$,

$$
\begin{equation*}
L_{-\frac{1}{2}}^{(\alpha)}(x)>0 \tag{55}
\end{equation*}
$$

Theorem 3. Let random variable $v_{i} \in \mathbb{R}^{k}$. They are i.i.d and follow normal distribution $N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)$. For F in \mathbb{R}^{k}, we have

$$
\operatorname{argmin}_{F}\left\{\mathbb{E}_{v_{i} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)} \sum_{i=1}^{n}\left\|F-v_{i}\right\|_{2}\right\}=\mathbf{0} .
$$

Proof. Let $w_{i}=F-v_{i}$ and we have $w_{i} \sim N\left(F, \sigma^{2} \mathbf{I}_{k}\right)$, then

$$
\begin{aligned}
\mathbb{E}_{v_{i} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)} \sum_{i=1}^{n}\left\|F-v_{i}\right\|_{2} & =\sum_{i=1}^{n} \mathbb{E}_{v_{i} \sim N\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{k}\right)}\left\|F-v_{i}\right\|_{2} \\
& =\sum_{i=1}^{n} \mathbb{E}_{w_{i} \sim N\left(F, \sigma^{2} \mathbf{I}_{k}\right)}\left\|w_{i}\right\|_{2} \\
& =n \cdot \sigma^{2} \sqrt{\frac{\pi}{2}} \cdot L_{\frac{1}{2}}^{\left(\frac{k}{2}-1\right)}\left(-\frac{\|F\|_{2}^{2}}{2 \sigma^{2}}\right)
\end{aligned}
$$

The reason for the last equation is that $\left\|w_{i}\right\|_{2}$ follows scaled noncentral chi distribution ${ }^{8}$ when $w_{i} \sim N\left(F, \sigma^{2} \mathbf{I}_{k}\right)$. Let $T(x)=L_{\frac{1}{2}}^{\left(\frac{k}{2}-1\right)}\left(-\frac{x^{2}}{2 \sigma^{2}}\right)$, we calculate the minimum of $T(x)$. From Eq. 54,

$$
\begin{equation*}
\frac{d}{d x} T(x)=\frac{x}{\sigma^{2}} \cdot L_{-\frac{1}{2}}^{\left(\frac{k}{2}\right)}\left(-\frac{x^{2}}{2 \sigma^{2}}\right) \tag{56}
\end{equation*}
$$

Since Eq. 55], we find that $\frac{d}{d x} T(x)>0$ when $x>0$ and if $x \leq 0$, then $\frac{d}{d x} T(x) \leq 0$. It means that $T(x)$ gets the minimizer at $\|F\|_{2}=0$, i.e., $F=\mathbf{0}$.

F Proof of Theorem 4

Lemma 5. For two random variables $X, Y \in \mathbb{R}^{k}$ follow $N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)$ and they are i.i.d. When k is large enough, we have:

$$
\begin{equation*}
\mathbb{E}\left(\frac{\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{2\|X\|_{2} \cdot\|Y\|_{2}}\right) \approx 2 c^{2}+\frac{4 c^{2} k+1}{2 k^{2}} \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}\left(\frac{\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{2\|X\|_{2} \cdot\|Y\|_{2}}\right) \lesssim 8 c^{4}+\frac{16 c^{4} k+c^{2}}{k^{2}} \tag{58}
\end{equation*}
$$

Proof. According to Proposition 3 and Lemma 2, it is easy to know, when k is large enough, that

$$
\begin{equation*}
\mathbb{E}\left(2\|X\|_{2} \cdot\|Y\|_{2}\right)=2 c^{2} k, \quad \operatorname{Var}\left(2\|X\|_{2} \cdot\|Y\|_{2}\right)=c^{2}+4 c^{4} k \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left(\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}\right)=4 c^{4} k, \quad \operatorname{Var}\left(\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}\right)=16 c^{8}\left(2 k^{2}+3 k\right) \tag{60}
\end{equation*}
$$

Since Lemma 1, we have an estimation

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{2\|X\|_{2} \cdot\|Y\|_{2}}\right) & \leq\left(\frac{\mathbb{E}\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{\mathbb{E} 2\|X\|_{2} \cdot\|Y\|_{2}}\right)^{2}\left(\frac{\operatorname{Var}\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{\mathbb{E}\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}+\frac{\left.\operatorname{Var}\left(2\|X\|_{2} \cdot\|Y\|_{2}\right)^{2}\right)}{\mathbb{E}\left(2\|X\|_{2} \cdot\|Y\|_{2}\right)^{2}}\right) \\
& \approx\left(\frac{4 c^{4} k}{2 c^{2} k}\right)^{2} \cdot\left(\frac{c^{2}+4 c^{4} k}{4 c^{4} k}+\frac{16 c^{8}\left(2 k^{2}+3 k\right)}{16 c^{8} k^{2}}\right) \\
& =8 c^{4}+\frac{16 c^{4} k+c^{2}}{k^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left(\frac{\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{2\|X\|_{2} \cdot\|Y\|_{2}}\right) & \approx \frac{\mathbb{E}\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{\mathbb{E} 2\|X\|_{2} \cdot\|Y\|_{2}}+\operatorname{Var}\left(2\|X\|_{2} \cdot\|Y\|_{2}\right) \cdot \frac{\mathbb{E}\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}}{\left(\mathbb{E} 2\|X\|_{2} \cdot\|Y\|_{2}\right)^{3}} \\
& \approx \frac{4 c^{4} k}{2 c^{2} k}+\frac{4 c^{4} k}{8 c^{6} k^{3}} \cdot\left(c^{2}+4 c^{4} k\right) \\
& =2 c^{2}+\frac{4 c^{2} k+1}{2 k^{2}}
\end{aligned}
$$

[^2]

Figure 10: (Left) The numerical verification of Eq. 57) and (Right) The numerical verification of Eq. 58). X and Y follow $N\left(\mathbf{0}, c^{2} \cdot I_{k}\right)$.

Note that, the approximation is widely used in the proof of Eq. (57) and Eq. 588. Hence, it is also necessary to verify it numerically. As shown in Fig. 10, the estimation is appropriate. According to Lemma 5, the mathematical expectation and variance of the ratio of $\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2}$ and $2\|X\|_{2} \cdot\|Y\|_{2}$ are both close to 0 when k is large enough and c is small enough. that is,

$$
\begin{equation*}
2\left(\|X\|_{2} \cdot\|Y\|_{2}\right) \gg\left(\|X\|_{2}^{2}-\|Y\|_{2}^{2}\right)^{2} \tag{61}
\end{equation*}
$$

By the way, the convolutional filters easily meet the condition that k is large enough.
Theorem 4, For n random variables $a_{i} \in \mathbb{R}^{k}$ follow $N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)$. When k is large enough, we have such an estimation:

$$
\operatorname{Var}_{a_{i}} \frac{F_{1}\left(a_{i}\right)}{F_{2}\left(a_{i}\right)} \approx \frac{1}{2 n k}, \quad \operatorname{Var}_{a_{i}} \frac{F_{2}\left(a_{i}\right)}{F_{1}\left(a_{i}\right)} \approx \frac{1}{2 n k}
$$

where $F_{1}\left(a_{i}\right)=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)$ and $F_{2}\left(a_{i}\right)=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}\right)$.
Proof. Since Eq. (12) and Eq. (13), we have

$$
\begin{equation*}
\operatorname{Var}_{a_{i}} \frac{F_{1}\left(a_{i}\right)}{F_{2}\left(a_{i}\right)}=\left(\frac{n c^{2} k}{n c \sqrt{k}}\right)^{2} \cdot \operatorname{Var}_{a_{i}}\left(\frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}\right) . \tag{62}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Var}_{a_{i}} \frac{F_{2}\left(a_{i}\right)}{F_{1}\left(a_{i}\right)}=\left(\frac{n c \sqrt{k}}{n c^{2} k}\right)^{2} \cdot \operatorname{Var}_{a_{i}}\left(\frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}\right) \tag{63}
\end{equation*}
$$

According to Lagrange's identity, we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}\right)\left(\sum_{i=1}^{n} 1\right) & =\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)^{2}+\sum_{1 \leq i<j \leq n}\left(\left\|a_{i}\right\|_{2}^{2}-\left\|a_{j}\right\|_{2}^{2}\right)^{2} \\
& =\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}+\sum_{1 \leq i<j \leq n}\left(\left\|a_{i}\right\|_{2} \cdot\left\|a_{j}\right\|_{2}\right)+2 \sum_{1 \leq i<j \leq n}\left(\left\|a_{i}\right\|_{2}^{2}-\left\|a_{j}\right\|_{2}^{2}\right)^{2} \\
& \approx \sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}+2 \sum_{1 \leq i<j \leq n}\left(\left\|a_{i}\right\|_{2} \cdot\left\|a_{j}\right\|_{2}\right) \quad \text { Since Eq. 61) } \\
& =\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)^{2}
\end{aligned}
$$

so we have

$$
\begin{equation*}
\operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}} \approx \operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{n}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}} \tag{64}
\end{equation*}
$$

By central limit theorem, we have $\sqrt{n}\left(\frac{1}{n} \sum_{i=1}^{n}\left\|a_{i}\right\|_{2}-\mu\right) \sim N\left(\mathbf{0}, \sigma^{2}\right)$. And let $g(x)=\frac{1}{x}$, we can use Delta method ${ }^{9}$ to find the distribution of $g\left(\frac{1}{n} \sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)$:

$$
\begin{equation*}
\left.\sqrt{n}\left(g\left(\frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{n}\right)-g(\mu)\right)\right) \sim N\left(0, \sigma^{2} \cdot[g \prime(\mu)]^{2}\right)=N\left(0, \sigma^{2} \cdot \frac{1}{\mu^{4}}\right) \tag{65}
\end{equation*}
$$

where μ and σ^{2} denote the mean and variance of $\left\|a_{i}\right\|_{2}$ respectively. From Eq. 64, we have

$$
\begin{aligned}
\operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}} & \approx \operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{n}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}} \\
& =\sigma^{2} \cdot \frac{1}{\mu^{4} \cdot n} \\
& =2 c^{2}\left[\frac{\Gamma\left(\frac{k}{2}+1\right)}{\Gamma\left(\frac{k}{2}\right)}-\frac{\Gamma\left(\frac{k+1}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\right] \cdot \frac{1}{\left(\sqrt{2} c \cdot \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)}\right)^{4} \cdot n} \\
& \text { Since Eq. (65) } \\
& =\frac{1}{2 c^{2} \cdot n k^{2}}
\end{aligned}
$$

Since Eq. 62, we have

$$
\begin{equation*}
\operatorname{Var}_{a_{i}} \frac{F_{1}\left(a_{i}\right)}{F_{2}\left(a_{i}\right)}=\left(\frac{n c^{2} k}{n c \sqrt{k}}\right)^{2} \cdot \operatorname{Var}_{a_{i}}\left(\frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}\right) \approx \frac{1}{2 n k} \tag{66}
\end{equation*}
$$

Similar to Eq. 64,

$$
\begin{equation*}
\operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}} \approx \operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{n} \tag{67}
\end{equation*}
$$

$$
\begin{aligned}
\operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}} & \approx \operatorname{Var}_{a_{i} \sim N\left(\mathbf{0}, c^{2} \cdot \mathbf{I}_{k}\right)} \frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}{n} \\
& =\sigma^{2} \cdot \frac{1}{n} \\
& =2 c^{2}\left[\frac{\Gamma\left(\frac{k}{2}+1\right)}{\Gamma\left(\frac{k}{2}\right)}-\frac{\Gamma\left(\frac{k+1}{2}\right)^{2}}{\Gamma\left(\frac{k}{2}\right)^{2}}\right] \cdot \frac{1}{n} \\
& \text { Similar to Eq. (64) } \\
& =\frac{c^{2}}{2 n}
\end{aligned} \quad \text { Since Eq. 13) }
$$

Since Eq. 63), we have

$$
\begin{equation*}
\operatorname{Var}_{a_{i}} \frac{F_{2}\left(a_{i}\right)}{F_{1}\left(a_{i}\right)}=\left(\frac{n c \sqrt{k}}{n c^{2} k}\right)^{2} \cdot \operatorname{Var}_{a_{i}}\left(\frac{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}}{\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}}\right) \approx \frac{1}{2 n k} \tag{68}
\end{equation*}
$$

From Eq. (66) and Eq. (68), Theorem 4 holds.

In Fig. 11, we also show a numerical verification of Theorem 4

[^3]

Figure 11: A numerical verification of Theorem 4, where $F_{1}=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}\right)$ and $F_{2}=\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2} / \mathbb{E}\left(\sum_{i=1}^{n}\left\|a_{i}\right\|_{2}^{2}\right) . a_{i}$ follow $N\left(\mathbf{0}, 0.01^{2} \cdot I_{k}\right)$.

G Proof of Theorem 5

Proposition 14. For a $n \times m$ random matrix $\left(a_{i j}\right)_{n \times m}$, where $a_{i j} \sim N\left(0, \sigma^{2}\right)$. And Eq. 14 holds with probability 1.

$$
\begin{equation*}
\operatorname{rank}\left(\left(a_{i j}\right)_{n \times m}\right)=\min (m, n) \tag{69}
\end{equation*}
$$

Lemma 6. Let $v_{0}, v_{1}, \ldots, v_{k}$ be the $k+1$ vectors in n dimensional Euclidean space V and $k \leq n$. If $\operatorname{rank}\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)=n$, then $\forall x \in V, \exists \lambda_{i}(0 \leq i \leq k)$, s.t.

$$
\begin{equation*}
x=\sum_{i=0}^{k} \lambda_{i} \cdot v_{i} \tag{70}
\end{equation*}
$$

and $\sum_{i=0}^{k} \lambda_{i}=1$. We call $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right)$ the generalized barycentric coordinate with respect to $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$. (In general, barycentric coordinate is a concept in Polytope)

Proof. Note that v_{i} is the element of n dimensional linear space V and $\operatorname{rank}\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-\right.$ $\left.v_{0}\right)=n$. It means $\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)$ form a set of basis in the linear space $V . \forall x \in V$, $x-v_{0}$ can be expressed linearly by them, i.e., $\exists t_{i}(1 \leq i \leq k)$ s.t.

$$
\begin{aligned}
x & =v_{0}+\sum_{i=1}^{k} t_{i}\left(v_{i}-v_{0}\right) \\
& =\left(1-\sum_{i=1}^{k} t_{i}\right) v_{0}+\sum_{i=1}^{k} t_{i} v_{i}
\end{aligned}
$$

Let $\lambda_{0}=\left(1-\sum_{i=1}^{k} t_{i}\right)$ and $\lambda_{i}=t_{i}(1 \leq i \leq k)$, Lemma 6holds.

Lemma 7. Let $v_{0}, v_{1}, \ldots, v_{k}$ be the $k+1$ vectors in n dimensional Euclidean space $V . \forall a, b \in V$, and the generalized barycentric coordinate of a, b with respect to $\left(v_{0}, v_{1}, \ldots, v_{k}\right)$ are $\lambda=\left(\lambda_{0}, \lambda_{1}, \ldots, \lambda_{k}\right)^{T}$ and $\mu=\left(\mu_{0}, \mu_{1}, \ldots, \mu_{k}\right)^{T}$, respectively. Then

$$
\begin{equation*}
\|a-b\|_{2}^{2}=(\lambda-\mu)^{T} D(\lambda-\mu) \tag{71}
\end{equation*}
$$

where $D=\left(-\frac{1}{2} d_{i j}\right)_{(k+1) \times(k+1)}$, and $d_{i j}=\left\|v_{i}-v_{j}\right\|_{2}^{2}$.
Proof. Since Lemma6 let $R=\left[v_{0}, v_{1}, \ldots, v_{k}\right]_{n \times(k+1)}$, and we have $a=R \lambda$ and $b=R \mu$. Moreover,

$$
\begin{align*}
\|a-b\|_{2}^{2} & =(a-b)^{T}(a-b) \tag{72}\\
& =[R(\lambda-\mu)]^{T}[R(\lambda-\mu)] \tag{73}\\
& =(\lambda-\mu)^{T} R^{T} R(\lambda-\mu) . \tag{74}
\end{align*}
$$

Note that, for $D=\left(-\frac{1}{2} d_{i j}\right)_{(k+1) \times(k+1)}$,

$$
\begin{align*}
-\frac{1}{2} d_{i j} & =-\frac{1}{2}\left(v_{i}-v_{j}\right)^{T}\left(v_{i}-v_{j}\right) \tag{75}\\
& =v_{i}^{T} v_{j}-\frac{1}{2}\left(v_{i}^{T} v_{i}+v_{j}^{T} v_{j}\right) \tag{76}
\end{align*}
$$

So we have $D=R^{T} R-\frac{1}{2}\left(\left(v_{i}^{T} v_{i}+v_{j}^{T} v_{j}\right)_{(k+1) \times(k+1)}\right)$. It can be further simplified to $D=$ $R^{T} R-\frac{1}{2}\left(V \alpha^{T}+\alpha V^{T}\right)$, where $V=\left(v_{0}^{T} v_{0}, \ldots, v_{k}^{T} v_{k}\right)^{T}$ and $\alpha=(1, \ldots, 1)^{T}$. So

$$
\begin{align*}
\|a-b\|_{2}^{2} & =(\lambda-\mu)^{T} R^{T} R(\lambda-\mu) \tag{77}\\
& =(\lambda-\mu)^{T}\left(D+\frac{1}{2}\left(V \alpha^{T}+\alpha V^{T}\right)\right)(\lambda-\mu) \tag{78}\\
& =(\lambda-\mu)^{T} D(\lambda-\mu)+\frac{1}{2}(\lambda-\mu)^{T}\left(V \alpha^{T}+\alpha V^{T}\right)(\lambda-\mu) \tag{79}
\end{align*}
$$

therefore, we only need to prove $(\lambda-\mu)^{T}\left(V \alpha^{T}+\alpha V^{T}\right)(\lambda-\mu)=0$. From Lemma 6, we have $\alpha^{T}(\lambda-\mu)=(\lambda-\mu)^{T} \alpha=0$ and the Lemma 7 holds.

Definition 1 (Ultra dimension). For a set U composed of vectors in a n dimensional linear space V, we define $\widehat{\operatorname{dim}}(U)$ as the Ultra dimension of U. The definition is that if U has k linearly independent vectors and there are no more, then $\widehat{\operatorname{dim}}(U)=k$.

In fact, if U is a linear subspace in V, then the Ultra dimension and the dimensions of the linear subspace are equivalent. If U is a linear manifold, $U=\left\{x+v_{0} \mid x \in W\right\}$, where v_{0} and W are non-zero vectors and linear subspaces in V, respectively. And $\operatorname{dim}(W)=r$. Then

$$
\widehat{\operatorname{dim}}(U)=\left\{\begin{array}{l}
r, \quad v_{0} \in W \tag{80}\\
r+1, v_{0} \notin W
\end{array}\right.
$$

In other words, $\widehat{\operatorname{dim}}(U) \geq \widehat{\operatorname{dim}}(W)$ always holds.
Lemma 8. For arbitrary $k(1 \leq k \leq n-1)$, let $a_{1}, a_{2}, \ldots, a_{k}$ be k linearly independent vectors in n dimensional linear space V. Consider one $n-1$ dimensional linear subspace W in V and a non-zero vector v_{0} in V. They form a linear manifold $P=\left\{v_{0}+\alpha \mid \alpha \in W\right\}$. If $a_{1}, a_{2}, \ldots, a_{k}$ do not all belong to P, then there must exist $n-k$ vectors $p_{1}, p_{2}, \ldots, p_{n-k}$ from P, s.t $\left(a_{1}, a_{2}, \ldots, a_{k}, p_{1}, p_{2}, \ldots, p_{n-k}\right)$ are a set of basis for the linear space V.

Proof. we use mathematical induction. First, show that the Lemma 8 holds for $n-k=1$. it means we need to find a vector $p_{1} \in P$ s.t. $a_{1}, a_{2}, \ldots, a_{k}, p_{1}$ linearly independent. If p_{1} does not exist, then $\forall p \in P$ would be linearly represented by $a_{1}, a_{2}, \ldots, a_{k}$. In other word,

$$
\begin{equation*}
P \subset L=\operatorname{span}\left(a_{1}, a_{2}, \ldots, a_{k}\right) \tag{81}
\end{equation*}
$$

For the linear manifold P, if $v_{0} \in W$. This means that P is equal to the linear subspace W. Since Eq. 81, we have $W \subset L$ and $\widehat{\operatorname{dim}}(W)=\widehat{\operatorname{dim}}(L)$. Hence, $P=W=L$. However, $a_{1}, a_{2}, \ldots, a_{k}$ do not all belong to P, a contradiction.
(2) For the linear manifold P, if $v_{0} \notin W$, then $\widehat{\operatorname{dim}}(P)=n$. Because $v_{0} \notin W$, that is, v_{0} cannot be represented by a set of basis of W. In other words, v_{0} and a set of basis of W are linearly independent. However, the dimension of W is $n-1$, hence $\widehat{\operatorname{dim}}(P)=n$. From Eq. 81, we have $P \subset L$, so

$$
\begin{equation*}
n=\widehat{\operatorname{dim}}(P) \leq \widehat{\operatorname{dim}}(L)=k=n-1 \tag{82}
\end{equation*}
$$

a contradiction. Therefore, Lemma 8 holds for $n-k=1$. Assume the induction hypothesis that Lemma 8 is true when $n-k=l$, where $1 \leq l$. when $n-k=l+1$, i.e., $k=n-(l+1)$, we also can find a vector $p_{1} \in P$ s.t. $a_{1}, a_{2}, \ldots, a_{k}, p_{1}$ linearly independent. Otherwise, $\forall p \in P$ would be linearly represented by $a_{1}, a_{2}, \ldots, a_{k}$. Similarly, we have Eq. (81). Note that, from Definition 1 , $\widehat{\operatorname{dim}}(P) \geq n-1$, hence

$$
\begin{equation*}
n-1 \leq \widehat{\operatorname{dim}}(P) \leq \widehat{\operatorname{dim}}(L)=k=n-(l+1) \tag{83}
\end{equation*}
$$

a contradiction. At this time, we have $k+1=n-(l+1)+1=n-l$ vectors $a_{1}, a_{2}, \ldots, a_{k}, p_{1}$ which are not all on P. Note that $n-(n-l)=l$, using the induction hypothesis, the Lemma 8 also holds for $n-k=l$. In summary, Lemma 8 holds.

Theorem55, Let $v_{0}, v_{1}, \ldots, v_{k}$ be the $k+1$ vectors in n dimensional Euclidean space \mathbb{E}^{n}. For all P in \mathbb{E}^{n},

$$
\sum_{i=0}^{k}\left\|P-v_{i}\right\|_{2}^{2}=\sum_{i=0}^{k}\left\|G-v_{i}\right\|_{2}^{2}+(k+1)\|P-G\|_{2}^{2}
$$

where G is the centroid of v_{i}, will hold if it satisfies one of the following conditions:
(1)if $k \geq n$ and $\operatorname{rank}\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)=n$.
(2)if $k<n$ and ($v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}$) are linearly independent.
(3)if $v_{i} \sim N\left(\mathbf{0}, c \cdot \mathbf{I}_{n}\right)$, Eq. 50p holds with probability 1 where c is a constant.

Proof. For Theorem 5 (1). From Lemma6, $\forall P \in E^{n}, \exists \gamma=\left(\gamma_{0}, \ldots, \gamma_{k}\right)$, s.t. P can be represented by $\sum_{i=0}^{k} \gamma_{i} v_{i}$, where $\sum_{i=0}^{k} \gamma_{i}=1$. In fact, for each v_{i}, it also can be respresented by $\sum_{j=0}^{k} \beta_{i j} v_{i}$, where $\sum_{i=0}^{k} \beta_{i j}=1$. We just take $\left(\beta_{i 0}, \beta_{i 1}, \ldots, \beta_{i k}\right)$ as one of the standard orthogonal basis $\epsilon_{i}=\left(0,0, \ldots, 1_{i}, \ldots 0\right)$. According to lemma 7 .

$$
\begin{align*}
\left\|P-v_{i}\right\|_{2}^{2} & =\left(\gamma-\epsilon_{i}\right)^{T} D\left(\gamma-\epsilon_{i}\right) \tag{84}\\
& =\gamma^{T} D \gamma-2 \gamma^{T} D \epsilon_{i}+\epsilon_{i}^{T} D \epsilon_{i} \tag{85}\\
& =\gamma^{T} D \gamma-2 \gamma^{T} D \epsilon_{i} \tag{86}
\end{align*}
$$

The final equation is because the diagonal elements of the matrix are all 0 . On the other hand, we have

$$
\begin{align*}
\left\|G-v_{i}\right\|_{2}^{2} & =\left(\frac{1}{k+1} \sum_{i=0}^{k} \epsilon_{i}-\epsilon_{i}\right)^{T} D\left(\frac{1}{k+1} \sum_{i=0}^{k} \epsilon_{i}-\epsilon_{i}\right) \tag{87}\\
& =\frac{1}{(k+1)^{2}} \alpha^{T} D \alpha-\frac{2}{k+1} \alpha^{T} D \epsilon_{i}+\epsilon_{i}^{T} D \epsilon_{i} \tag{88}\\
& =\frac{1}{(k+1)^{2}} \alpha^{T} D \alpha-\frac{2}{k+1} \alpha^{T} D \epsilon_{i} \tag{89}
\end{align*}
$$

where $\alpha=\sum_{i=0}^{k} \epsilon_{i}$, i.e., $\alpha=(1,1, \ldots, 1)$. Next, we consider $\|P-G\|_{2}^{2}$.

$$
\begin{align*}
\|P-G\|_{2}^{2} & =\left(\gamma-\frac{1}{k+1} \alpha\right)^{T} D\left(\gamma-\frac{1}{k+1} \alpha\right) \tag{90}\\
& =\gamma^{T} D \gamma+\frac{1}{(k+1)^{2}} \alpha^{T} D \alpha-\frac{2}{k+1} \gamma^{T} D \alpha \tag{91}
\end{align*}
$$

In summary, we have

$$
\begin{align*}
\sum_{i=0}^{k}\left\|P-v_{i}\right\|_{2}^{2}-\left\|G-v_{i}\right\|_{2}^{2} & =(k+1) \gamma^{T} D \gamma-2 \gamma^{T} D \alpha+\frac{1}{k+1} \alpha^{T} D \alpha \tag{92}\\
& =(k+1)\|P-G\|_{2}^{2} \tag{93}
\end{align*}
$$

Therefore, Theorem5(1) holds.
For Theorem 5 (2). Next, we prove the case of $k<n$. Obviously, Lemma 6 does not hold. We consider about such a linear space $W_{1}=\operatorname{span}(P-G)$, i.e., a linear space expanded by $P-G$, and its orthogonal complement W_{1}^{\perp} (in E^{n}). Since dimension formula from linear space, it is easy to konw that $\operatorname{dim}\left(W_{1}^{\perp}\right)=n-1$.

Two linear manifolds T_{1} and T_{2} are constructed as follows,

$$
\begin{align*}
& T_{1}=\left\{x+G \mid x \in W_{1}^{\perp}\right\} \tag{94}\\
& T_{2}=\left\{x+G-v_{0} \mid x \in W_{1}^{\perp}\right\} \tag{95}
\end{align*}
$$

$\forall v_{i} \in T_{1}$, we have $\left(v_{i}-G\right)^{T}(P-G)=0$, Furthermore,

$$
\begin{equation*}
\left\|P-v_{i}\right\|_{2}^{2}=\left\|v_{i}-G\right\|_{2}^{2}+\|P-G\|_{2}^{2} \tag{96}
\end{equation*}
$$

It is easy to know that $G-v_{0}$ is not 0 . If $v_{1}-v_{0}, \ldots, v_{k}-v_{0}$ are all belong to T_{2}, it means $v_{1}, . ., v_{k}$ are all in T_{1}. Hence, we have Eq. (96). By summing both sides of Eq. (96) for i, it is obvious find that Theorem 5](2) holds. If $v_{1}-v_{0}, \ldots, v_{k}-v_{0}$ are not all belong to T_{2}, since Lemma 8 there are $n-k$ vectors $p_{1}-v_{0}, p_{2}-v_{0}, . ., p_{n-k}-v_{0}$ from T_{2} s.t. they and $v_{1}-v_{0}, \ldots, v_{k}-v_{0}$ are linearly independent, where p_{i} obviously belongs to manifold T_{1}.

At the same time, we have $2 G-p_{i} \in T_{1}$, we can also construct $n-k$ new vectors $2 G-p_{i}-v_{0} \in T_{2}$ and calculate the rank that

$$
\begin{align*}
& \operatorname{rank}\left(v_{1}-v_{0}, \ldots, v_{k}-v_{0}, p_{1}-v_{0}, \ldots, p_{n-k}-v_{0}, 2 G-p_{1}-v_{0}, \ldots, 2 G-p_{n-k}-v_{0}\right) \\
& \quad=\operatorname{rank}\left(v_{1}-v_{0}, \ldots, v_{k}-v_{0}, p_{1}-v_{0}, \ldots, p_{n-k}-v_{0}, 2\left(G-v_{0}\right), \ldots, 2\left(G-v_{0}\right)\right) \tag{97}\\
& \quad=\operatorname{rank}\left(v_{1}-v_{0}, \ldots, v_{k}-v_{0}, p_{1}-v_{0}, \ldots, p_{n-k}-v_{0}, 0, \ldots, 0\right) \tag{98}\\
& \quad=n \tag{99}
\end{align*}
$$

The reason of the final equation is that $\sum_{i=1}^{k}\left(v_{i}-v_{0}\right)=(k+1)\left(G-v_{0}\right)$. Note that there are a total of $k+(n-k)+(n-k)=n+(n-k) \geq n$ vectors, meets the lemma 6 condition. For the convenience of description, we define

$$
\begin{align*}
& L_{i}^{(1)}=v_{i},(0 \leq i \leq k) \tag{100}\\
& L_{i}^{(2)}=p_{i},(1 \leq i \leq n-k) \tag{101}\\
& L_{i}^{(3)}=2 G-p_{i},(1 \leq i \leq n-k) \tag{102}
\end{align*}
$$

And their centroid is

$$
\begin{align*}
G^{\prime} & =\frac{1}{2 n-k+1}\left(\sum_{i=0}^{k} v_{i}+\sum_{i=1}^{n-k}\left(L_{i}^{(2)}+L_{i}^{(3)}\right)\right) \tag{103}\\
& =\frac{1}{2 n-k+1}((k+1) G+2(n-k) G) \tag{104}\\
& =G \tag{105}
\end{align*}
$$

That is, the newly added vector does not change the centroid of v_{i}. On the other hand, since both $L_{i}^{(2)}$ and $L_{i}^{(3)}$ are in the linear manifold T_{1}, and it meets the conditions of the Eq. 96. Similar to the derivation in the Theorem[5(1), we have

$$
\begin{align*}
(2 n-k+1)\|P-G\|_{2}^{2} & =\sum_{t=L_{i}^{(1)}, L_{i}^{(2)}, L_{i}^{(3)}}\left(\|P-t\|_{2}^{2}-\|G-t\|_{2}^{2}\right) \tag{106}\\
& =\sum_{i=0}^{k}\left(\left\|P-v_{i}\right\|_{2}^{2}-\left\|G-v_{i}\right\|_{2}^{2}\right)+\sum_{t=L_{i}^{(2)}, L_{i}^{(3)}}\left(\|P-t\|_{2}^{2}-\|G-t\|_{2}^{2}\right) \tag{107}\\
& =\sum_{i=0}^{k}\left(\left\|P-v_{i}\right\|_{2}^{2}-\left\|G-v_{i}\right\|_{2}^{2}\right)+2(n-k)\|P-G\|_{2}^{2} \tag{108}
\end{align*}
$$

The final equation is because both $L_{i}^{(2)}$ and $L_{i}^{(3)}$ are in the linear manifold T_{1} and satisfy Eq. 96 . To simplify Eq. 108, we obtain $\sum_{i=0}^{k}\left(\left\|P-v_{i}\right\|_{2}^{2}-\left\|G-v_{i}\right\|_{2}^{2}\right)=(k+1)\|P-G\|_{2}^{2}$. Therefore, Theorem 5 (2) holds.

For Theorem5(3). When $k \geq n$, from Proposition 14 , we know that $\operatorname{rank}\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-\right.$ $\left.v_{0}\right)=n$ holds with probability 1 . Hence, if we use the similar deduction from Theorem 5 (1), we can find that Theorem 5 (3) holds when $k \geq n$. On the other hand, when $k<n$, we can get the same result also according to Proposition 14 . The reason is that $\left(v_{1}-v_{0}, v_{2}-v_{0}, \ldots, v_{k}-v_{0}\right)$ are linearly independent with probability 1.

H The result of Sp

Figure 12: The Spearman's rank correlation coefficient (Sp) for different criteria. (a-c) are Sp between ℓ_{1} and ℓ_{2}, GM and ℓ_{2}, Fermat and ℓ_{2} from ResNet18 ($12^{\text {th }}$ Conv), respectively. The results of VGG16 ($3^{\text {rd }}$ Conv) are shown in (d-f). If the Sp of two pruning criteria is close to 1 , then the sequence of their pruned filters may have strong similarity.

I Other result

Figure 13: The distribution about other learnable parameters. (Left): The disrtibution about the learnable parameters of batch normalization. (Rihgt): The parameters distribution of the fullyconnected layers (FC). For FC, the Sp between the criteria in Table 2 are greater than 0.9.

In Fig 13, we show the other learnable parameters (i.e. Batch normalization (BN) and fully connected neural network (FC)) in VGG16-BN. For BN, the distribution of its parameters does not satisfy CWDA, and similar results are shown in [34, 35]. Moreover, the learnable parameters of fullyconnected layers also do not follow a Gaussian-alike distribution, which is consistent with the conclusion in previous work [36, 37, 38].

Figure 14: The distribution of the convolutional filter ($141^{\text {th }}$ Conv) with kaiming-uniform initialization for each epoch.

J An interesting case for Importance Score measured by different criteria

The following results are the index of pruned filters obtained by the filters' Importance Score from different types of pruning criteria. We take VGG16 ($\left.2^{\text {nd }}\right)$ as an example. The $5^{\text {th }}$ filter in this layer is regarded as a redundant convolutional filter for APoZ criterion, but other criteria consider it to be almost the most important.
Taylor $\ell_{1}:[27,36,25,11,6,23,24,16,0,57,48,53,1,61,18,55,34,15,51,58,31,3,12,21,59$, $30,7,38,41,50,10,33,17,46,62,13,49,43,42,47,2,32,44,20,39,52,56,40,9,26,37,22,29$, $54,60,8,14,45,4,63,19,35,28,5]$
Taylor $\ell_{2}:[23,32,36,11,62,16,30,59,10,13,2,50,38,0,46,43,21,26,15,22,7,51,39,33,14$, $58,9,40,57,6,61,44,20,48,3,53,41,56,17,12,18,31,4,1,25,19,63,24,54,45,52,37,55,47$, $34,35,8,29,42,27,49,28,60,5]$
BN_ β : $[52,46,32,21,14,29,17,0,19,36,1,51,44,40,41,60,57,27,22,53,63,8,30,26,23,58$, $39,18,9,47,31,35,11,37,55,45,3,61,6,4,33,25,15,48,43,28,56,2,13,16,34,20,59,10,7$, $24,50,62,12,49,38,42,5,54]$

APoZ: $[5,10,38,42,62,24,13,12,7,28,59,15,23,11,16,56,34,35,57,19,2,49,43,25,6,63$, $61,36,9,27,33,20,48,58,55,18,51,31,1,0,53,37,26,29,47,60,8,44,41,46,21,17,14,32$, $52,22,39,3,40,30,4,45,50,54]$

K The details of other pruning criteria

For notation, we denote $i^{\text {th }}$ convolutional filter in layer l as F_{i}^{l} and the input feature maps in layer l as $\mathbf{I}^{l} \in \mathbb{R}^{N \times I^{l} \times H^{l} \times W^{l}}$, where N, I^{l}, H^{l}, W_{l} mean the train set size, number of channels, height and width respectively, $i=1,2, \cdots, \lambda_{l}$, and $l=1,2, \cdots, L$. The formulation of the filters' Importance Score under each pruning criteria are illustrated as follows:

Norm-based criteria:

- ℓ_{1}-Norm [5]: $\left\|F_{i}^{l}\right\|_{1}$;
- ℓ_{2}-Norm [7]: $\left\|F_{i}^{l}\right\|_{2}$;

BN-based criteria [12]:

- BN_ $\gamma:\left|\gamma_{i}^{l}\right|$, where γ_{i}^{l} is the scaling factor in the Batch Normalization layer l;
- $\mathbf{B N} _\beta$: $\left|\beta_{i}^{l}\right|$, where β_{i}^{l} is the shifting factor in the Batch Normalization layer l.

Activation-based criteria:

- APoZ [8]: $\frac{\sum_{p, q} \mathbb{1}\left(\left(\left|\mathbf{I}^{l} * F_{i}^{l}\right|\right)_{p, q}>\sigma\right)}{N \times I^{l} \times H^{l} \times W^{l}}$, where we set $\sigma=0.0001$ same as [9], and $\mathbb{1}(\cdot)$ is the indicator function, $*$ is convolution operator and $\mathbf{I}^{l} * F_{i}^{l}$ is the i-th output feature map;
- Entropy [9]: we first prepare $\mathbf{G}_{i}^{l}=G A P\left(\mathbf{I}^{l} * F_{i}^{l}\right)$, where $\mathbf{G}_{i}^{l} \in \mathbb{R}^{N \times 1}$ and $G A P(\cdot)$ is the Global Average Pooling. Then, we estimate statistical distribution for \mathbf{G}_{i}^{l} by dividing all elements in \mathbf{G}_{i}^{l} into m bins. Let p_{j} is the probability of bin j, and the the Importance Score score is $-\sum_{j=1}^{n} p_{j} \log p_{j}$.

First order Taylor based criteria [10, 11, 26]:

- Taylor ℓ_{1}-Norm: $\left\|\frac{\partial \text { loss }}{\partial F_{i}^{l}} \cdot F_{i}^{l}\right\|_{1}$;
- Taylor ℓ_{2}-Norm: $\left\|\frac{\partial \text { loss }}{\partial F_{i}^{l}} \cdot F_{i}^{l}\right\|_{2}$;

The loss is the Cross Entropy Loss on the split training set from the original training set.

L Additional experiments about image clasification

Table 5: The accuracy (\%) of several networks and datasets using different pruning criteria.

		Experiment (1)				Experiment (2)			Experiment (3)		
		Trained	Pruned	Fine-tuned	Trained	Pruned	Fine-tuned	Trained	Pruned	Fine-tuned	
CIFAR10	ℓ_{1}	93.61	61.21	93.51	93.21	54.31	93.22	93.26	57.74	93.32	
VGG16	ℓ_{2}	93.61	63.41	93.32	93.21	54.61	93.42	93.26	57.42	93.29	
	GM	93.61	61.22	93.41	93.21	53.71	93.25	93.26	57.46	93.36	
CIFAR100	ℓ_{1}	72.67	25.91	71.50	72.99	20.43	71.36	72.56	24.01	71.07	
VGG16	ℓ_{2}	72.67	27.07	71.28	72.99	22.31	71.12	72.56	24.45	70.92	
	GM	72.67	26.37	71.27	72.99	21.67	71.26	72.56	24.26	70.78	
ImageNet	ℓ_{1}	71.58	30.33	71.02	71.33	40.33	70.12	72.01	28.07	70.93	
VGG16	ℓ_{2}	71.58	29.47	70.83	71.33	40.45	70.13	72.01	27.89	71.02	
	GM	71.58	30.76	70.95	71.33	39.86	70.33	72.01	28.01	70.74	
CIFAR10	ℓ_{1}	92.98	77.73	93.08	92.97	76.02	92.82	93.01	79.93	92.81	
ResNet56	ℓ_{2}	92.98	79.02	92.83	92.97	77.91	92.72	93.01	82.43	92.81	
	$G M$	92.98	74.26	92.77	93.2	73.93	92.61	93.01	80.48	92.84	
CIFAR100	ℓ_{1}	71.36	50.64	70.15	70.02	52.41	69.19	70.48	52.19	69.77	
ResNet56	ℓ_{2}	71.36	53.44	70.16	70.02	52.73	69.31	70.48	52.16	69.62	
	GM	71.36	45.12	70.22	70.02	52.62	69.54	70.48	50.74	69.69	
ImageNet	ℓ_{1}	73.31	62.22	73.06	73.16	54.24	72.99	73.21	63.12	73.02	
ResNet34	ℓ_{2}	73.31	62.02	72.91	73.16	53.64	72.78	73.21	62.98	72.86	
	GM	73.31	61.88	72.96	73.16	53.48	72.94	73.21	62.36	73.04	

All the setting of these experiments are under can be found in https://github.com/bearpaw/ pytorch-classification. Specifically, for pruning ratio:
VGG16 on CIFAR10, CIFAR100 and ImageNet:
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/ cifar/l1-norm-pruning/vggprune.py\#L84
ResNet56 on CIFAR10 and CIFAR100:
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/ cifar/l1-norm-pruning/res56prune.py\#L94

ResNet34 on ImageNet:
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/master/
imagenet/l1-norm-pruning/prune.py\#L138

M About weight decay

Figure 15: KS test [39] while using different settings of weight decay.
We train the ResNet110 and WRN-28-10 on CIFAR100 with different weight decay (1e-3, 3e-4 and 0) and use KS test to verify whether the parameters of different layers follow a normal distribution. In Fig. 15. we can find
(1) When weight decay (wd) is non-zero, the normality is higher than that when weight decay is 0 .
(2) If weight decay is 0 , the p -value can still be much greater than 0.05 , which means that the regularization of weight decay may not be the key reason for CWDA. The distribution of the parameters in these two networks (weight decay is 0) are shown in Fig. 17 and Fig. 16

Figure 16: The distribution of parameters in different convolutional filters (WRN-28-10, wd $=0$).

Figure 17: The distribution of parameters in different convolutional filters ($\operatorname{ResNet} 110, \mathrm{wd}=0)$.

N More visualizations of correlation matrix

N. 1 VGG16

N. 2 VGG19

N. 3 ResNet 18

N. 4 ResNet50

N. 5 AlexNet

N. 6 DenseNet

N. 7 ResNext

N. 8 MobileNet

O More experiments for supporting our analysis in global pruning

Figure 18: Global pruning with different start layer.
For VGG16. As shown in Fig 6 (a-b), compared with ResNet56, VGG16 has some layers with different dimensions but similar Importance Score measured by ℓ_{1} or ℓ_{2}, such as "layer 2 " and "layer $8 "$ for ℓ_{2} criterion in Fig 6(a). From Table 3(3-4), these pairs of layers make the Sp small, which explain why the result of ℓ_{1} and ℓ_{2} pruning is not similar in Fig. 5 (e) for VGG16. We consider a special class of global pruning, i.e., the convolutional filters from one middle layer (called "Start layer") to the last layer are pruned globally. According to our analysis and Fig 6(a-b), we can deduce that when "Start layer" ≥ 4, the Sp between ℓ_{1} and ℓ_{2} is large enough. The experiments in Fig 18 are consistent with our analysis, which imply our analysis is reasonable.

P Statistical Test

In this section, according to Section 2.1, we have a series of statistical tests for the necessary conditions of CWDA. let $F_{i j} \in \mathbb{R}^{N_{i} \times k \times k}$ represent the $j^{\text {th }}$ filter of the $i^{\text {th }}$ convolutional layer ${ }^{10}$
(1) Gaussian. We verify whether $F_{i j}$ approximatively follow a Gaussian-alike distribution. In $i^{\text {th }}$ layer, we use Kolmogorov-Smirnov (KS) test [39] to check if all the weights in the same layer follow a normal distribution.
(2) Variance. We verify whether the variance of the diagonal elements of $\Sigma_{\text {diag }}$ are small enough. Since Appendix B, Let σ_{j} denotes the standard deviation of all the weights of filter $F_{i j}$ in $i^{\text {th }}$ layer. We use Student's test [40] to check if the variance of these σ_{j} is small enough. The null hypothesis H_{0} and the alternative hypothesis H_{1} are:

$$
H_{0}: \operatorname{Var}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, . ., \sigma_{N_{i}}^{2}\right) \leq \sigma_{0}^{2}, \quad H_{1}: \operatorname{Var}\left(\sigma_{1}^{2}, \sigma_{2}^{2}, . ., \sigma_{N_{i}}^{2}\right)>\sigma_{0}^{2}
$$

where N_{i} denotes the number of the filters in $i^{\text {th }}$ layer and σ_{0} is a given real number which is small enough, like $\sigma_{0}^{2}=0.0001$.
(3) Mean. We verify whether the mean of $F_{i j}$ is 0 . Let the mean of all the weights in the same layer is μ. We use Student's t test [40] to check if μ is close to 0 . First, we check the upper bound (Mean-Left) of μ, i.e.,

$$
H_{0}: \mu \leq \epsilon_{0}, \quad H_{1}: \mu>\epsilon_{0} .
$$

where ϵ_{0} is a small constant, like $\epsilon_{0}=0.01$. Next, we check the lower bound (Mean-Right) and the null hypothesis H_{0} and the alternative hypothesis H_{1} are:

$$
H_{0}: \mu \geq-\epsilon_{0}, \quad H_{1}: \mu<-\epsilon_{0}
$$

(4) Magnitude. We verify whether ϵ is small enough. Let h denote the mean of the off-diagonal elements of $\boldsymbol{\Sigma}_{\text {diag }}+\epsilon \cdot \boldsymbol{\Sigma}_{\text {block }}$.

$$
H_{0}: h \leq \epsilon_{0}, \quad H_{1}: h>\epsilon_{0} .
$$

Table 6: The experiments for having the comprehensive statistical tests on CWDA.

NETWORK STRUCTURE	OPTIMIZER	REGULARIZATION
ResNet [41]	SGD [42]	L1 norm
VGG [43]	ASGD [44]	L2 norm
AlexNet [45]	Adam [46]	RReLu [47]
DenseNet [48]	Adagrad [49]	Dropact [50]
PreResNet [51]	Adamax [46]	Autoaug [52]
WRN [53]	Adadelta [54]	Cutout [55]
ResNext [56]		Cutmix [57]
ATTENTION MECHANISM	INITIALIZATION	DATASET
SENet [58]	Kaiming-normal [59]	CIFAR10 [60]
DIANet [61]	Kaiming-uniform [59]	CIFAR100 [60]
SRMNet [62]	Xavier-normal [63]	ImageNet [64]
CBAM [65]	Xavier-uniform [63]	MNIST 66]
IEBN 67]	Orthogonal 68]	
SGENet [69]		
SEGMENTATION	DETECTION	BATCH NORMALIZATION
SegNet [70]	Faster RCNN [71]	VGG
PSPNet [72]		VGG-bn
PYTORCH PRETRAIN	MATTING	LEARNING RATE
ResNet18/34/50	Deep image matting [73]	Schedule150-225
VGG11/16/19	AlphaGAN matting [74]	Schedule82-164
STYLE TRANSFER	GAN	Schedule60-120
Fast neural style [75]	DCGAN [76]	Cos-lr [77]

[^4]Next, we show the passing rate about the statistical tests for different situations. "in the front of network" denotes whether all the failed cases are the layers whose position is in the front of the network.

For Network structure: https://github.com/bearpaw/pytorch-classification.
Table 7: Network structure.

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
ResNet164	CIFAR100	98.77%	97.55%	100%	97.55%	\checkmark
VGG16	CIFAR100	100%	93.75%	100%	100%	\checkmark
AlexNet	CIFAR100	100%	100%	100%	100%	\checkmark
DenseNet-BC-100-12	CIFAR100	100%	98.99%	100%	98.99%	\checkmark
PreResNet110	CIFAR100	100%	99.08%	100%	100%	\checkmark
WRN28-10	CIFAR100	100%	100%	100%	100%	\checkmark
ResNext-16x64d	CIFAR100	100%	100%	100%	100%	\checkmark
ResNet164	CIFAR10	100.00%	97.55%	100%	97.55%	\checkmark
VGG16	CIFAR10	100%	93.75%	100%	93.75%	\checkmark
AlexNet	CIFAR10	100%	100%	100%	100%	\checkmark
DenseNet-BC-100-12	CIFAR10	100%	100%	100%	98.99%	\checkmark
PreResNet110	CIFAR10	100%	99.08%	100%	100%	\checkmark
WRN28-10	CIFAR10	100%	100%	100%	100%	\checkmark
ResNext-16x64d	CIFAR10	100%	100%	100%	100%	\checkmark

For Optimizer: https://pytorch.org/docs/master/optim.html\#torch-optim.
Table 8: Optimizer

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
ASGD	ResNet164	100%	99.39%	99.39%	100%	\checkmark
Adam	ResNet164	99.39%	90.18%	100%	99.39%	X
Adagrad	ResNet164	100%	99.39%	100%	100%	\checkmark
Adamax	ResNet164	100%	96.93%	100%	99.39%	X
Adadelta	ResNet164	100%	100%	100%	100%	\checkmark
SGD	ResNet164	98.77%	97.55%	100%	97.53%	\checkmark
ASGD	VGG16	100%	100%	93.75%	100%	\checkmark
Adam	VGG16	93.75%	93.75%	100%	100.00%	\checkmark
Adagrad	VGG16	100%	100%	100%	100%	\checkmark
Adamax	VGG16	100%	100%	100%	93.75%	\checkmark
Adadelta	VGG16	100%	100%	100%	100%	\checkmark
SGD	VGG16	100%	93.75%	100%	100%	\checkmark
ASGD	AlexNet	100%	100%	100%	100%	\checkmark
Adam	AlexNet	100%	100%	100%	100%	\checkmark
Adagrad	AlexNet	100%	100%	100%	100%	\checkmark
Adamax	AlexNet	100%	100%	100%	100%	\checkmark
Adadelta	AlexNet	100%	100%	100%	100%	\checkmark
SGD	AlexNet	100%	100%	100%	100%	\checkmark

For Regularization/https://github.com/LeungSamWai/Drop-Activation
https://github.com/uoguelph-mlrg/Cutout
https://github.com/clovaai/CutMix-PyTorch
https://github.com/DeepVoltaire/AutoAugment
For Attention|https://github.com/moskomule/senet.pytorch
https://github.com/gbup-group/DIANet
https://github.com/EvgenyKashin/SRMnet

Table 9: Regularization

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
L1 norm	ResNet164	100\%	99.39\%	99.39\%	100\%	\checkmark
L2 norm	ResNet164	98.77\%	97.53\%	100\%	97.53\%	\checkmark
RReLU	ResNet164	100\%	99.39\%	100\%	100\%	\checkmark
Dropact	ResNet164	100\%	96.93\%	100\%	99.39\%	\checkmark
Autoaugment	ResNet164	100\%	96.93\%	100\%	99.39\%	\checkmark
Cutout	ResNet164	100\%	100\%	100\%	100\%	\checkmark
Cutmix	ResNet164	98.77\%	97.53\%	100\%	97.53\%	\checkmark
L1 norm	WRN28-10	100\%	96.43\%	100\%	96.43\%	\checkmark
L2 norm	WRN28-10	100\%	100\%	100\%	100\%	\checkmark
RReLU	WRN28-10	100\%	96.43\%	100\%	100\%	\checkmark
Dropact	WRN28-10	100\%	96.43\%	100\%	100\%	\checkmark
Autoaugment	WRN28-10	100\%	96.43\%	100\%	100\%	\checkmark
Cutout	WRN28-10	100\%	96.43\%	100\%	100\%	\checkmark
Cutmix	WRN28-10	100\%	100\%	100\%	100\%	\checkmark
L1 norm	VGG16	100\%	93.75\%	100\%	100\%	\checkmark
L2 norm	VGG16	100\%	93.75\%	100\%	100\%	\checkmark
RReLU	VGG16	100\%	93.75\%	100\%	93.75\%	,
Dropact	VGG16	100\%	93.75\%	100\%	100\%	\checkmark
Autoaugment	VGG16	100\%	93.75\%	100\%	100\%	\checkmark
Cutout	VGG16	100\%	93.75\%	93.75\%	93.75\%	\checkmark
Cutmix	VGG16	100\%	93.75\%	100\%	100\%	\checkmark
L1 norm	PreResNet110	100\%	99.08\%	100\%	100\%	\checkmark
L2 norm	PreResNet110	100\%	99.08\%	100\%	100\%	\checkmark
RReLU	PreResNet110	100\%	100\%	100\%	100\%	\checkmark
Dropact	PreResNet110	100\%	99.08\%	100\%	100\%	\checkmark
Autoaugment	PreResNet110	100\%	100\%	100\%	100\%	\checkmark
Cutout	PreResNet110	100\%	99.08\%	99.08\%	99.08\%	\checkmark
Cutmix	PreResNet110	100\%	99.08\%	100\%	100\%	\checkmark
L1 norm	AlexNet	100\%	100\%	100\%	100\%	\checkmark
L2 norm	AlexNet	100\%	100\%	100\%	100\%	\checkmark
RReLU	AlexNet	100\%	100\%	100\%	100\%	\checkmark
Dropact	AlexNet	100\%	100\%	100\%	100\%	\checkmark
Autoaugment	AlexNet	100\%	100\%	100\%	100\%	\checkmark
Cutout	AlexNet	100\%	100\%	100\%	100\%	\checkmark
Cutmix	AlexNet	100\%	100\%	100\%	100\%	\checkmark
L1 norm	DenseNet-BC-100-12	100\%	98.99\%	100\%	98.99\%	\checkmark
L2 norm	DenseNet-BC-100-12	100\%	98.99\%	100\%	98.99\%	\checkmark
RReLU	DenseNet-BC-100-12	100\%	98.99\%	100\%	98.99\%	\checkmark
Dropact	DenseNet-BC-100-12	98.99\%	98.99\%	98.99\%	98.99\%	\checkmark
Autoaugment	DenseNet-BC-100-12	100\%	98.99\%	100\%	98.99\%	\checkmark
Cutout	DenseNet-BC-100-12	100\%	98.99\%	98.99\%	98.99\%	\checkmark
Cutmix	DenseNet-BC-100-12	100\%	98.99\%	100\%	98.99\%	\checkmark

```
https://github.com/luuuyi/CBAM.PyTorch
https://github.com/gbup-group/IEBN
https://github.com/implus/PytorchInsight
```

Table 10: Attention

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
SENet	ResNet164	99.39%	99.39%	100%	100%	\checkmark
DIANet	ResNet164	99.39%	99.39%	100%	100%	\checkmark
SRMNet	ResNet164	99.39%	97.55%	100%	99.39%	\checkmark
CBAM	ResNet164	99.39%	99.39%	100%	100%	\checkmark
IEBN	ResNet164	99.39%	99.39%	99.39%	99.39%	\checkmark
SGENet	ResNet164	99.39%	98.77%	100%	100%	\checkmark
SENet	VGG16	100%	93.75%	100%	100%	\checkmark
DIANet	VGG16	100%	93.75%	100%	93.75%	\checkmark
SRMNet	VGG16	100%	100%	100%	100%	\checkmark
CBAM	VGG16	100%	93.75%	100%	100%	\checkmark
IEBN	VGG16	100%	93.75%	93.75%	93.75%	\checkmark
SGENet	VGG16	100%	93.75%	100%	100%	\checkmark
SENet	PreResNet110	99.08%	100%	100%	100%	\checkmark
DIANet	PreResNet110	100%	99.08%	100%	100%	\checkmark
SRMNet	PreResNet110	100%	99.08%	99.08%	100%	\checkmark
CBAM	PreResNet110	100%	100%	100%	100%	\checkmark
IEBN	PreResNet110	100%	99.08%	100%	99.08%	\checkmark
SGENet	PreResNet110	100%	100%	100%	99.08%	\checkmark
SENet	DenseNet-BC-100-12	100%	100%	100%	100%	\checkmark
DIANet	DenseNet-BC-100-12	98.99%	98.99%	100%	100%	\checkmark
SRMNet	DenseNet-BC-100-12	100%	98.99%	98.99%	98.99%	\checkmark
CBAM	DenseNet-BC-100-12	100%	100%	100%	98.99%	\checkmark
IEBN	DenseNet-BC-100-12	100%	98.99%	100%	100%	\checkmark
SGENet	DenseNet-BC-100-12	100%	100%	98.99%	100%	\checkmark
SENet	WRN28-10	100%	96.43%	100%	100%	\checkmark
DIANet	WRN28-10	100%	96.43%	100%	100%	\checkmark
SRMNet	WRN28-10	100%	96.43%	100%	100%	\checkmark
CBAM	WRN28-10	100%	96.43%	100%	100%	\checkmark
IEBN	WRN28-10	100%	96.43%	100%	100%	\checkmark
SGENet	WRN28-10	100%	96.43%	100%	100%	\checkmark
				\checkmark	\checkmark	\checkmark

For initialization:

https://pytorch.org/docs/master/nn.init.html\#nn-init-doc.

For dataset:
For other tasks:

```
https://github.com/meetshah1995/pytorch-semse
https://github.com/jwyang/faster-rcnn.pytorch
https://github.com/speedinghzl/pytorch-segmentation-toolbox
https://github.com/foamliu/Deep-Image-Matting-PyTorch
https://github.com/CDOTAD/AlphaGAN-Matting
https://github.com/abhiskk/fast-neural-style
```

Table 11: Initialization

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
Kaiming-uniform	ResNet164	98.77%	97.55%	100%	100%	\checkmark
Kaiming-normal	ResNet164	98.77%	97.53%	100%	97.55%	\checkmark
Xavier-normal	ResNet164	98.77%	96.32%	100%	97.55%	\checkmark
Xarier-uniform	ResNet164	98.16%	96.32%	100%	99.39%	\checkmark
Orthogonal	ResNet164	97.55%	96.32%	100%	100%	\checkmark
Kaiming-uniform	VGG16	100%	93.55%	100%	100%	\checkmark
Kaiming-normal	VGG16	100%	93.75%	100%	100%	\checkmark
Xavier-normal	VGG16	100%	93.75%	100%	93.75%	\checkmark
Xarier-uniform	VGG16	100%	93.75%	100%	93.75%	\checkmark
Orthogonal	VGG16	100%	93.75%	93.75%	93.75%	\checkmark
Kaiming-uniform	WRN28-10	100%	96.43%	100%	100%	\checkmark
Kaiming-normal	WRN28-10	100%	100%	100%	100%	\checkmark
Xavier-normal	WRN28-10	100%	96.43%	100%	100%	\checkmark
Xarier-uniform	WRN28-10	100%	96.43%	100%	100%	\checkmark
Orthogonal	WRN28-10	100%	96.43%	100%	100%	\checkmark
Kaiming-uniform	PreResNet110	100%	99.08%	100%	100%	\checkmark
Kaiming-normal	PreResNet110	100%	99.08%	100%	100%	\checkmark
Xavier-normal	PreResNet110	100%	100%	100%	100%	\checkmark
Xarier-uniform	PreResNet110	100%	99.08%	100%	100%	\checkmark
Orthogonal	PreResNet110	100%	100%	100%	100%	\checkmark
Kaiming-uniform	AlexNet	100%	100%	100%	100%	\checkmark
Kaiming-normal	AlexNet	100%	100%	100%	100%	\checkmark
Xavier-normal	AlexNet	100%	100%	100%	100%	\checkmark
Xarier-uniform	AlexNet	100%	100%	100%	100%	\checkmark
Orthogonal	AlexNet	100%	100%	100%	100%	\checkmark
Kaiming-uniform	DenseNet-BC-100-12	100%	98.99%	100%	98.99%	\checkmark
Kaiming-normal	DenseNet-BC-100-12	100%	98.99%	100%	98.99%	\checkmark
Xavier-normal	DenseNet-BC-100-12	100%	98.99%	100%	98.99%	\checkmark
Xarier-uniform	DenseNet-BC-100-12	98.99%	98.99%	98.99%	98.99%	\checkmark
Orthogonal	DenseNet-BC-100-12	100%	98.99%	100%	98.99%	\checkmark
						\checkmark

Table 12: Dataset

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
CIFAR10	WRN28-10	100%	96.43%	100%	100%	\checkmark
CIFAR100	WRN28-10	100%	100%	100%	100%	\checkmark
ImageNet	WRN28-10	100%	96.43%	100%	100%	\checkmark
MINIST	WRN28-10	100%	96.43%	100%	96%	\checkmark

https://github.com/csinva/gan-pretrained-pytorch
Table 13: Other tasks

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
SgeNet(Cityscapes)	Segmentation	100%	100%	100%	100%	\checkmark
PSPNet(Cityscapes)	Segmentation	100%	99.12%	100%	99.12%	\checkmark
ResNet101(COCO)	Faster RCNN	100%	99.05%	100%	100%	X
ResNet101(VOC2007)	Faster RCNN	100%	99.05%	100%	100%	X
VGG16(Visual Genome)	Faster RCNN	100%	93.75%	100%	100%	\checkmark
AlphaGAN	Image matting	100%	95.00%	100%	95.00%	\checkmark
Deep image matting	Image matting	100%	100%	100%	100%	\checkmark
Fast neural style	candy	86.67%	100%	100%	100%	\checkmark
Fast neural style	mosaic	93.33%	100%	100%	100%	\checkmark
Fast neural style	starry night	86.67%	100%	100%	100%	\checkmark
Fast neural style	udnie	66.67%	100%	100%	100%	X
DCGAN(MNIST)	GAN	100%	100%	100%	100%	\checkmark
DCGAN(CIFAR10)	GAN	100%	100%	100%	100%	\checkmark
DCGAN(CIFAR100)	GAN	100%	100%	100%	100%	\checkmark
VGG19(CIFAR10)	without BN	100%	100%	100%	100%	\checkmark
VGG19(CIFAR10)	with BN	93.75%	100%	100%	100%	\checkmark
VGG19(CIFAR10-lr)	schedule(82-164)	93.75%	100%	100%	100%	\checkmark
VGG19(CIFAR10-lr)	schedule(60-120)	93.75%	100%	100%	100%	\checkmark
VGG19(CIFAR10-lr)	coslr	93.75%	100%	100%	100%	\checkmark

For pytorch pretrain http://pytorch.org/docs/master/torchvision/index.html.
Table 14: Pytorch pretrian

Experiments	Remark	Gaussian	Variance	Mean	Magnitude	in the front of network?
VGG11	ImageNet	100%	75.00%	100%	75.00%	\checkmark
VGG16	ImageNet	100%	84.62%	100%	100%	\checkmark
VGG19	ImageNet	100%	87.50%	100%	100%	\checkmark
ResNet18	ImageNet	100%	88.24%	100%	100%	\checkmark
ResNet34	ImageNet	100%	88.24%	100%	96.97%	\checkmark
ResNet50	ImageNet	100%	83.67%	100%	100%	X

Q Training through slimming

1: ℓ_{1} norm 2: ℓ_{2} norm 3: Taylor ℓ_{1} 4: Taylor ℓ_{2} 5: BN_ γ 6: BN_ β 7: Entropy 8: APoZ

Figure 19: The Similarity for different criteria with/without slimming [34].
As a representative of the BN-based pruning method, slimming pruning[34] can not be directly compared with the criteria mentioned in the paper because it adopts a special training method. Therefore, we use the training method in [34] to train another ResNet56 on cifar100. Then, the analysis of similarities between 8 different pruning criteria on such a model is shown in Fig. 19

In this situation, the fifth criterion $\mathrm{BN}_{-} \gamma$ is the method introduced in [34]. From Fig. 19] there is no significant difference in the result of the similarity between ResNet56 obtained by slimming method and resnet56 trained in general.

Figure 21: Optimizer

R More experiments of Sp in Norm-based criteria

Figure 20: Network Structure

Figure 22: Initialization

Figure 23: Attention mechanism

Figure 24: Other task: segmentation

Figure 25: Other task: Faster RCNN

Figure 26: Other task: style transfer

Figure 27: Other task: GAN

Figure 28: Other task: Regularization

Figure 29: Dataset

Figure 30: Batch normalization

Figure 31: Pytorch pre-trained Model

Figure 32: Learning rate

[^0]: ${ }^{\dagger}$ en.wikipedia.org/wiki/Stirling'sapproximation

[^1]: ${ }^{7}$ In Section 6 we make further discussion and analysis on the conditions for CWDA to be satisfied.

[^2]: ${ }^{8}$ Survey of simple,continuous, uniariate probability distribution and Wikipredia

[^3]: https://en.wikipedia.org/wiki/Delta_method

[^4]: ${ }^{10}$ The statistical tests about the situation with or without weight decay can be found in Appendix \mathbf{M}

