
A Comparison with GAIL and Its Variants

Our method shares a similar adversarial training process with GAIL [17]. First of all, similar to the
discriminator in GAIfO-s [49], our proximity function takes only the current state as input. However,
rather than training the discriminator to classify expert from agent, we train the proximity function to
regress to the proximity labels which are 0 for agent and the time discounted value between 0 and 1
for expert. Our reward formulation also differs from GAIL approaches which gives a log probability
reward based on the discriminator output. We instead incorporate a proximity estimation uncertainty
penalty and a difference-based proximity reward as shown in Equation 3.

B Failure of GAIfO and SQIL

We found that SQIL training is unstable and often collapses after some amount of training steps (see
Ant experiments in Figure 7). Similar trends can be observed in the original paper [37] and other
recent papers [36, 45]. We hypothesize that GAIfO easily overfits to demonstrations compared to
other baselines (e.g. GAIfO-s) since GAIfO conditions its discriminator on both the current and next
observations.

We evaluated these methods with the demonstrations from the same initial and goal state distributions
in the first column of Figure 7. Even though they are trained for the same goal distributions as the
demonstrations, they still overfit to the demonstration states and thus cannot generalize to unseen
states encountered during online rollouts for most tasks.

C Analysis on Generalization of Our Method and Baselines

By learning to predict the goal proximity, the proximity function not only learns to discriminate expert
and agent states but also models task progress, which encourages acquiring task-relevant information.
With this additional supervision on learning goal proximity, we expect the proximity function to
provide a more informative learning signal to the policy and generalize better to unseen states than
baselines which easily overfit the reward function to expert demonstrations. To analyze how well our
method and the baselines can generalize to unseen states, we vary the difference between the states
encountered in expert demonstrations and agent training as described in Section 4.

One way we vary the difference between expert demonstrations and agent learning is restricting the
expert demonstrations to only cover parts of the state space. For NAVIGATION and MAZE2D, we
show results for expert demonstrations that cover 100%, 75%, 50%, and 25% of the state space. For
the discrete state space in NAVIGATION, we restrict expert demonstrations to the fraction of possible
agent start and goal configurations. For MAZE2D, we break the maze into 6× 6 cells and sample a
part of the cells for starting states and another part for goal states.

Likewise, we also measure generalization by adding more noise to the initial state during agent
learning. On FETCH PICK, FETCH PUSH, ANT REACH, and HAND ROTATE we show results for
four different noise settings. For the two FETCH tasks, the 2D sampling region of the object and goal
is scaled by the noise factor. For ANT REACH, uniform noise scaled by the noise factor is added
to the initial joint angles, whereas the demonstrations have no noise. For HAND ROTATE, uniform
noise scaled by the noise factor is added to the possible initial and target object pose. If our method
allows for greater generalization from the expert demonstrations, our method should perform well
even under states different than those in the expert demonstrations.

The results of our method and baselines across varying degrees of generalization are shown in
Figure 7. Note that the results in the main paper are for 1.75x noise in FETCH PICK and FETCH
PUSH, 0.05 noise in ANT REACH, 0.35 noise in HAND REACH, and 25% coverage in Maze2D.
Across both harder and easier generalization, our method demonstrates more consistent performance
compared to baseline methods. While GAIfO-s performs well on high coverage or low noise, which
require little generalization in agent learning, its performance deteriorates as the expert demonstration
coverage decreases.
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(e) MAZE2D 100%
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(f) MAZE2D 75%
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(g) MAZE2D 50%
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(h) MAZE2D 25%
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(i) ANT REACH 0.00
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(j) ANT REACH 0.01
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(k) ANT REACH 0.03
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(m) FETCH PICK 1x
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(n) FETCH PICK 1.25x
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(o) FETCH PICK 1.75x
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(p) FETCH PICK 2x
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(q) FETCH PUSH 1x
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(r) FETCH PUSH 1.25x
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(s) FETCH PUSH 1.75x
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(t) FETCH PUSH 2x
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(u) HAND ROTATE 0.0
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(v) HAND ROTATE 0.25
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(w) HAND ROTATE 0.35
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Figure 7: Analyzing generalization to unseen states from expert demonstrations. NAVIGATION and
MAZE2D tasks are tested with different coverages of state spaces in demonstrations, while FETCH,
ANT REACH, and HAND ROTATE tasks are tested in more noisy environments. The number indicates
the amount of additional noise in agent learning compared to that in the expert demonstrations, with
more noise requiring harder generalization. The noise level increases from left to right.
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D Further Ablations

We include additional ablations to further highlight the advantages of our main proposed method
over its variants. We evaluate against the same ablations proposed in the main paper (Figure 6b), but
across all environments. We present all these results in Figure 8.

Our method shows the best performance in the majority of environments. In all tasks, incorporating
online updates is crucial since the proximity function can overfit to expert trajectories and poorly
generalize to agent trajectories. Updating the proximity function with online agent experience lowers
the proximity prediction outside of the expert trajectories and thus leads an agent to follow the
expert. Our method with the uncertainty penalty shows superior performance in FETCH PICK and
HAND ROTATE, while it performs similarly with our method without the uncertainty penalty in other
environments. Our method using the linear proximity function achieves similar to or slightly lower
performance than the exponential proximity function used in the main paper. Offline pre-training of
the proximity function is also helpful in most environments.

We also compare to an ablation which learns the proximity function through a ranking-based loss
similar to Brown et al. [5], Burke et al. [6]. However, we empirically found it to be ineffective
and difficult to train. This ranking-based loss uses the criterion that for two states from an expert
trajectory st1 , st2 , the proximities should obey f(st1) < f(st2) if t1 < t2. We therefore train the

proximity function with the cross entropy loss −∑ti<tj
log

exp fφ(stj )

exp fφ(sti )+exp fφ(stj )
. We incorporate

agent experience by adding an additional loss which ranks expert states above agent states for
randomly sampled pairs of expert and agent states (se, sa) through the cross-entropy loss:

−
∑

sa∼De,se∼πθ

log
exp fφ(se)

exp fφ(sa) + exp fφ(se)
. (6)

Unlike the discounting factor in the discounting-based proximity function, the ranking-based training
requires no hyperparameters. However, as shown in Figure 8, the lack of supervision on ground truth
proximity scores results in less meaningful predicted proximity and a worse learning signal for the
agent, which could explain its poor performance.

We also show results for applying spectral normalization [28] to GAIfO-s [47] in Figure 10 across all
tasks. While regularizing the GAIfO-s discriminator can consistently improve its performance, it
still cannot generalize as well as our method for the majority of tasks. As mentioned in Section 4.7,
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(d) FETCH PICK 1.75x
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(e) FETCH PUSH 1.75x
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Figure 8: Ablation on proximity function design and online/offline proximity function training. We
compare our method to the proximity function with actions as input or with a ranking-based objective
(Equation 6). Our method shows consistently superior or comparable performance over all ablations.
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(a) FETCH PICK 1.75x δ ablation
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(b) FETCH PUSH 1.75x δ ablation

Figure 9: Analyzing different choices of the proximity discounting factor δ for training the proximity
function. The model learns similarly well over a range of δ values around 0.95, but struggles for too
large or too small δ.
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(d) FETCH PICK 1.75x
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(e) FETCH PUSH 1.75x
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(f) HAND ROTATE 0.35

Figure 10: Effect of applying spectral normalization to the GAIfO-s baseline compared to the
performance of our method. While regularization helps GAIfO-s, it still is outperformed by our
method in the majority of tasks.

GAIfO-s has a bias to provide negative rewards encouraging the agent to end the episode early, which
is a desirable property for the HAND ROTATE task. Vanilla GAIfO-s therefore performs better than
our method in this environment, and spectral normalization for the discriminator further improves
GAIfO-s performance.

E Qualitative Results

It is important for agent learning that the proximity function gives higher values for states that are
temporally closer to the goal. To verify this intuition, we visualize the proximity values predicted by
the proximity function in a successful episode from agent learning in Figure 11. In Figure 11, we can
observe that the predicted proximity increases as the agent moves closer to the goal (except HAND
ROTATE). This provides an example of the proximity function generalizing to agent experience and
providing a meaningful reward signal for agent learning.

We notice that while the predictions increase as the agent nears the goal, the proximity prediction
values are often low (<0.1) as shown in Figure 11c. These low values are mostly predicted for
the states not covered in the demonstrations due to the adversarial online training of the proximity
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Proximity: 0.162 Proximity: 0.195 Proximity: 0.374 Proximity: 0.805

(a) ANT REACH

Proximity: 0.000 Proximity: 0.038 Proximity: 0.157 Proximity: 0.517

0.094 0.308

(b) MAZE2D

Proximity: 0.015 Proximity: 0.028 Proximity: 0.050 Proximity: 0.072

(c) FETCH PICK

Proximity: 0.000 Proximity: 0.151 Proximity: 0.322 Proximity: 0.347

(d) FETCH PUSH

Proximity: 0.464 Proximity: 0.013 Proximity: 0.004 Proximity: 0.006

(e) HAND ROTATE

Figure 11: Visualizing the proximity predictions for a successful trajectory from agent learning.
Four informative frames are selected from the overall trajectory and the predicted proximity value is
displayed below. The proximity prediction visualization for NAVIGATION can be found in Figure 4d.

function. During online proximity function training, we label agent experience with 0 proximity and
therefore proximity predictions get lower, especially for states not in the demonstrations.

For HAND ROTATE, the proximity function fails to predict increasing proximity for states near the
goal as an agent cannot learn to imitate the exact expert trajectories. Instead, due to the negatively
biased reward, the agent finds a new way to solve the task as discussed in Section 4.7 and therefore
achieves low proximity predictions even for successful trajectories as shown in Figure 11e. However,
our method still provides relatively higher proximity values near goal states compared to baseline
methods, which leads our agent to achieve higher performance in noisy environments.
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F Implementation Details

We use PyTorch [32] for our implementation and all experiments are conducted on a workstation with
an Intel Xeon E5-2640 v4 CPU and a NVIDIA Titan Xp GPU. Most adversarial imitation learning
methods and our method are trained for around 3 hours with 32 parallel workers. GoalGAIL and
SQIL training takes around 48 hours since they use off-policy optimization with a single worker.

F.1 Environment Details

Figure 12: The goals of the
expert demonstrations in red
for the NAVIGATION 25%
holdout setting.

In this section, we summarize details of the six goal-directed tasks
discussed in this paper. For all environments, the starting and goal
states are randomly initialized. All units in this section are in meters
and radians unless otherwise specified. The summary of observation
spaces, action spaces, and episode lengths are described in Table 1.
To evaluate the generalization capability of our method and baselines,
we constrain the coverage of expert demonstrations or add additional
starting state noise during agent learning as discussed in Section C.

NAVIGATION [7] In NAVIGATION, the state consists of a one-hot
vector for each grid cell encoding wall, empty space, agent, or goal.
NAVIGATION has four discrete actions for moving in four directions.
We collect 250 expert demonstrations using the shortest path algorithm, BFS search. The 25% holdout
region is visualized in Figure 12.

MAZE2D [15] In MAZE2D, the state consists of the agent’s 2D position, velocity, and the goal
position. The point mass agent moves around the maze by controlling the continuous value of its
(x, y) velocity. The only modification in this environment from maze2d-medium-v1 [15] is the
episode length reduced from 600 to 400. We collect 100 expert demonstrations using a planner
provided by Fu et al. [15].

ANT REACH [16] In ANT REACH the state consists of joint angle, velocity, force and the relative
goal position, and the agent is controlled using joint torque control. We collect 1,000 demonstrations
using an expert policy trained using PPO [40] based on the reward function R(s, a) = 1 − 0.2 ·
||pant − pgoal||2 − 0.005 · ||a||22, where pant and pgoal are (x, y)-positions of the ant and goal,
respectively, and a is an action. Please refer to the code for more details.

FETCH PICK and FETCH PUSH [34] The actions in the FETCH experiments use 3-D end-
effector position control and 1-D continuous control for the gripper (fixed for FETCH PUSH). A
16-dimensional state in FETCH tasks consists of the relative position of the goal from the object,
relative position of the end-effector to the object, and robot joint state. We found that not including
the velocity information was beneficial for all learning from observation approaches in FETCH tasks.
In FETCH PICK, we generate 1,000 demonstrations by hard coding the Sawyer Robot to first reach
above the object, then reach down and grasp, and finally move to the target position. Similarly, in
FETCH PUSH, we collect 664 demonstrations by hard coding the Sawyer to reach behind the object
and then execute a planar push towards to the goal.

HAND ROTATE [34] The original task HandManipulateBlockRotateZ-v0 proposed in Plappert
et al. [34] is challenging to solve without reward due to its large and combinatorial state space and
large action space. Hence, we reduce the initial and goal z rotations of the block to [− π

32 ,
π
32 ] and

[π3 ,
π
2 ]. The 68-D state space consists of the agent’s joint angles and velocities, and object pose. The

20-D action space is for joint torque control of 24-DoF Shadow Dexterous Hand. We collect 10,000
demonstrations using an expert policy trained with DDPG+HER [2] using a sparse reward.

F.2 Network Architectures

Actor and critic networks: We use the same architecture for actor and critic networks except for the
output layer where the actor network outputs an action distribution while the critic network outputs a
critic value. For NAVIGATION, the actor and critic network consists of CONV (3, 2, 16)−ReLU −
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MaxPool(2, 2)−CONV (3, 2, 32)−ReLU −CONV (3, 2, 64) followed by two fully-connected
layers with hidden layer size 64, where CONV (k, s, c) represents a c-channel convolutional layer
with kernel size k and stride s. For other tasks, we model the actor and critic networks as two separate
3-layer MLPs with hidden layer size 256. For the continuous control tasks, the last layer of the actor
MLP has two heads to output the mean and standard deviation of a Gaussian distribution which an
action is sampled from. We use the ReLU activation for NAVIGATION and tanh for other tasks.

Goal proximity function and discriminator: The goal proximity function and discriminator use a
CNN encoder (the same CNN architecture as the actor and critic networks) followed by a hidden
layer of size 64 for NAVIGATION and a 3-layer MLP with a hidden layer of size 64 for other tasks.
When measuring the uncertainty of predictions, we use an ensemble of 5 networks.

F.3 Training Details

For our method and all baselines except BC [35] and BCO [46], we train policies using PPO [40].
The hyperparameters for policy training are shown in Table 2, while the hyperparameters for the
proximity and discriminator function are shown in Table 3. For our method, we found it helpful to
normalize the reward based on the moving average and standard deviation of returns. We also did so
for baselines when it helped.

For hyperparameter tuning, we searched over entropy coefficients {0.0001, 0.001, 0.01}, state
normalization {True,False}, uncertainty coefficient {0.0001, 0.001, 0.01, 0.1}, learning rates
{0.0001, 0.0003, 0.001}, and reward normalization {True,False}.
In BC, the demonstrations were split into 80% training data and 20% validation data. The policy was
trained on the training data until the validation loss stopped decreasing. The policy is then evaluated
for 1,000 episodes to get an average success rate.

In GAIfO-s and GAIL, we use the reward form of logD(s) − log(1 − D(s)) and logD(s, a) −
log(1−D(s, a)), respectively, from Finn et al. [12], Fu et al. [14].

For GoalGAIL [9], we use the default hyperparameters used in the original implementation. For
the policy network, we use a deterministic policy for DDPG [25] and use the tanh activation to
normalize the policy output between [−1, 1]. We update the policy and critic every 2 environment
steps and the discriminator every 10 environment steps to prevent overfitting.

Algorithm 1 Imitation learning with learned goal proximity

Require: Expert demonstrations De = {τe1 , . . . , τeN}
1: Initialize goal proximity function fφ and policy πθ
2: for i = 0, 1, ...,M do
3: Sample expert demonstration τe ∼ De
4: Update fφ with τe to minimize Equation 1 . Offline proximity function training
5: end for
6: for i = 0, 1, ..., L do
7: Rollout trajectories τi = (s0, . . . , sTi) with πθ
8: Compute proximity reward Rφ(st, st+1) for (st, st+1) ∼ τi using Equation 5
9: Update πθ using any RL algorithm . Policy training

10: Update fφ with τi and τe ∼ De to minimize Equation 2 . Online proximity function training
11: end for
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Table 1: Environment details. In NAVIGATION and MAZE2D, the goal and agent are randomly
initialized anywhere on the grid. In ANT REACH, the angle of the goal and the velocity of the agent
are randomly initialized. The goal and object noise in FETCH describes the amount of uniform noise
applied to the (x, y) coordinates of the object and goal. In HAND ROTATE, the state and goal noises
are applied to the initial and goal object rotations.

State Action Goal noise State noise Episode len. # demos

NAVIGATION (19, 19, 4) 4 - - 50 250
MAZE2D 6 2 - - 600 100

ANT REACH 132 8 θ ∈ [0, π] v ∈ [±.005] 50 1,000
FETCH PICK 16 4 (x, y) ∈ [±.02,±.05] 50 1,000
FETCH PUSH 16 3 (x, y) ∈ [±.02,±.05] 60 664

HAND ROTATE 68 20 θ ∈ [π2 ,
π
3 ] θ ∈ [± π

32 ] 50 10,000

Table 2: PPO hyperparameters used for baselines and our method.
Hyperparameter Value

Learning Rate 3e-4
Learning Rate Decay Linear decay

# Mini-batches 4 (NAVIGATION), 32 (others)
# Epochs per Update 4 (NAVIGATION), 10 (others)

Discount Factor γ 0.99
Rollout Size 16,000 (ANT REACH), 4,096 (others)

Entropy Coefficient 0.01 (NAVIGATION), 0.001 (others)
State Normalization False (NAVIGATION), True (others)

Table 3: Hyperparameters for goal proximity functions (ours) and discriminators (baselines).
Hyperparameter Value

# Networks for Ensemble 5
# Epochs for Pre-training 5

Discount Factor δ 0.95 (exponential), 1/H (linear)
Uncertainty Coefficient λ 0.001 (FETCH), 0.01 (others)

Learning Rate (ours) 1e-3 (NAVIGATION, FETCH, MAZE2D), 1e-4 (ANT REACH, HAND ROTATE)
Learning Rate (baselines) 1e-4

Batch Size 32 (NAVIGATION), 128 (others)
# Updates per Agent Update 1

Experience Buffer Size 16,000 (ANT REACH), 4,096 (others)
Reward Norm. (ours) True

Reward Norm. (baselines) True (FETCH), False (others)
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of GPUs, internal cluster, or cloud provider)? [Yes] See appendix, Section F.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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