Gradient-Driven Rewards to Guarantee Fairness in
Collaborative Machine Learning

Xinyi Xu'-%% Lingjuan Lyu?* Xingjun Ma?®, Chenglin Miao?,
Chuan Sheng Foo®, and Bryan Kian Hsiang Low'

Department of Computer Science, National University of Singapore, Republic of Singapore!

Sony AI?, School of Computer Science, Fudan University, People’s Republic of China®

Department of Computer Science, University of Georgia, USA*
Institute for Infocomm Research, A*STAR, Republic of Singapore®
{xuxinyi,lowkh}@comp.nus.edu.sg', lingjuan.lv@sony.com
danxjma@gmail. com?, cmiaoQuga. edu?, foo_chuan_sheng@i2r.a-star.edu. sg5

2

Abstract

In collaborative machine learning (CML), multiple agents pool their resources
(e.g., data) together for a common learning task. In realistic CML settings where
the agents are self-interested and not altruistic, they may be unwilling to share data
or model information without adequate rewards. Furthermore, as the data/model
information shared by the agents may differ in quality, designing rewards which are
fair to them is important so that they would not feel exploited nor discouraged from
sharing. In this paper, we adopt federated learning as the CML paradigm, propose
a novel cosine gradient Shapley value (CGSV) to fairly evaluate the expected
marginal contribution of each agent’s uploaded model parameter update/gradient
without needing an auxiliary validation dataset, and based on the CGSYV, design
a novel training-time gradient reward mechanism with a fairness guarantee by
sparsifying the aggregated parameter update/gradient downloaded from the server
as reward to each agent such that its resulting quality is commensurate to that
of the agent’s uploaded parameter update/gradient. We empirically demonstrate
the effectiveness of our fair gradient reward mechanism on multiple benchmark
datasets in terms of fairness, predictive performance, and time overhead.

1 Introduction

In collaborative machine learning (CML), multiple agents (e.g., researchers, organizations, compa-
nies) pool their resources (e.g., data) together for a common learning task. It spans a wide variety
of real-world applications such as digital healthcare [49], clinical trial research [13} 23], wake word
detection for smart voice assistants [27], and next word prediction on mobile devices [[15].

Federated learning (FL) provides a natural paradigm of CML [18}], 129} 41} 14357, 62]. In FL, the
agents perform local model training (e.g., using stochastic gradient descent) and share their resulting
model parameter updates/gradients via a trusted server [40L 156} 59]. An important distinction of
our work here from the standard FL literature is that the agents are self-interested and hence not
necessarily cooperative like the worker nodes in distributed learning. The implication is that to
achieve competitive predictive performance for the learning task, it is imperative to incentivize/reward
the agents for contributing/sharing high-quality information in the form of model parameter up-
dates/gradients [47, 48], 52].
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Our work here adopts FL as the CML paradigm for designing a fair reward mechanism such
that the (self-interested) agents who contribute more would not feel exploited but be rewarded
commensurately. This is often regarded as fairness in cooperative game theory [42]], mechanism
design [4], and computational social choice [11]. To design such a fair reward mechanism, we need
to address three main questions:

Firstly, what is a suitable notion of fairness? The Shapley value (SV) [50] from cooperative game
theory is an appealing choice and has been used in ML [14] and FL [54} [56]]. However, existing
SV-based works [[19, 37,154, 156] typically require the availability of (and all agents to agree on) an
auxiliary validation dataset and significant time overhead from evaluating the agents’ contributions
in the form of SVs and the resulting model training. To overcome these difficulties, we propose to
instead exploit the alignment (specifically, cosine similarity) of an agent’s uploaded/contributed model
parameter update/gradient vector (or that aggregated over some agents) to that aggregated over all
agents (hence measuring its quality/value and circumventing the need for a validation dataset [[12}52])
for devising our proposed cosine gradient Shapley value (CGSV) (Sec.[3.2) which can be efficiently
approximated with a bounded error (Sec. [3.3).

Secondly, what is the choice of reward? Various choices such as monetary rewards from a pre-
allocated budget [65} [66]] or the total revenue generated from the collaboration through FL [9} [10]
have been proposed. Though it may seem natural to consider monetary rewards, it is not obvious how
a common denomination between money and data/gradients [1} 46] can be readily established, which
makes it challenging to apply these works in practice. Instead, we propose to consider the aggregated
parameter updates/gradients downloaded from the server as rewards to the agents.

Finally, how can the gradient reward mechanism ensure fairness? Our proposed mechanism exploits
a sparsifying gradient trick (Sec. for controlling the quality of the aggregated parameter up-
date/gradient downloaded from the server as reward to each agent at training time (rather than post
hoc [48] 152, 165]]) such that its quality is commensurate to that of the agent’s uploaded/contributed
parameter update/gradient [2| [7]. Consequently, an agent who uploads/contributes higher-quality
parameter updates/gradients over the entire training process should eventually be rewarded with
converged model parameters whose resulting training loss (and hence predictive performance) is
closer to that of the server, as demonstrated in our fairness guarantee (Sec. @ [152].

In summary, the contributions of our work here to CML and FL include the following:

e We propose a novel cosine gradient Shapley value (CGSV) (Sec.[3.2) to fairly evaluate the expected
marginal contribution of each agent’s uploaded model parameter update/gradient without needing
an auxiliary validation dataset and present an efficient approximation of CGSV with a bounded
error (Sec.[3.3).

e Based on the approximate CGSV, we design a novel training-time gradient reward mechanism
(Sec.[3.4) with a fairness guarantee (Sec. [3.5) by exploiting the trick of sparsifying the aggregated
parameter update/gradient downloaded from the server as reward to each agent such that its resulting
quality is commensurate to that of the agent’s uploaded/contributed parameter update/gradient.

e We empirically demonstrate the effectiveness of our fair gradient reward mechanism on multiple
benchmark datasets in terms of fairness, predictive performance, and time overhead (Sec. E])

2 Related Work

Reward design and choice in CML. In related topics such as FL [30, 36} [38] 47l |59] 63} 166l],
Bayesian CML [52], collaborative generative modeling [55]], and data sharing [13| 23| 48]], designing
appropriate rewards to encourage collaboration (e.g., sharing real or synthetic data, gradients, or other
information) is a non-trivial problem. A useful solution concept should provide a formal notion of
fairness, a suitable form/denomination of reward, and a principled way to guarantee fairness via a
carefully designed reward mechanism. Previous works have considered monetary rewards from a
pre-allocated budget [65, 166] or the total revenue generated from the collaboration [9} [10]], or simply
an abstract yet quantifiable form of reward [47, 48]]. Though it may seem natural to consider monetary
rewards, it is not obvious how a common denomination between money and data/gradients [1}46]
can be readily established, which makes it challenging to apply these works in practice. The work
of [66] has explored a different avenue of using a reverse auction to guarantee truthfulness in its
mechanism instead of fairness.



Fairness notions. The Shapley value (SV) [50] from cooperative game theory is widely regarded as
a principled notion of fairness [4, 11} 142] due to its several desirable properties such as symmetry
and null player. Existing SV-based works have considered fairness in the sense of rewarding agents
according to their contributions [19} 54, 156]. However, they typically require the availability of (and
all agents to agree on) an auxiliary validation dataset [37,152]] and significant time overhead from
evaluating the agents’ contributions in the form of SVs and the resulting model training [[14} [19}156].
In contrast, the work of [31]] has adopted an egalitarian notion of fairness by aiming to equalize the
final individual performance among agents, which is fundamentally different from SV.

Different from the fairness definition in [31], we adopt a fairness notion formalized by SV [14,[19} 52,
54,156]. Our proposed work is novel in the application of SV: While previous works use the validation
accuracy [14,119,154, 156, we exploit the cosine similarity between model parameter updates/gradient
vectors [12]] for devising our proposed cosine gradient Shapley value (CGSV) (Sec. [3.2)) to fairly
evaluate the expected marginal contribution of each agent’s uploaded model parameter update/gradient.
Based on the CGSV, we design a novel training-time gradient reward mechanism (Sec. [3.4) with a
fairness guarantee (Sec.[3.5)) and empirically show that it outperforms several existing FL baselines
in terms of predictive performance, fairness, and time overhead (Sec. .

3 Fair Gradient Reward Mechanism

3.1 Vanilla Federated Learning (FL) Problem Setting and Notations

The vanilla FL problem [56) [59] involves a set N := {i};,—; . n of N honest agents learning a
D-dimensional vector w € RP of model parameters to minimize a loss function F(w) that can
be additively decomposed into IV local differentiable loss functions F; (w) defined using the local
dataset D; of agent i € A/ and weighted by its importance p; > 0 (e.g., proportional to |D;|). That is,
F(w) = >, i Fi(w) where ). _\-p; = 1. We call \V the grand coalition; a coalition S C N
is then a subset of the grand coalition N/ of N agents. In iteration ¢ = 0, every agent i € N starts
with the same initialized parameter vector w; o := wy as the server. In iteration ¢ > 0, every agent
i € N calculates a parameter update Aw; ; = —nVF;(w; 1) with step size 7, and gradient
VF;(w; —1) w.r.t. parameter vector w; ;1 and uploads it to a trusted server who normalizes and
aggregates all agents’ parameter updates as follows:

wip =T Aw; g /[|Aw; ], wn = icp Tit—1 Wit ()
where I is a normalization coefficient used to prevent gradient explosion [33}45] and the importance
coefficient r; ;1 will be described later in Sec[3.4] So, we call (I) the gradient aggregation step.
The gradient download step then follows where every agent ¢ € N downloads the aggregated
parameter update/gradient u ;. (1) from the server (as reward) for updating its model parameters
Wi = W, —1 + up, to the same w; = w;—1 + up; as the server. That is, w,; ; = w; for all
i € Nandt € ZT U{0}. We define us ; for any coalition S C N in a similar way as war ¢ (I)). For
brevity, we omit ¢ from our notations in Secs. [3.2]and [3.3]since we only refer to iteration ¢.

3.2 Cosine Gradient Shapley Value (CGSYV) for Fairness

In the gradient aggregation step (I), the quality/value of coalition S’s (normalized) aggre-
gated parameter update/gradient us can be measured by its cosine similarity cos(us,wp) =
(us,un)/(JJus||||uarl]) to the grand coalition A’s aggregated parameter update/gradient w s [12]
28, 35]. We use this cosine similarity measure as our gradient valuation function v(S) =
cos(us,uy ). Intuitively, if the direction of us aligns more closely with that of was, then its
quality/value v(8) is higher. Using v, the contribution ¢; of agent i € A is defined based on the
notion of Shapley value (SV) [S0] which measures its expected marginal contribution when joining
the other agents preceding it in any permutation and satisfies certain desirable fairness properties [3]],
such as null player (i.e., an agent with no marginal contribution has zero SV), symmetry (i.e., agents
with identical marginal contributions have equal SVs), among others, as formally discussed in

Appendix [A.T}
Definition 1 (Cosine gradient Shapley value (CGSV)). Let I1 be a set of all possible permutations

of N and S, ; be the coalition of agents preceding agent i in permutation 7w € ITy. The CGSV of
agent i € N is defined as

b1 1= (1N) rerr,, [¥(Sri U {i}) = #(Sx)] - @



If ¢; is negative, then it follows from the weighted sum of parameter updates/gradients in (IJ) that u;
points in an opposite direction to some other parameter updates/gradients and hence has negative
cosine similarities to them. In practice, due to the noisy training arising from the use of stochastic
gradient descent (SGD) and/or a highly non-convex loss function, ¢; may at times be negative even
for an honest agent ¢. When the number of such cases is limited, training via SGD can still converge
to yield a competitive predictive performance, as empirically validated in [12].

3.3 Efficient Approximation of CGSV

Since evaluating agent i’s CGSV ¢; (2)) exactly incurs O(2" D) time and is thus costly, we propose
an efficient approximation by directly measuring the cosine similarity of its (normalized) parameter
update/gradient u; to the grand coalition A’s aggregated parameter update/gradient u s, which
reduces the incurred time by a factor of 2V and has a bounded error from ¢; (Theorem|1}):

¢i = 1h; = cos(u;, un) - 3)

Theorem 1 (Approximation Error). Let I € RY. Suppose that |u;|| = T and |(u;, up)| > 1/1
foralli € N. Then, ¢; — Litp; < IT? where the multiplicative factor L; can be normalized away.

Its proof is in Appendix[A.2] From Theorem|[I] the approximation error is bounded and decreases
quadratically with normalization coefficient I'. However, I" cannot be reduced to be arbitrarily small,
which may cause |{(u;, upr)| > 1/1 not to hold. It also does not hold when w; is orthogonal to w s or
is close to the zero vector, hence implying the quality of that agent ’s parameter update/gradient is not
high enough. So, every agent is encouraged to contribute a parameter update/gradient of sufficiently
high quality in order to ensure the quality of the approximation ; (Theorem ).

We have performed a simple experiment to compare the quality of our approximation ; with that of
a sampling-based (e, 0)-approximation ¢; [39], the latter of which is widely used by existing works
in data valuation and CML/FL [14, 19, 52,156} 60]]. In this experiment, we have drawn N random
D-dimensional vectors from a standard multivariate normal distribution to simulate wy,...,uy
and calculated the resulting exact CGSVs ¢ := (¢;);=1,..., N, our approximation ¢ := (;);=1,... N,
and the sampling-based (0.1, 0.1)-approximation ¢ := (¢4)i=1,... n. Fig.|l|shows the results for ¢4
error, /5 error, and the incurred time averaged over 10 runs: Our approximation v performs better in
all three metrics with varying D (right figure) and the performance gap widens with an increasing
number N of agents (left figure).
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Figure 2: (Left) ¢, distance between model pa-

Figure 1: Comparison of ¢; error (blue), ¢ er- rameters of agenti =1,...,5 (abbreviated to
ror (orange), and incurred time (green) (i.e., av- Au) vs. that of the server, and (right) correspond-
eraged over 10 runs) between our approximation 1ing training loss for an FL problem with N = 5
1) (solid lines) vs. a sampling-based approxima- agents using local MNIST datasets of 600 im-
tion (;_5 (dashed lines) [39] of the exact CGSVs ages each to collaboratively learn 2-layer CNN
¢ with (left) varying number N of agents and parameters where the datasets of Al (blue), A2
D = 1024, and (right) varying vector dimension D (orange), and A3 (green) have 20%, 40%, and

and N = 10. For all metrics, lower is better. 60% randomly corrupted labels, respectively.
The brown line denotes ¢ distance between w

(initialization) vs. server’s model parameters.

3.4 Server-Side Training-Time Gradient Reward Mechanism

We will now describe the exact details of the gradient aggregation and download steps performed by
the server to implement our proposed fair gradient reward mechanism:



Gradient Aggregation Step. With a specified normalization coefficient I' and an initialized coeffi-
cient r; o, the server performs normalization and aggregation of all agents’ parameter updates into
u ;. using (1), as previously discussed in the FL problem setting (Sec. [3;1'[) Then, the server com-
putes our approximation v; ; (3) of the CGSV ¢; ; @) and updates (and normalizes) the importance
coefficient r; ; in iteration ¢ via a moving average of v; ; given the relative weight o on r; ;1 from
previous iteration ¢ — 1:

Tig = ot 1+ (1 —a) Ve, TigTie)/ D penTin 4
where r; o := 0. Note that r;, (@) is used for deriving the sparsified gradient (B) in the gradient
download step as well as the aggregation of all agents’ parameter updates into s ¢+1 (I in iteration
t 4 1. The use of a moving average of 9; ; to compute 7; ; provides a smoothed estimate without
abrupt fluctuations and reduces the effect of noisy training due to the use of SGD in practice [31.156].
It also allows a flexible weighting over the iterations of the entire training process: In particular,
setting o < 1 can effectively mitigate the noise from random initialization of model parameters wg
because the weight on ¢, 4+ in earlier iteration ¢t < ¢ decays exponentially with ¢ [54].

Gradient Download Step. Recall from the vanilla FL problem setting (Sec. that in each iteration
t, this step involves all agents downloading an identical aggregated parameter update/gradient w s ; (I)
from the server (as reward) for updating their model parameters to the same w; (as the server), which
is expected to converge to yield a competitive predictive performance [}, 132]. However, such equal
rewards to all agents is unfair and will discourage any agent from uploading/contributing a parameter
update/gradient of higher quality [37, 63]] when it can afford to. To ensure fairness, each agent should
download some form of aggregated parameter update/gradient as reward that is commensurate to the
quality/value of its uploaded/contributed parameter update/gradient. Consequently, an agent who
uploads/contributes higher-quality parameter updates/gradients over the entire training process should
eventually be rewarded with converged model parameters whose resulting training loss (and hence
predictive performance) is closer to that of the server (Theorem [2).

To achieve this, we adopt the trick of sparsifyingﬂ the aggregated parameter update/gradient wps
downloaded from the server as reward to agent ¢ 1n each iteration ¢. Specifically, we zero out fewer
of its smallest components (hence higher-quality gradient reward) when the importance coefficient
;.1 @ (i.e., moving average of the approximate CGSV 1, ;) is larger:

v = mask(un 1, i), @i = [Dtanh(8 i) /maxiep tanh(B 7y )| 5)
where mask(u, ¢) retains the largest max(0, ¢) components (in magnitude) of w and zeros out all
of its other components [2} 61]], and 5 > 1 specifies the degree of altruism: Greater altruism
gives any agent with a smaller 7; ; a larger improvement in the quality of its gradient reward, i.e.,
a larger reduction in the sparsity of its downloaded v; ; as reward. In the extreme case of 8 = oo,
we recover the vanilla FL problem setting (Sec. [3.1I) where all agents are rewarded equally with
upn, (i.e., best-quality gradient reward v; ; = up,; forall ¢ € N with no sparsification), albeit with
importance coefficients 7; ; possibly differing across agents ¢ € N and dynamically updated over
iteration ¢ € Z*. Hence, increasing 3 from 1 to oo trades off fairness for equality in gradient rewards
by being more altruistic to any agent with a smaller r; ;; we empirically show the effect of varying
on training loss in Fig.[7)of Sec.[4.2} Note the agent i* := argmax;, ¢ - tanh( ;s ;) with the largest
possible r;- ¢ does not benefit from such altruism since it already downloads the best-quality gradient
reward (i.e., ;) according to (&)}

Suppose that there exists a known threshold r > 0 s.t. r;; > r for all i € Nandt € Z*
and we want to limit the sparsity of any downloaded v; ; or, equivalently, ensure the minimum
quality of any gradient reward: Specifically, given a predefined threshold ¢ € (0, 1], we want to
guarantee ¢;; > |D x ¢] holds for all ¢ € A and ¢t € ZT. By setting 3 s.t. tanh(8 r) > ¢,
it follows from (3) and max; ¢ tanh(5 ;7 ;) < 1 that tanh(S r;¢)/max;en tanh(B ry ) >
tanh(f8 ;1) > tanh(8 r) > c and hence ¢;; > |D X c| ensues. By using the property that
tanh(8 1) = (exp(28 1) —1)/(exp(28 1) + 1), 8 > In((1 + ¢)/(1 — ¢))/(2r) can be derived
and used for setting 3. It further informs us that reducing the sparsity of any downloaded v; ; or,
equivalently, improving the minimum quality of any gradient reward (i.e., by increasing c) requires
greater altruism [ to be introduced, while improving the minimum quality of uploaded/contributed
parameter updates/gradients by any agent over the entire training process (hence larger r) eases the
need of introducing greater altruism (3.

2Sparsifying a parameter update/gradient vector means zeroing out some of its components and leaving the
others unchanged [[7,133].



To see why the sparsifying gradient trick (3) can ensure fairness, we illustrate its effect in an FL
problem with N = 5 agents using local MNIST datasets of 600 images each to collaboratively learn
the parameters of a 2-layer convolutional neural network (CNN) where the datasets of agents 1, 2,
and 3 have 20%, 40%, and 60% randomly corrupted labels, respectively. The uploaded/contributed
parameter updates/gradients thus decrease in quality from agents 1 to 3 (i.e., 11, = 0.194, ¢ ; =
0.088, and 13 + = 0.043 on average) due to increasingly noisy labels in their datasets, while agents
4 and 5 upload/contribute parameter updates/gradients of high quality (i.e., ¥4 ; = 0.331 and
Y5 = 0.342 on average) due to uncorrupted labels in their datasets. Consequently, agents 1 to 3
have increasing sparsity (resp., 34.9%, 67.6%, and 83.0% on average) while agents 4 and 5 have
little/no sparsity (resp., 3.5% and 1.1% on average) in their downloaded v, ; as rewards (3 = 1).
Fig.[2]shows that the converged model parameters of agents 1 to 3 grow in ¢, distance from that of
the server (hence increasing training loss) while agents 4 and 5 have the closest converged model
parameters (hence lowest training loss).

We provide the pseudocodes performed by the server and agent ¢ € A in each iteration ¢ below.
We will discuss in Sec 4.2l how the hyperparameters I in (), o in @), and 8 in (@) are set in our
experiments.

Server (t)

1: forallz € NV do

2 Download Aw; ; from agent ¢

3: > Gradient Aggregation Step

4: Compute u; ¢ and upr, (1) 1: Upload Aw; s = —: VF;(w; 1) to server
5: foralli € N do 2: Download v; ; from server
6.
7
8
9

Agent (i,t)

. Compute ¥; ¢+ (B) and r;,» @) 3: Update wi;; = wi—1 + Vi
: > Gradient Download Step
: for all i € A do

Compute v; + (B) for download by agent

3.5 Fairness Guarantee

We have previously discussed the intuition underlying our notion of fairness in Sec.[3.4]that an agent
who uploads/contributes higher-quality parameter updates/gradients over the entire training process
should eventually be rewarded with converged model parameters whose resulting training loss (and
hence predictive performance) is closer to that of the server. Note that the importance coefficient
r;.1 (@) measures the overall quality of the parameter updates/gradients uploaded/contributed by agent
1 over the entire training process till iteration ¢. Our main result below guarantees a notion of fairness
that under some conditions on loss function F and the server’s model parameters w;, if an agent
7 has a larger importance coefficient 7; ; and model parameters w; ;— closer to that of the server
(i.e., w;—1) than another agent by at least 2||v; ;|| in previous iteration ¢ — 1, then it is rewarded with
model parameters w; ; incurring smaller training loss F(w; ) in iteration ¢:

Theorem 2 (Fairness in Training Loss). Let §;; = ||w, — w;||. Suppose that wy is near to a
stationary point of F for t > t* € Z and some regularity conditions on F hold. For all i,i' € N
and t > t*, if riy > 1y and 0y 41 — 05 4—1 > 2||vi ||, then F(w; ;) < F(wyr ).

Its proof is in Appendix[A.3] Our experiments in Appendix [B.3|will empirically verify the fairness
guarantee in Theorem 2] (and fairness in test accuracy) without needing to impose its conditions.

4 Experiments and Discussion

4.1 Experimental Settings

Datasets. We perform extensive experiments on image classification datasets like MNIST [26] and
CIFAR-10 [21]] and text classification datasets like movie review (MR) [44] and Stanford sentiment
treebank (SST) [20]. We use a 2-layer convolutional neural network (CNN) for MNIST [23]], a
3-layer CNN for CIFAR-10 [22], and a text embedding CNN for MR and SST [20].

Baselines. We consider several existing FL baselines such as FedAvg [40], g-FFL[31]], CFFL [37],
and an extended contribution index (ECI) method from [54] utilizing validation accuracy-based SV



Table 1: Average test accuracy (%) achieved by the agents collaborating via our fair gradient reward
mechanism with varying degrees of altruism [ vs. tested baselines on all datasets. Each value in
brackets denotes the highest test accuracy achieved by any agent.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW CLA UNI POW CLA UNI POW CLA POW POW
Standalone 91 (91) 88(92) 53(92) | 91(91) 89(92) 48(90) | 46(47) 43(49) 31(44) | 47(56) | 31(34)
FedAvg 93(94)  92(94) 53(93) | 93(93) 92(94) 49(92) | 48(48) 47(50) 32(47) | 51(63) | 33(35)
g-FFL 85(91) 27(45) 44(64) | 88(91) 48(53) 40(59) | 41(46) 36(36) 22(28) | 12(18) | 23(25)
CFFL 90(92) 85(90) 34(44) | 91(93) 88(91) 39(46) | 39(4l) 35(45) 22(40) | 44(53) | 31(32)
ECI 94(94)  92(94) 53(94) | 94(94) 92(94) 49(92) | 49(49) 47(51) 31(46) | 56(61) | 33(34)
DW 93(94) 92(94) 53(93) | 93(93) 92(94) 49(92) | 48(48) 47(50) 32(47) | 51(62) | 33(35)
RR 94(95) 95(95) 64(72) | 94(95) 9495 50(56) | 47(59) 49(51) 26(29) | 63(65) | 36(36)
Ours (EU) 94(94)  94(94) 54(94) | 9494 9494 49(92) | 49(49) 49(51) 32(46) | 54(59) | 34(36)
Ours (B = 1) 96 (97) 94(95) 7495 | 95(96) 96(97) 65(93) | 61(62) 60(62) 35(54) | 62(76) | 35(36)
Ours (B =1.2) | 9495 95(95) 75(95) | 96(96) 96(97) 65(93) | 61(62) 60(62) 35(54) | 62(75) | 3437
Ours (B =1.5) | 97(97) 95(95) 75(95) | 96(97) 94(95) 65(93) | 61(62) 59(62) 35(54) | 62(74) | 3537)
Ours (8 = 2) 96(96) 95(96) 73(94) | 97(97) 95(96) 66 (95) | 62(62) 61(62) 36(54) | 62(75) | 35(37)

and setting ¢; ; for i € N in (§) to be proportional to the agents’ CIs. CFFL also utilizes the validation
accuracy but is more efficient by using a leave-one-out approach instead of SV, while ¢-FFL aims at
achieving egalitarian fairness by equalizing the local training losses of the agents. Furthermore, we
implement simple FL baselines based on round robin (RR), dataset weighted download (DW), and
Euclidean distance (EU). RR is commonly adopted in mechanism design to ensure fairness [6, 34]]
and also used in FL to schedule gradient downloads [511 [67]. For DW (EU), ¢; + for i € N in ()
are set to be proportional to the agents’ local dataset sizes (negative Euclidean distance of their
unnormalized parameter updates from that of the server). We also include standalone agents as a
baseline, i.e., each agent trains its CNN using only its local dataset without involving FL.

Performance Metrics. To measure fairness, we consider the scaled Pearson correlation coefficienf]
p = 100 x pearsonr(¢p, &) € [—100, 100] between the test accuracies ¢ achieved by the agents when
standalone [37] vs. that £ achieved by them when collaborating via a gradient reward mechanism in
FL after the entire training process has ended at iteration ¢ = 7T'. The corresponding experimental
results will be reported in Sec.[4.2] To empirically verify the fairness guarantee in Theorem 2] we
have also reported in Appendix [B.3|results on the fairness metric p between the importance coeffi-
cients ¢ = (r;7)i=1,... ~n @ (i.e., measuring overall qualities of the parameter updates/gradients
uploaded/contributed by the agents) vs. test accuracies (or negative training losses) £ achieved by
them. We consider other performance metrics like predictive performance (i.e., average and highest
test accuracies achieved by the agents) and time overhead of the tested gradient reward mechanisms.

Data Partitions among Agents. We carefully construct two heterogeneous data partitions by varying
the agents’ local dataset sizes and corresponding numbers of distinct classes. For imbalanced dataset
sizes (POW), we follow a power law to partition the entire dataset among the agents. For MNIST,
we partition the entire dataset of size {3000, 6000, 12000}, respectively, among {5, 10,20} agents
s.t. each agent has a randomly sampled local dataset of size 600 on average [40]. The size of the local
dataset increases from the first to the last agent. Since the local dataset sizes vary significantly (i.e.,
superlinearly) among the agents, the agents with larger local datasets are expected to achieve better
predictive performance. For imbalanced class numbers (CLA), we vary the number of distinct
classes in the local datasets of the agents, while keeping their sizes fixed at 600. For this setting, we
only consider MNIST and CIFAR-10 datasets and partition classes in a “linspace” manner as both
contain 10 classes. To illustrate, for MNIST with 5 agents, agents 1, 2, 3,4, 5 own local datasets with
1,3,5,7,10 classes, respectively; so, agent 1 (5) has a local dataset with 1 (10) class(es). Similarly,
the agents with local datasets containing more classes are expected to achieve better predictive
performance. We also include the simplest setting of the uniform/homogeneous data partition (UNI)
where the agents are expected to achieve comparable predictive performance.

Additional details of the experimental settings are described in Appendix
4.2 Experimental Results

Predictive Performance. Table|l|shows results of the average and highest test accuracies achieved
by the agents collaborating via our fair gradient reward mechanism vs. tested baselines on all

3The Pearson correlation coefficient has been applied to a similar use case in [19].



Table 2: Fairness metric p € [—100, 100] achieved by our fair gradient reward mechanism with
varying degrees of altruism /3 vs. tested baselines on all datasets. Higher value means greater fairness.

MNIST CIFAR-10 MR SST
No. Agents 10 20 10 5 5
Data Partition UNI POW  CLA UNI POW CLA UNI POW  CLA POW POW
FedAvg -45.60 5524 24.12 0.85 -32.58  40.83 18.47 97.48  98.75 48.68 57.50
q-FFL -4473  39.00 22.38 -22.01 3871 48.07 | -17.64 51.33  94.06 56.43 -75.92
CFFL 83.57 91.80 81.24 82.52 94.70 85.71 78.25 7255  81.31 96.85 93.34
ECI 85.26 99.83  99.98 80.95 99.41 95.21 75.85 79.50  99.55 97.69 95.00
DW 89.15 98.93  65.34 86.94 99.63 35.21 -23.14 9197 4545 99.20 97.12
RR 83.77 71.17  -26.75 | -18.64  25.47 95.86 | 30.67 0.70 90.67 44.16 -25.11
Ours (EU) 84.25 98.25  99.82 80.55 97.77 99.97 | 78.25 9424 9495 97.58 93.21
Ours (8 = 1) 94.03 95.74  94.54 84.47 96.39 97.23 | 98.80 98.78  99.89 96.01 98.20
Ours (8 = 1.2) | 94.75 97.28  96.23 90.52 97.72 95.21 91.07 91.59  99.82 96.12 98.47
Ours (8 = 1.5) | 96.34 86.99  95.37 82.68 90.94 98.75 | 93.55 93.78  95.89 95.32 97.88
Ours (8 = 2) 94.66 91.20  95.38 96.90 91.33 94.32 | 89.80 88.78  93.39 92.22 95.74

datasets. Our fair gradient reward mechanism generally outperforms the tested baselines on both
metrics, especially for heterogeneous data partitions and on the MR dataset. On MNIST, for the
CLA data partition among 10 agents, our fair gradient reward mechanism achieves average (highest)
test accuracy of 75% (95%) at 3 = 1.5, while the best-performing ECI baseline achieves only
that of 53% (94%). On CIFAR-10, for the CLA data partition among 10 agents, our fair gradient
reward mechanism achieves average (highest) test accuracy of 36% (54%) at 8 = 2, while the
best-performing DW baseline achieves only that of 32% (47%). On the MR dataset, our fair gradient
reward mechanism achieves average (highest) test accuracy of 62% (76%) at 8 = 1, while the
best-performing RR baseline achieves that of 63% (65%). Its better performance may be attributed
to the adaptive re-weighting in the gradient aggregation step (I) via r; ;, which can dynamically
account for the heterogeneity in the agents’ local datasets [32]]. While EU performs comparably to
both FedAvg and ECI (i.e., difference in average test accuracies between EU vs. FedAvg/ECI is less
than 3%), it does not perform better than our fair gradient reward mechanism (e.g., on MNIST, for the
CLA data partition among 10 agents, the difference in average test accuracies between EU vs. our fair
gradient reward mechanism at 5 = 1.5 is more than 20%) because unlike cosine similarity, Euclidean
distance fails to capture the directional difference between gradients, which is important since the
negative gradients are pointing in the direction of lower loss. Importantly, g-FFL aims to equalize the
local training losses w.r.t. the agent’s local datasets, which may be suboptimal for heterogeneous data
partitions like POW and CLA. We provide further results in Appendix [B.5]empirically comparing the
predictive performances of our fair gradient reward mechanism vs. ¢-FFL.

Fairness. To empirically verify the fairness guarantee in Theorem 2] Table 2] shows results on the
fairness metric p achieved by our fair gradient reward mechanism vs. tested baselines on all datasets.
From Table 2} our fair gradient reward mechanism achieves a high degree of fairness of above 80,
while the commonly used FedAvg performs suboptimally s.t. it produces the lowest degree of fairness
of —45.6. On MNIST, for the POW data partition among 10/20 agents and the CLA data partition
among 10 agents, ECI outperforms our fair gradient reward mechanism, albeit at a much higher
time overhead of over 100 times and with additional information from an auxiliary dataset. CFFL
underperforms our fair gradient reward mechanism and ECI as it adopts the leave-one-out approach
which seems less accurate than SV in valuing the contributions of the agents [[19]]. Both ¢-FFL and
RR promote egalitarian fairness instead of our notion of fairness via SV and hence do not perform
optimally. DW achieves high degrees of fairness only for the POW data partition because it uses
the agents’ local dataset sizes to determine their gradient rewards. Fig. |3|illustrates an intuitive
trend of the predictive performances achieved by 10 agents collaborating via our fair gradient reward
mechanism for homogeneous and heterogeneous data partitions among the agents on MNIST and
CIFAR-10: For the UNI data partition, all agents achieve comparable predictive performance. Their
predictive performances vary more (most) for the POW (CLA) data partition, hence demonstrating
that our fair gradient reward mechanism can distinguish the contributions of the agents and reward
them with sparsified gradients fairly.

We have performed an additional experiment to understand our fair gradient reward mechanism for
homogeneous and heterogeneous data partitions among 3 agents on MNIST and CIFAR-10 where
for POW and CLA, agent 1 (3) uploads/contributes parameter updates/gradients of lowest (highest)
quality over the entire training process. Fig. [f]shows how r; ; for agent i = 1,3 varies over iterations
t: Interestingly, for the CLA data partition, though agent 3 (brown solid line) is initially mistaken to
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provide a low contribution, the dynamic update of r3 ; (@) allows its true contribution to be recognized
quickly. Fig. |§| (Fig. |§[) shows how the /5 distance between the downloaded sparsified gradient v; ; ()
of agent 7 = 1, 3 and aggregated parameter update/gradient w s+ (T) (last layer’s model parameters of
agent ¢ = 1, 3 and that of the server) varies over iterations ¢: In particular, for the CLA data partition,
agent ¢ = 1 (¢ = 3) who uploads/contributes parameter updates/gradients of lowest (highest) quality
over the entire training process downloads v; ; as reward that is further from (closer to) w s ¢, hence
training last layer’s model parameters to be further from (closer to) that of the server. Such results
further validate that in Fig. [2] previously.

Lastly, Fig. [7]confirms that for the CLA data partition among 10 agents on MNIST, increasing the
degree of altruism 3 leads to all agents downloading higher-quality gradient rewards v; ; (3) and
thus incurring smaller training loss. In particular, agent 1 (abbreviated to A1l and represented by a
blue solid line) who uploads/contributes parameter updates/gradients of lowest quality over the entire
training process benefits most as /3 increases, as explained previously in Sec.[3.4] Additional results
w.r.t. test loss are reported in Appendix [B-4]

Time Overhead. Table [3|compares the time overhead (seconds) of our fair gradient reward mecha-
nism vs. tested baselines on all datasets; the ratio between the time overhead vs. training time is given
in brackets. Our fair gradient reward mechanism is much more efficient than ECI and CFFL which
also consistently achieve fairness. In particular, our fair gradient reward mechanism incurs a small
time overhead of at most 0.4 x of the training time, while ECI incurs a significant time overhead of
up to 140x of the training time due to the calculation of the CI incurring O(2%) time, even with the
permutation sampling-based approximation [39} 56] for 10/20 agents. CFFL incurs at most 2x of the
training time (i.e., 5-6 times longer than ours) from the additional validation in each iteration.
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Table 3: Time overhead (seconds) of our fair gradient reward mechanism vs. tested baselines on all

datasets. Each value in brackets denotes the ratio between the time overhead vs. training time.

MNIST CIFAR-10 MR SST

No. Agents 5 10 20 5 10 5 5
FedAvg 1.17 (7e-3) 1.05 (le-2) 4.29 (1e-2) 1.66 (7e-3) 7.41 (le-2) 1.3 (le-4) 1.31 (6e-4)
q-FFL 6.14 (4e-2) 4.97 (5e-2) 91.20 (0.3) 97.28 (0.4) 58.94 (7e-2) 90.01 (8e-3) 82.85 (4e-2)
CFFL 32.15(0.2) 21.79 (0.3) 500.03 (1.6) 570.12 (2.0) 302.44 (0.4) 479.12 (0.2) 487.71 (2e-1)
ECI 2377.33 (16) | 11937.80 (141) | 23749.06 (74) | 3571.75(15) | 58835.83(84) | 422.85 (4e-2) 801.20 (0.4)
DW 0.89 (6e-3) 0.79 (9e-3) 1.60 (5e-3) 1.21 (5e-3) 5.29 (7e-3) 0.99 (1e-5) 0.98 (5e-4)
RR 0.89 (6e-3) 0.82 (9¢-3) 1.60 (5e-3) 3.31 (le-2) 5.41 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (EU) 0.89 (6e-3) 0.81 (9¢-3) 1.61 (5e-3) 1.22 (5e-3) 5.33 (7e-3) 1.01 (5e-4) 0.99 (5e-4)
Ours (Cosine) 6.34 (4e-2) 4.94 (5e-2) 94.30 (0.3) 98.39 (0.4) 54.94 (7e-2) 89.81 (8e-3) 82.87 (4e-2)

Hyperparameters. We find that o € [0.8,1)(i.e., relative weight on r; ;1 in @), 8 € [1,2] (i.e.,
degree of altruism in (3)) and I € [0.1,1] (i.e., normalization coefficient in (I)) are effective in
achieving competitive predictive performance and fairness. In our experiments, we set o = 0.95,
8 =11,1.2,1.5,2],and T" = 0.5 for MNIST, I" = 0.15 for CIFAR-10, and I" = 1 for SST and MR.

5 Conclusion and Future Work

In this paper, we have described a novel cosine gradient Shapley value (CGSV) (Sec.[3:2) to fairly
evaluate the expected marginal contribution of each agent’s uploaded model parameter update/gradient
in FL without needing an auxiliary validation dataset and present an efficient approximation of CGSV
with a bounded error (Sec.[3.3). Based on the approximate CGSV, we have designed a novel training-
time fair gradient reward mechanism (Sec. [3.4) by exploiting the trick of sparsifying the aggregated
parameter update/gradient downloaded from the server as reward to each agent such that its resulting
quality is commensurate to that of the agent’s uploaded/contributed parameter update/gradient. Conse-
quently, an agent who uploads/contributes higher-quality parameter updates/gradients over the entire
training process should eventually be rewarded with converged model parameters whose resulting
training loss (and hence predictive performance) is closer to that of the server, as demonstrated in our
fairness guarantee (Sec. [3.3). We have empirically demonstrated the effectiveness of our fair gradient
reward mechanism on multiple benchmark datasets in terms of fairness, predictive performance, and
time overhead (Sec. ). In particular, our fair gradient reward mechanism is much more efficient than
several existing FL baselines since it requires only slight calculations by the server.

Our proposed fair gradient reward mechanism also provides practitioners the flexibility to trade off
between fairness and equality in gradient rewards via a hyperparameter 3 controlling the degree of
altruism (Sec. @ For future work, it would be interesting to consider the notion of fairness when
there are some adversaries. We would also consider generalizing our work and fairness guarantee to
other types of CML (e.g., model fusion [16} 17} 24]) and collaborative Bayesian optimization [53].
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