
A Proofs

Proof of Theorem 2: Let x∗ ∈ argmaxx∈[0,1] f(x). Because K = ⌊T 1/4⌋, we can find k∗ such that
|x∗ − k/K| ≤ 1/(2⌊T 1/4⌋). Therefore, we have

Rπ(T ) = Tf(x∗)−
T∑

t=1

E[f(Xt)]

= Tf(x∗)− Tf(k∗/K) + (Tf(k∗/K)−
T∑

t=1

E[f(Xt)])

≤ Tc|x∗ − k/K|+ (Tf(k∗/K)−
T∑

t=1

E[f(Xt)])

=
cT

2K
+ (Tf(k∗/K)−

T∑
t=1

E[f(Xt)]). (1)

Here the first inequality is due to Assumption 1. Next we can focus on Tf(k∗/K)−
∑T

t=1 E[f(Xt)]),
the regret relative to the best arm in {0, 1/K, . . . , (K − 1)/K, 1}.
Consider m IID random rewards Z ′

k,1, . . . , Z ′
k,m having the same distribution as Zt when Xt = k/K,

for k = 0, . . . ,K. Let Z̄ ′
k = 1

m

∑m
t=1 Z

′
k,m. Consider the event E as

E :=

{
Z̄ ′
k − σ

√
2 logm

m
≤ f(k/K) ≤ Z̄ ′

k + σ

√
2 logm

m
, ∀k ∈ {0, . . . ,K}

}
.

If we couple Z ′
k,i, i = 1, . . . ,m, with the rewards generated in the algorithm pulling arm k/K, then

the event represents the high-probability event that the f(k/K) is inside the confidence interval
[LBk, UBk]. Using the standard concentration bounds for subgaussian random variables (note that
Z̄ ′
k is σ/

√
m-suggaussian), we have

P(Ec) ≤ ∪Kk=0P

(
|Z̄ ′

k − E[Z̄ ′
k]| > σ

√
2 logm

m

)

≤ (K + 1)2 exp

{
− m

2σ2
× 2σ2 logm

m

}
=

2(K + 1)

m
. (2)

Based on the event E, we can decompose the regret as

Tf(k∗/K)−
T∑

t=1

E[f(Xt)] =

T∑
t=1

E [(f(k∗/K)− f(Xt))1E ] +

T∑
t=1

E [(f(k∗/K)− f(Xt))1Ec ]

≤
T∑

t=1

E [(f(k∗/K)− f(Xt))1E ] + TP(Ec)

≤
T∑

t=1

E [(f(k∗/K)− f(Xt))1E ] +
2T (K + 1)

m
, (3)

where the first inequality follows from f(k∗/K) ≤ 1 and the second inequality follows from (2).

Next we analyze the first term of (3). Suppose T1 is the stopping time when the stopping criterion
S → 1 is triggered in Algorithm 1. We can divide the horizon into two phases [0, T1] and [T1 + 1, T ].
Before the stopping criterion, the first term of (3) is bounded by

E

[
T1∑
t=1

E [(f(k∗/K)− f(Xt))1E ]

]
≤ (K + 1)mf(k∗/K) ≤ (K + 1)m (4)

To analyze the second phase, since we can couple the random variables Z ′
k,m and the rewards of arm

k/K, we can suppose that LBk ≤ f(k/K) ≤ UBk on event E for all k during Algorithm 1. Note
that when the stopping criterion S ← 1 is triggered for some arm k/K in Algorithm 1, we must have

f(k/K) ≤ UBk < LBi ≤ f(i/K) (5)
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for some i < k. Note that (5), combined with Assumption 3, implies that x∗ ≤ k/K. Otherwise we
have f(x∗) ≥ f(i/K) > f(k/K) while i/K < k/K < x∗, which contradicts Assumption 3. This
fact then implies that k∗ ≤ k and furthermore k∗ ≤ k − 1 because f(k/K) ≤ f(i/K).

Because the stopping criterion is triggered for the first time, it implies that

f((k − 1)/K) ≥ LBk−1 = UBk−1 − 2σ

√
2 logm

m
≥ LBi − 2σ

√
2 logm

m

≥ UBi − 4σ

√
2 logm

m
≥ f(i/K)− 4σ

√
2 logm

m
. (6)

Here the first inequality is due to event E. The first equality is due to the definition of UB and LB.
The second inequality is due to the fact that the stopping criterion is not triggered for arm k′/K. The
last inequality is again due to event E. Moreover, because arm i/K is historically the best among
{0, 1/K, . . . , (k − 1)/K}, we have

f(i/K) ≥ LBi ≥ LBk′ = UBk′ − 2σ

√
2 logm

m
≥ f(k′/K)− 2σ

√
2 logm

m
(7)

for all 0 ≤ k′ ≤ k − 1. Now (6) and (7), combined with k∗ ≤ k − 1, imply that

f

(
k − 1

K

)
≥ f(i/K)− 4σ

√
2 logm

m
≥ f(k∗/K)− 6σ

√
2 logm

m
.

By Assumption 1, we then have

f(k/K) ≥ f

(
k − 1

K

)
− c

K
≥ f(k∗/K)− c

K
− 6σ

√
2 logm

m
.

Plugging the last inequality back into the first term of (3) in the second phase, we have

E

[
T∑

t=T1+1

E [(f(k∗/K)− f(Xt))1E ]

]
≤ T (f(k∗/K)− f(k/K)) ≤ cT

K
+ 6σ

√
2 logm

m
T. (8)

Combining (1), (3), (4) and (8), we have

Rπ(T ) ≤
cT

2K
+

2(K + 1)T

m
+ (K + 1)m+

cT

K
+ 6σ

√
2 logm

m
T

≤ 3cT 3/4 + 4T 3/4 +
3

2
T 3/4 + 4

√
3σ
√
log TT 3/4

≤
(
3c+

11

2
+ 4
√
3σ
√

log T

)
T 3/4,

where we have plugged in K = ⌊T 1/4⌋ and m = ⌊T 1/2⌋, and moreover,

K ≤ T 1/4 ≤ 2K, K + 1 ≤ 3

2
T 1/4,

3

4
T 1/2 ≤ T 1/2 − 1 ≤ m ≤ T 1/2,

because T ≥ 16. This completes the proof.

Proof of Theorem 3: Let K = ⌊T 1/4⌋ and construct a family of functions fk(x) as follows. For
k ∈ [K], let

fk(x) =

{
x x ∈ [0, (k − 1/2)/K)

max{(2k − 1)/K − x, 0} x ∈ [(k − 1/2)/K, 1]

As a result, we can see that maxx∈[0,1] fk(x) = (k − 1/2)/K is attained at x = (k − 1/2)/K.
Clearly, all the functions satisfy Assumption 1 with c = 1 and Assumption 3. For each fk(x), we
construct the associated reward sequence by Zt ∼ N (fk(Xt), 1), which is a normal random variable
with mean fk(Xt) and standard deviation 1. It clearly satisfies Assumption 2.
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Consider a particular policy π. Let
Rk := Rfk,π(T )

be the regret incurred when the objective function is fk(x) for k ∈ [K]. Because of the construction,
it is easy to see that for the objective function fk(x), if Xt /∈ [(k− 1)/K, k/K], then a regret no less
than 1/(2K) is incurred in period t. Therefore, we have

Rk ≥
1

2K

T∑
t=1

Ek[1Xt /∈[(k−1)/K,k/K]]. (9)

Here we use Ek to denote the expectation taken when the objective function is fk(x). On the other
hand, if we focus on RK , then it is easy to see that

RK ≥
(
1

2
− 1

2K

) T∑
t=1

EK [1Xt≤⌊K/2⌋/K ], (10)

because a regret no less than 1/2− 1/2K is incurred in the periods when Xt ≤ 1/2.

Based on the regret decomposition in (9) and (10), we introduce Tk,i for k, i ∈ [K] as

Tk,i =

T∑
t=1

Ek[1Xt∈[(i−1)/K,i/K)].

In other words, Tk,i is the number of periods in which the policy chooses x from the interval
[(i− 1)/K, i/K) when the reward sequence is generated by the objective function fk(x).2 A key
observation due to Requirement 1 is that

Ti+1,i = Ti+2,i = · · · = TK,i. (11)

This is because for k > i, the function fk(x) is identical for x ≤ i/K. Before reaching some t
such that Xt > i/K, the policy must have spent the same number of periods on average in the
interval [(i− 1)/K, i/K) no matter the objective function is fi+1(x), . . . , fK−1(x), or fK(x). But
because of Requirement 1, once Xt > i/K for some t, the policy never pulls an arm in the interval
[(i− 1)/K, i/K) afterwards. Therefore, (11) holds. This allows us to simplify the notation by letting
Ti := Tk,i for k > i. In particular, by (10), we have

RK ≥
K − 1

2K

⌊K/2⌋∑
i=1

TK,i =
K − 1

2K

⌊K/2⌋∑
i=1

Ti. (12)

Next we are going to show the relationship between Tk,i (or equivalently Ti) and Ti,i for k > i. We
introduce a random variable τi

τi := max {t|Xt < i/K} .
Because of Requirement 1, we have {τi ≤ t} ∈ σ(X1, Z1, X2, Z2, . . . , Xt, Zt, Ut).3 Therefore, τi
is a stopping time. We consider the two probability measures, induced by the objective functions
fi(x) and fk(x) respectively, on (X1, Z1, . . . , Xτi , Zτi , τi). Denote the two measures by µi,i and
µk,i respectively. Therefore, we have

Ti,i − Tk,i =

(
Eµi,i

[
τi∑
t=1

1Xt∈[(i−1)/K,i/K)

]
− Eµk,i

[
τi∑
t=1

1Xt∈[(i−1)/K,i/K)

])
≤ T sup

A
(µi,i(A)− µk,i(A)) (13)

≤ T

√
1

2
D(µi,i ∥ µk,i). (14)

2We let Tk,K =
∑T

t=1 Ek[1Xt∈[1−1/K,1]] include the right end. This is a minor technical point that doesn’t
affect the steps of the proof.

3Recall that Ut is an internal randomizer. Since we can always couple the values of Ut under the two
measures, we omit the dependence hereafter.
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Here (13) follows the definition of the total variation distance and the fact that∑τi
t=1 1Xt∈[(i−1)/K,i/K) ≤ T . The second inequality (14) follows from Pinsker’s inequality (see

[40] for an introduction) and D(P ∥ Q) denotes the Kullback-Leibler divergence defined as

D(P ∥ Q) =

∫
log(

dP

dQ
)dP.

We can further bound the KL-divergence in (14) by:

D(µi,i ∥ µk,i) =

T∑
t=1

∫
τi=t

log

(
µi,i(x1, z1, . . . , xt, zt)

µk,i(x1, z1, . . . , xt, zt)

)
dµi,i

=

T∑
t=1

∫
τi=t

t∑
s=1

log

(
µi,i(zs|xs)

µk,i(zs|xs)

)
dµi,i

=

T∑
t=1

∫
τi=t

∫
z1,...,zt

t∑
s=1

log

(
µi,i(zs|xs)

µk,i(zs|xs)

)
dµi,i(z1, . . . , zs|x1, . . . , xt)dµi,i(x1, . . . , xt)

=

T∑
t=1

∫
τi=t

∫
z1,...,zt

t∑
s=1

D(N (fi(xs), 1) ∥ N (fk(xs), 1))dµi,i(x1, . . . , xt)

=

T∑
t=1

∫
τi=t

t∑
s=1

1

2
(fi(xs)− fk(xs))

2dµi,i(x1, . . . , xt)

In the first line we use the fact that the normal reward has support R. Hence if the sample path
(x1, z1, . . . , xt, zt) has positve density under µi,i then it has positive density under µk,i. As a result,
we establish the absolute continuity of µi,i w.r.t. µk,i and the existence of the adon-Nikodym
derivative. The second equality follows from the fact that for the same policy π, we have

µi,i(xs|x1, z1, . . . , xs−1, zs−1) = µk,i(xs|x1, z1, . . . , xs−1, zs−1).

The fourth equality uses the conditional independence of z given x. Note that on the event τi = t, we
have xs < i/K for s ≤ t. Therefore, we have

|fi(xs)− fk(xs)| ≤
{

1
K xs ∈ [(i− 1)/K, i/K)

0 xs < (i− 1)/K
,

by the construction of fi(x) and fk(x). As a result,

D(µi,i ∥ µk,i) ≤
T∑

t=1

∫
τi=t

Tk,i

2K2
dµi,i(x1, . . . , xt) ≤

T 2
k,i

2K2
.

Plugging it into (14), we have Therefore, (14) implies

Ti,i ≤ Tk,i +
T

2K

√
Tk,i = Ti +

T

2K

√
Ti. (15)

Combining (15) and (9), we can provide a lower bound for the regret Ri for i = 1, . . . , ⌊K/2⌋/K:

Ri ≥
1

2K
(T − Ti,i) ≥

1

2K

(
T − Ti −

T

2K

√
Ti

)
. (16)

Next, based on (12) and (16), we show that for k ∈ {1, . . . , ⌊K/2⌋/K,K}, there exists at least one
k such that

Rk ≥
1

32
T 3/4.

If the claim doesn’t hold, then we have RK ≥ T 3/4/32. By (12) and the pigeonhole principle, there
exists at least one i such that

Ti ≤
2K

32(K − 1)⌊K/2⌋
T 3/4.
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Because T ≥ 16 and K ≥ 2, we have K/(K − 1) ≤ 2 and ⌊K/2⌋ ≥ T 1/4/4. Therefore,

Ti ≤
1

2
T 1/2.

Now by (16), for this particular i, we have

Ri ≥
1

2K

(
T − 1

2
T 1/2 − T

2K

√
T 1/2/2

)
≥ 2T−1/4

(
T − 1

2
T 1/2 −

√
2

2
T

)
(17)

≥
(
7

4
−
√
2

)
T 3/4 ≥ 1

32
T 3/4, (18)

resulting in a contradiction. Here (17) follows from the fact that 2K ≥ T 1/4 ≥ K when T ≥ 16;
(18) follows from T 1/2 ≥ 4. Therefore, we have proved that for at least one k, Rk ≥ T 3/4/32. This
completes the proof.
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