A Proofs

Proof of Theorem 2. Let $x^{*} \in \arg \max _{x \in[0,1]} f(x)$. Because $K=\left\lfloor T^{1 / 4}\right\rfloor$, we can find k^{*} such that $\left|x^{*}-k / K\right| \leq 1 /\left(2\left\lfloor T^{1 / 4}\right\rfloor\right)$. Therefore, we have

$$
\begin{align*}
R_{\pi}(T) & =T f\left(x^{*}\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right] \\
& =T f\left(x^{*}\right)-T f\left(k^{*} / K\right)+\left(T f\left(k^{*} / K\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right]\right) \\
& \leq T c\left|x^{*}-k / K\right|+\left(T f\left(k^{*} / K\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right]\right) \\
& =\frac{c T}{2 K}+\left(T f\left(k^{*} / K\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right]\right) \tag{1}
\end{align*}
$$

Here the first inequality is due to Assumption 1 . Next we can focus on $\left.T f\left(k^{*} / K\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right]\right)$, the regret relative to the best arm in $\{0,1 / K, \ldots,(K-1) / K, 1\}$.

Consider m IID random rewards $Z_{k, 1}^{\prime}, \ldots, Z_{k, m}^{\prime}$ having the same distribution as Z_{t} when $X_{t}=k / K$, for $k=0, \ldots, K$. Let $\bar{Z}_{k}^{\prime}=\frac{1}{m} \sum_{t=1}^{m} Z_{k, m}^{\prime}$. Consider the event E as

$$
E:=\left\{\bar{Z}_{k}^{\prime}-\sigma \sqrt{\frac{2 \log m}{m}} \leq f(k / K) \leq \bar{Z}_{k}^{\prime}+\sigma \sqrt{\frac{2 \log m}{m}}, \forall k \in\{0, \ldots, K\}\right\}
$$

If we couple $Z_{k, i}^{\prime}, i=1, \ldots, m$, with the rewards generated in the algorithm pulling arm k / K, then the event represents the high-probability event that the $f(k / K)$ is inside the confidence interval [$\left.L B_{k}, U B_{k}\right]$. Using the standard concentration bounds for subgaussian random variables (note that Z_{k}^{\prime} is σ / \sqrt{m}-suggaussian), we have

$$
\begin{align*}
\mathrm{P}\left(E^{c}\right) & \leq \cup_{k=0}^{K} \mathrm{P}\left(\left|\bar{Z}_{k}^{\prime}-\mathrm{E}\left[\bar{Z}_{k}^{\prime}\right]\right|>\sigma \sqrt{\frac{2 \log m}{m}}\right) \\
& \leq(K+1) 2 \exp \left\{-\frac{m}{2 \sigma^{2}} \times \frac{2 \sigma^{2} \log m}{m}\right\}=\frac{2(K+1)}{m} . \tag{2}
\end{align*}
$$

Based on the event E, we can decompose the regret as

$$
\begin{align*}
T f\left(k^{*} / K\right)-\sum_{t=1}^{T} \mathrm{E}\left[f\left(X_{t}\right)\right] & =\sum_{t=1}^{T} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E}\right]+\sum_{t=1}^{T} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E^{c}}\right] \\
& \leq \sum_{t=1}^{T} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E}\right]+T \mathrm{P}\left(E^{c}\right) \\
& \leq \sum_{t=1}^{T} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E}\right]+\frac{2 T(K+1)}{m} \tag{3}
\end{align*}
$$

where the first inequality follows from $f\left(k^{*} / K\right) \leq 1$ and the second inequality follows from (2).
Next we analyze the first term of (3). Suppose T_{1} is the stopping time when the stopping criterion $S \rightarrow 1$ is triggered in Algorithm 1 . We can divide the horizon into two phases $\left[0, T_{1}\right]$ and $\left[T_{1}+1, T\right]$. Before the stopping criterion, the first term of (3) is bounded by

$$
\begin{equation*}
\mathrm{E}\left[\sum_{t=1}^{T_{1}} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E}\right]\right] \leq(K+1) m f\left(k^{*} / K\right) \leq(K+1) m \tag{4}
\end{equation*}
$$

To analyze the second phase, since we can couple the random variables $Z_{k, m}^{\prime}$ and the rewards of arm k / K, we can suppose that $L B_{k} \leq f(k / K) \leq U B_{k}$ on event E for all k during Algorithm 1 . Note that when the stopping criterion $S \leftarrow 1$ is triggered for some arm k / K in Algorithm 1. we must have

$$
\begin{equation*}
f(k / K) \leq U B_{k}<L B_{i} \leq f(i / K) \tag{5}
\end{equation*}
$$

for some $i<k$. Note that (5), combined with Assumption3. implies that $x^{*} \leq k / K$. Otherwise we have $f\left(x^{*}\right) \geq f(i / K)>f(k / K)$ while $i / K<k / K<x^{*}$, which contradicts Assumption 3 This fact then implies that $k^{*} \leq k$ and furthermore $k^{*} \leq k-1$ because $f(k / K) \leq f(i / K)$.

Because the stopping criterion is triggered for the first time, it implies that

$$
\begin{align*}
f((k-1) / K) & \geq L B_{k-1}=U B_{k-1}-2 \sigma \sqrt{\frac{2 \log m}{m}} \geq L B_{i}-2 \sigma \sqrt{\frac{2 \log m}{m}} \\
& \geq U B_{i}-4 \sigma \sqrt{\frac{2 \log m}{m}} \geq f(i / K)-4 \sigma \sqrt{\frac{2 \log m}{m}} \tag{6}
\end{align*}
$$

Here the first inequality is due to event E. The first equality is due to the definition of $U B$ and $L B$. The second inequality is due to the fact that the stopping criterion is not triggered for arm k^{\prime} / K. The last inequality is again due to event E. Moreover, because arm i / K is historically the best among $\{0,1 / K, \ldots,(k-1) / K\}$, we have

$$
\begin{equation*}
f(i / K) \geq L B_{i} \geq L B_{k^{\prime}}=U B_{k^{\prime}}-2 \sigma \sqrt{\frac{2 \log m}{m}} \geq f\left(k^{\prime} / K\right)-2 \sigma \sqrt{\frac{2 \log m}{m}} \tag{7}
\end{equation*}
$$

for all $0 \leq k^{\prime} \leq k-1$. Now (6) and (7), combined with $k^{*} \leq k-1$, imply that

$$
f\left(\frac{k-1}{K}\right) \geq f(i / K)-4 \sigma \sqrt{\frac{2 \log m}{m}} \geq f\left(k^{*} / K\right)-6 \sigma \sqrt{\frac{2 \log m}{m}}
$$

By Assumption 1, we then have

$$
f(k / K) \geq f\left(\frac{k-1}{K}\right)-\frac{c}{K} \geq f\left(k^{*} / K\right)-\frac{c}{K}-6 \sigma \sqrt{\frac{2 \log m}{m}} .
$$

Plugging the last inequality back into the first term of (3) in the second phase, we have

$$
\begin{equation*}
\mathrm{E}\left[\sum_{t=T_{1}+1}^{T} \mathrm{E}\left[\left(f\left(k^{*} / K\right)-f\left(X_{t}\right)\right) \mathbb{1}_{E}\right]\right] \leq T\left(f\left(k^{*} / K\right)-f(k / K)\right) \leq \frac{c T}{K}+6 \sigma \sqrt{\frac{2 \log m}{m}} T . \tag{8}
\end{equation*}
$$

Combining (1), (3), (4) and (8), we have

$$
\begin{aligned}
R_{\pi}(T) & \leq \frac{c T}{2 K}+\frac{2(K+1) T}{m}+(K+1) m+\frac{c T}{K}+6 \sigma \sqrt{\frac{2 \log m}{m}} T \\
& \leq 3 c T^{3 / 4}+4 T^{3 / 4}+\frac{3}{2} T^{3 / 4}+4 \sqrt{3} \sigma \sqrt{\log T} T^{3 / 4} \\
& \leq\left(3 c+\frac{11}{2}+4 \sqrt{3} \sigma \sqrt{\log T}\right) T^{3 / 4},
\end{aligned}
$$

where we have plugged in $K=\left\lfloor T^{1 / 4}\right\rfloor$ and $m=\left\lfloor T^{1 / 2}\right\rfloor$, and moreover,

$$
K \leq T^{1 / 4} \leq 2 K, K+1 \leq \frac{3}{2} T^{1 / 4}, \frac{3}{4} T^{1 / 2} \leq T^{1 / 2}-1 \leq m \leq T^{1 / 2}
$$

because $T \geq 16$. This completes the proof.

Proof of Theorem 3 . Let $K=\left\lfloor T^{1 / 4}\right\rfloor$ and construct a family of functions $f_{k}(x)$ as follows. For $k \in[K]$, let

$$
f_{k}(x)= \begin{cases}x & x \in[0,(k-1 / 2) / K) \\ \max \{(2 k-1) / K-x, 0\} & x \in[(k-1 / 2) / K, 1]\end{cases}
$$

As a result, we can see that $\max _{x \in[0,1]} f_{k}(x)=(k-1 / 2) / K$ is attained at $x=(k-1 / 2) / K$. Clearly, all the functions satisfy Assumption 11 with $c=1$ and Assumption 3. For each $f_{k}(x)$, we construct the associated reward sequence by $Z_{t} \sim \mathcal{N}\left(f_{k}\left(X_{t}\right), 1\right)$, which is a normal random variable with mean $f_{k}\left(X_{t}\right)$ and standard deviation 1. It clearly satisfies Assumption 2

Consider a particular policy π. Let

$$
R_{k}:=R_{f_{k}, \pi}(T)
$$

be the regret incurred when the objective function is $f_{k}(x)$ for $k \in[K]$. Because of the construction, it is easy to see that for the objective function $f_{k}(x)$, if $X_{t} \notin[(k-1) / K, k / K]$, then a regret no less than $1 /(2 K)$ is incurred in period t. Therefore, we have

$$
\begin{equation*}
R_{k} \geq \frac{1}{2 K} \sum_{t=1}^{T} \mathrm{E}_{k}\left[\mathbb{1}_{X_{t} \notin[(k-1) / K, k / K]}\right] \tag{9}
\end{equation*}
$$

Here we use E_{k} to denote the expectation taken when the objective function is $f_{k}(x)$. On the other hand, if we focus on R_{K}, then it is easy to see that

$$
\begin{equation*}
R_{K} \geq\left(\frac{1}{2}-\frac{1}{2 K}\right) \sum_{t=1}^{T} \mathrm{E}_{K}\left[\mathbb{1}_{X_{t} \leq\lfloor K / 2\rfloor / K}\right] \tag{10}
\end{equation*}
$$

because a regret no less than $1 / 2-1 / 2 K$ is incurred in the periods when $X_{t} \leq 1 / 2$.
Based on the regret decomposition in (9) and (10), we introduce $T_{k, i}$ for $k, i \in[K]$ as

$$
T_{k, i}=\sum_{t=1}^{T} \mathrm{E}_{k}\left[\mathbb{1}_{X_{t} \in[(i-1) / K, i / K)}\right] .
$$

In other words, $T_{k, i}$ is the number of periods in which the policy chooses x from the interval $[(i-1) / K, i / K)$ when the reward sequence is generated by the objective function $\left.f_{k}(x)\right]^{2}$ A key observation due to Requirement 1 is that

$$
\begin{equation*}
T_{i+1, i}=T_{i+2, i}=\cdots=T_{K, i} . \tag{11}
\end{equation*}
$$

This is because for $k>i$, the function $f_{k}(x)$ is identical for $x \leq i / K$. Before reaching some t such that $X_{t}>i / K$, the policy must have spent the same number of periods on average in the interval $[(i-1) / K, i / K)$ no matter the objective function is $f_{i+1}(x), \ldots, f_{K-1}(x)$, or $f_{K}(x)$. But because of Requirement 1 , once $X_{t}>i / K$ for some t, the policy never pulls an arm in the interval $[(i-1) / K, i / K)$ afterwards. Therefore, (11] holds. This allows us to simplify the notation by letting $T_{i}:=T_{k, i}$ for $k>i$. In particular, by (10), we have

$$
\begin{equation*}
R_{K} \geq \frac{K-1}{2 K} \sum_{i=1}^{\lfloor K / 2\rfloor} T_{K, i}=\frac{K-1}{2 K} \sum_{i=1}^{\lfloor K / 2\rfloor} T_{i} \tag{12}
\end{equation*}
$$

Next we are going to show the relationship between $T_{k, i}$ (or equivalently T_{i}) and $T_{i, i}$ for $k>i$. We introduce a random variable τ_{i}

$$
\tau_{i}:=\max \left\{t \mid X_{t}<i / K\right\}
$$

Because of Requirement 1 , we have $\left\{\tau_{i} \leq t\right\} \in \sigma\left(X_{1}, Z_{1}, X_{2}, Z_{2}, \ldots, X_{t}, Z_{t}, U_{t}\right){ }^{3}$ Therefore, τ_{i} is a stopping time. We consider the two probability measures, induced by the objective functions $f_{i}(x)$ and $f_{k}(x)$ respectively, on $\left(X_{1}, Z_{1}, \ldots, X_{\tau_{i}}, Z_{\tau_{i}}, \tau_{i}\right)$. Denote the two measures by $\mu_{i, i}$ and $\mu_{k, i}$ respectively. Therefore, we have

$$
\begin{align*}
T_{i, i}-T_{k, i} & =\left(\mathrm{E}_{\mu_{i, i}}\left[\sum_{t=1}^{\tau_{i}} \mathbb{1}_{X_{t} \in[(i-1) / K, i / K)}\right]-\mathrm{E}_{\mu_{k, i}}\left[\sum_{t=1}^{\tau_{i}} \mathbb{1}_{X_{t} \in[(i-1) / K, i / K)}\right]\right) \\
& \leq T \sup _{A}\left(\mu_{i, i}(A)-\mu_{k, i}(A)\right) \tag{13}\\
& \leq T \sqrt{\frac{1}{2} D\left(\mu_{i, i} \| \mu_{k, i}\right)} . \tag{14}
\end{align*}
$$

[^0]Here (13) follows the definition of the total variation distance and the fact that $\sum_{t=1}^{\tau_{i}} \mathbb{1}_{X_{t} \in[(i-1) / K, i / K)} \leq T$. The second inequality (14) follows from Pinsker's inequality (see [40] for an introduction) and $D(P \| Q)$ denotes the Kullback-Leibler divergence defined as

$$
D(P \| Q)=\int \log \left(\frac{d P}{d Q}\right) d P
$$

We can further bound the KL-divergence in (14) by:

$$
\begin{aligned}
D\left(\mu_{i, i} \| \mu_{k, i}\right) & =\sum_{t=1}^{T} \int_{\tau_{i}=t} \log \left(\frac{\mu_{i, i}\left(x_{1}, z_{1}, \ldots, x_{t}, z_{t}\right)}{\mu_{k, i}\left(x_{1}, z_{1}, \ldots, x_{t}, z_{t}\right)}\right) d \mu_{i, i} \\
& =\sum_{t=1}^{T} \int_{\tau_{i}=t} \sum_{s=1}^{t} \log \left(\frac{\mu_{i, i}\left(z_{s} \mid x_{s}\right)}{\mu_{k, i}\left(z_{s} \mid x_{s}\right)}\right) d \mu_{i, i} \\
& =\sum_{t=1}^{T} \int_{\tau_{i}=t} \int_{z_{1}, \ldots, z_{t}} \sum_{s=1}^{t} \log \left(\frac{\mu_{i, i}\left(z_{s} \mid x_{s}\right)}{\mu_{k, i}\left(z_{s} \mid x_{s}\right)}\right) d \mu_{i, i}\left(z_{1}, \ldots, z_{s} \mid x_{1}, \ldots, x_{t}\right) d \mu_{i, i}\left(x_{1}, \ldots, x_{t}\right) \\
& =\sum_{t=1}^{T} \int_{\tau_{i}=t} \int_{z_{1}, \ldots, z_{t}} \sum_{s=1}^{t} D\left(\mathcal{N}\left(f_{i}\left(x_{s}\right), 1\right) \| \mathcal{N}\left(f_{k}\left(x_{s}\right), 1\right)\right) d \mu_{i, i}\left(x_{1}, \ldots, x_{t}\right) \\
& =\sum_{t=1}^{T} \int_{\tau_{i}=t} \sum_{s=1}^{t} \frac{1}{2}\left(f_{i}\left(x_{s}\right)-f_{k}\left(x_{s}\right)\right)^{2} d \mu_{i, i}\left(x_{1}, \ldots, x_{t}\right)
\end{aligned}
$$

In the first line we use the fact that the normal reward has support \mathbb{R}. Hence if the sample path $\left(x_{1}, z_{1}, \ldots, x_{t}, z_{t}\right)$ has positve density under $\mu_{i, i}$ then it has positive density under $\mu_{k, i}$. As a result, we establish the absolute continuity of $\mu_{i, i}$ w.r.t. $\mu_{k, i}$ and the existence of the adon-Nikodym derivative. The second equality follows from the fact that for the same policy π, we have

$$
\mu_{i, i}\left(x_{s} \mid x_{1}, z_{1}, \ldots, x_{s-1}, z_{s-1}\right)=\mu_{k, i}\left(x_{s} \mid x_{1}, z_{1}, \ldots, x_{s-1}, z_{s-1}\right)
$$

The fourth equality uses the conditional independence of z given x. Note that on the event $\tau_{i}=t$, we have $x_{s}<i / K$ for $s \leq t$. Therefore, we have

$$
\left|f_{i}\left(x_{s}\right)-f_{k}\left(x_{s}\right)\right| \leq \begin{cases}\frac{1}{K} & x_{s} \in[(i-1) / K, i / K) \\ 0 & x_{s}<(i-1) / K\end{cases}
$$

by the construction of $f_{i}(x)$ and $f_{k}(x)$. As a result,

$$
D\left(\mu_{i, i} \| \mu_{k, i}\right) \leq \sum_{t=1}^{T} \int_{\tau_{i}=t} \frac{T_{k, i}}{2 K^{2}} d \mu_{i, i}\left(x_{1}, \ldots, x_{t}\right) \leq \frac{T_{k, i}^{2}}{2 K^{2}}
$$

Plugging it into (14), we have Therefore, (14) implies

$$
\begin{equation*}
T_{i, i} \leq T_{k, i}+\frac{T}{2 K} \sqrt{T_{k, i}}=T_{i}+\frac{T}{2 K} \sqrt{T_{i}} \tag{15}
\end{equation*}
$$

Combining (15) and (9), we can provide a lower bound for the regret R_{i} for $i=1, \ldots,\lfloor K / 2\rfloor / K$:

$$
\begin{equation*}
R_{i} \geq \frac{1}{2 K}\left(T-T_{i, i}\right) \geq \frac{1}{2 K}\left(T-T_{i}-\frac{T}{2 K} \sqrt{T_{i}}\right) \tag{16}
\end{equation*}
$$

Next, based on (12) and (16), we show that for $k \in\{1, \ldots,\lfloor K / 2\rfloor / K, K\}$, there exists at least one k such that

$$
R_{k} \geq \frac{1}{32} T^{3 / 4}
$$

If the claim doesn't hold, then we have $R_{K} \geq T^{3 / 4} / 32$. By 12 and the pigeonhole principle, there exists at least one i such that

$$
T_{i} \leq \frac{2 K}{32(K-1)\lfloor K / 2\rfloor} T^{3 / 4}
$$

Because $T \geq 16$ and $K \geq 2$, we have $K /(K-1) \leq 2$ and $\lfloor K / 2\rfloor \geq T^{1 / 4} / 4$. Therefore,

$$
T_{i} \leq \frac{1}{2} T^{1 / 2}
$$

Now by 16, for this particular i, we have

$$
\begin{align*}
R_{i} & \geq \frac{1}{2 K}\left(T-\frac{1}{2} T^{1 / 2}-\frac{T}{2 K} \sqrt{T^{1 / 2} / 2}\right) \\
& \geq 2 T^{-1 / 4}\left(T-\frac{1}{2} T^{1 / 2}-\frac{\sqrt{2}}{2} T\right) \tag{17}\\
& \geq\left(\frac{7}{4}-\sqrt{2}\right) T^{3 / 4} \geq \frac{1}{32} T^{3 / 4} \tag{18}
\end{align*}
$$

resulting in a contradiction. Here (17) follows from the fact that $2 K \geq T^{1 / 4} \geq K$ when $T \geq 16$; (18) follows from $T^{1 / 2} \geq 4$. Therefore, we have proved that for at least one $k, R_{k} \geq T^{3 / 4} / 32$. This completes the proof.

[^0]: ${ }^{2}$ We let $T_{k, K}=\sum_{t=1}^{T} \mathrm{E}_{k}\left[\mathbb{1}_{X_{t} \in[1-1 / K, 1]}\right]$ include the right end. This is a minor technical point that doesn't affect the steps of the proof.
 ${ }^{3}$ Recall that U_{t} is an internal randomizer. Since we can always couple the values of U_{t} under the two measures, we omit the dependence hereafter.

