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A Proof of subspace perturbations (Theorem 1)

A.1 A formal version of Assumption 3

Assumption S1. Let w̃k = |Bk+1[Nk,Nk+1]|wk+1, w̃k−1 = |Bk[:,Nk]|w̃k, with wk and ŵk

defined in Section 3. Additionally, write

Wk+1 = W̃k+1 + Ek+1,+,

Ŵk+1 = W̃k+1 + Ek+1,−,

W
1/2
k = W̃

1/2

k (I+E+
k,+) + E1/2

k,+,

W
−1/2
k = W̃

−1/2

k (I−E−
k,+) + E−1/2

k,+ ,

Ŵ
1/2

k = W̃
1/2

k (I+E+
k,−) + E1/2

k,−,

Ŵ
−1/2

k = W̃
−1/2

k (I−E−
k,−) + E−1/2

k,− ,

W
−1/2
k−1 = W̃

−1/2

k−1 (I−Ek−1,+),

Ŵ
−1/2

k−1 = W̃
−1/2

k−1 (I−Ek−1,−).

There exists ϵℓ > 0 and ϵ′ℓ > 0 for ℓ = k, k − 1 such that the following conditions hold

1. Not too many (k + 1)-simplices are created (small |Ck+1|)

∥E+
k,+∥ = max

σ∈Nk

{[
E+

k,+

]
σ,σ

}
= max

σ∈Nk

{
w

1/2
k (σ)

w̃
1/2
k (σ)

− 1

}
≤
√
ϵk; (S1a)

∥E−
k,+∥ = max

σ∈Nk

{[
E−

k,+

]
σ,σ

}
= max

σ∈Nk

{
w̃

−1/2
k (σ)

w
−1/2
k (σ)

− 1

}
≤
√
ϵk; (S1b)

max
σ∈Nk

{
wk(σ)

w̃k(σ)
− 1

}
≤ ϵk; (S1c)

∥Ek−1,+∥ = max
ν∈Σk−1

{
[Ek−1,+]ν,ν

}
= max

ν∈Σk−1

{
w̃−1

k−1(ν)

w−1
k−1(ν)

− 1

}
≤ √ϵk−1; (S1d)

max
ν∈Σk−1

{
wk−1(ν)

w̃k−1(ν)
− 1

}
≤ ϵk−1. (S1e)

2. Not too many (k + 1)-simplices are destroyed (small |Dk+1|)

∥E+
k,−∥ = max

σ∈Nk

{[
E+

k,−

]
σ,σ

}
= max

σ∈Nk

{
ŵ

1/2
k (σ)

w̃
1/2
k (σ)

− 1

}
≤
√
ϵk; (S2a)

∥E−
k,−∥ = max

σ∈Nk

{[
E−

k,−

]
σ,σ

}
= max

σ∈Nk

{
w̃

−1/2
k (σ)

ŵ
−1/2
k (σ)

− 1

}
≤
√
ϵk; (S2b)

max
σ∈Nk

{
ŵk(σ)

w̃k(σ)
− 1

}
≤ ϵk; (S2c)

∥Ek−1,−∥ = max
ν∈Σk−1

{
[Ek−1,−]ν,ν

}
= max

ν∈Σk−1

{
w̃−1

k−1(ν)

ŵ−1
k−1(ν)

− 1

}
≤ √ϵk−1; (S2d)

max
ν∈Σk−1

{
ŵk−1(ν)

w̃k−1(ν)
− 1

}
≤ ϵk−1. (S2e)
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3. The net changes on wk and wk−1 are small

∥E+
k,+ −E+

k,−∥ = max
σ∈Nk

{∣∣∣∣∣ ŵ1/2
k (σ)

w
1/2
k (σ)

− 1

∣∣∣∣∣
}
≤

√
ϵ′k; (S3a)

∥E−
k,+ −E−

k,−∥ = max
σ∈Nk

{∣∣∣∣∣w1/2
k (σ)

ŵ
1/2
k (σ)

− 1

∣∣∣∣∣
}
≤

√
ϵ′k; (S3b)

max
σ∈Nk

{∣∣∣∣ ŵk(σ)

wk(σ)
− 1

∣∣∣∣} ≤ ϵ′k; (S3c)

∥Ek−1,+ −Ek−1,−∥ = max
ν∈Σk−1

{∣∣∣∣∣w−1
k−1(ν)

ŵ−1
k−1(ν)

− 1

∣∣∣∣∣
}
≤

√
ϵ′k−1; (S3d)

max
ν∈Σk−1

{∣∣∣∣ ŵk−1(ν)

wk−1(ν)
− 1

∣∣∣∣} ≤ ϵ′k−1. (S3e)

A.2 Definitions of Lk and L̂k

Given a manifoldM which is constructed by a series of connected sum, i.e.,M =M1♯ · · · ♯Mκ.
Let the Simplicial complex corresponding toM be SCℓ = (Σ0, · · · ,Σℓ), with the disjoint simplicial
complex (of ∪κi=1Mi) being ŜCℓ = (Σ̂0, · · · , Σ̂ℓ). For each k, the simplex sets can be decomposed
into the following

Σk =

κ∪
i=1

Σ
(i)
k︸ ︷︷ ︸

non-intersecting set:Nk

∪
κ∪

j>i

Σ
(ij)+
k︸ ︷︷ ︸

created set:Ck

.

Similarly,

Σ̂k =

κ∪
i=1

Σ
(i)
k︸ ︷︷ ︸

non-intersecting set:Nk

∪
κ∪

j>i

Σ
(ij)−
k︸ ︷︷ ︸

destroyed set:Dk

.

W.l.o.g., one can assume that the (k − 1)-simplices set can be perfectly separated, i.e., Ck−1 =
Dk−1 = ∅ (when analyzing the k-Laplacian). The above construction matches our intuition; by
definition, a connected sum is a process of carving out a d-disk (Dk) and gluing two manifolds
together (Ck).

We are interested in the perturbation of the k-Laplacian Lk w.r.t. the ideal (disjoint) Laplacian L̂k.
Without carefully define both Lk and L̂k, the perturbation on the subspaces might be unbounded.
With slight abuse of notation, we let L ← Lk, Ld ← Ldown

k , and Lu ← Lup
k (similar definitions

for L̂’s). The k is omitted and can be inferred from the context. The L̂ and L are defined as follows.
L̂ is a block diagonal matrix, with the i-th (diagonal) block L(i) described byMi constructed from

the sub-complex ŜC
(i)

(Σ̂(i)
k−1, Σ̂(i)

k , and Σ̂
(i)
k+1). Due to manifolds being disjoint (i.e., ∪κi=1Mi),

the Laplacian corresponding to such block, denoted L̂
(i,i),(i,i)

, will be a valid Laplacian. As for

the intersecting k-simplices Ck ∪ Dk, we let L̂
(i,j),(k,l)

= L(i,j),(k,l) for all ij, kl ∈
(
[k]
2

)
so that

the corresponding blocks of L̂ − L will be zero. Under this scenario, the unbounded increase of
(k + 1)-simplices caused by the intersecting k-simplices can be removed. Lastly, the off-diagonal
blocks of L̂ are set to zero. Specifically, L̂ is,
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L̂ =



L̂
(1,1),(1,1)

L̂
(1,1),(1,2)−

· · · L̂
(1,1),(k−1,k)−

. . . 0
...

. . .
...

L̂
(k,k),(k,k)

L̂
(k,k),(1,2)−

· · · L̂
(k,k),(k−1,k)−

L(1,2)+,(1,2)+ · · · L(1,2)+,(k−1,k)+

0
...

. . .
... 0

L(k−1,k)+,(1,2)+ · · · L(k−1,k)+,(k−1,k)+

L̂
(1,2)−,(1,1)

· · · L̂
(1,2)−,(k,k)

L̂
(1,2)−,(1,2)−

· · · L̂
(1,2)−,(k−1,k)−

...
. . .

... 0
...

. . .
...

L̂
(k−1,k)−,(1,1)

· · · L̂
(k,k)−,(k,k)

L̂
(k−1,k)−,(1,2)−

· · · L̂
(k−1,k)−,(k−1,k)−



.

Similarly, one can define L to be

L =



L(1,1),(1,1) L(1,1),(1,2)+ · · · L(1,1),(k−1,k)+

. . .
...

. . .
... 0

L(k,k),(k,k) L(k,k),(1,2)+ · · · L(k,k),(k−1,k)+

L(1,2)+,(1,1) · · · L(1,2)+,(k,k) L(1,2)+,(1,2)+ · · · L(1,2)+,(k−1,k)+

...
. . .

...
...

. . .
... 0

L(k−1,k)+,(1,1) · · · L(k,k)+,(k,k) L(k−1,k)+,(1,2)+ · · · L(k−1,k)+,(k−1,k)+

L̂
(1,2)−,(1,2)−

· · · L̂
(1,2)−,(k−1,k)−

0 0
...

. . .
...

L̂
(k−1,k)−,(1,2)−

· · · L̂
(k−1,k)−,(k−1,k)−



.

Under this construction, the four lower right blocks, which correspond to the k-simplices in Ck∪Dk,
will be zero. If no new homology class is created/destroyed (Assumption 1) and the minimum eigen-
values of the last two diagonal blocks are bounded away from zero (Assumption 2), then the eigen-

gap of L will simply be the minimum eigengap of each L̂
(i)

, i.e., eigengap(L) = min{δ1, · · · , δκ}.
Now we formally define our formulation. Following the notations introduced in Section 3, and let
Iσ be the index set of the k-simplex σ ∈ Nk sampled from Mi. Note that Iσ is defined only
for σ ∈ Nk, which can be extended from the index set Iv for v ∈ V introduced in Section 3 by
Iσ = {σ ∈ Nk : v ∈ Iv for v ∈ σ}. Note also that similar to Iv for V , Sσ can be larger than 1.
For instance, if the manifold is constructed by gluing a torus (indexed by 1) and a circle (indexed by
2), then S1 = {1, 2} and S2 = {3}; for an edge e belongs to the torus, we have SIe

= {1, 2}. For
every σ ∈ Nk, we write,

∑
σ∈Nk

∑
i/∈SIσ

Y2
σ,i ≤

∑
σ∈Nk

β1∑
i=1

(Yσ,i − Ŷσ,i)
2 ≤

∑
σ∈Σk∪Σ̂k

β1∑
i=1

(Yσ,i − Ŷσ,i)
2 = ∥YO− Ŷ∥2F .
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Let DiffLdown
k = Ld − L̂d and DiffLupk = Lu − L̂u, from [61] and the triangular inequality,∥∥∥YNk,: − ŶNk,:

∥∥∥2
F

=
∑
σ∈Nk

∑
i/∈SIσ

Y2
σ,i ≤ ∥Y − ŶO∥2F

≤
8 ·min

{
βk

∥∥∥L− L̂
∥∥∥2 , ∥L− L̂∥2F

}
min{δ1, · · · , δκ}

≤
8 ·min

{
βk

∥∥∥DiffLdown
k

∥∥∥2 + βk ∥DiffLupk ∥
2
, ∥DiffLdown

k ∥2F + ∥DiffLupk ∥2F
}

min{δ1, · · · , δκ}

†
≤

8βk

(∥∥∥DiffLdown
k

∥∥∥2 + ∥DiffLupk ∥2)
min{δ1, · · · , δκ}

.

Remark. The bound w.r.t. the Frobenius norm is omitted (the last inequality †) based on two
reasons: (i) Lk has complicated forms for large k, therefore, it is hard to derive a concise expression;
and (ii) ∥ · ∥F is usually larger than βk∥ · ∥.

A.3 Useful lemmas

Here we omit the k for N, C, and D for simplicity. Let λk = ∥Lk∥ be the bound on the spectral
norm of k-Laplacian. Here, λk = k + 2 for L’s built from simplicial complexes; λk = 2k + 2 for
those built from cubical complexes (see also Proposition S3). The following two lemmas bound the
effects of Ek,+, Ek,−, Ek+1,+, and Ek+1,− in their changes to the weights (Wk and Wk−1) of the
k and (k − 1)-simplices; we will find them useful in proving Theorem 1.

Lemma S1. Let Wk, Ŵk, Ek,+, and Ek,− defined in Assumption S1, we have∥∥∥Ek,+B
⊤
k W

−1
k−1BkEk,+

∥∥∥ ≤ λk−1ϵk−1,∥∥∥Ek,−B
⊤
k Ŵ

−1

k−1BkEk,−

∥∥∥ ≤ λk−1ϵk−1.

Proof. We first inspect the case of C, i.e., the first equation involving Ek,+,

[Ek,+]σ,σ =

{
w

1/2
k (σ) if σ ∈ C;

0 otherwise.

for any ν ∈ Σk−1, we have,

wk−1(ν) = |Bk(ν)|wk;

w̃k−1(ν) = |Bk(ν)|w̃k.

Therefore,
ϵk−1wk−1(ν) ≥ ϵk−1w̃k−1(ν) ≥ wk−1(ν)− w̃k−1(ν) = |Bk(ν)|(wk − w̃k)

= |Bk(ν)| [w̃kEk + Ek,+] ≥ |Bk(ν)|Ek,+ = deg(ν).

Let fm be the k-eigencochain corresponding to the largest eigenvalue of Ek,+B
⊤
k W

−1
k−1BkEk,+.

From Eq. (3.6) of [26], we have,

∥Ek,+B
⊤
k W

−1
k−1BkEk,+∥2 ≤ ∥Ld∥ ·

∑
ν∈Σk−1

f2
m(ν) deg(ν)∑

ν∈Σk−1
f2
m(ν)wk−1(ν)

≤ λk−1ϵk−1 ·
∑

ν∈Σk−1
f2
m(ν)wk−1(ν)∑

ν∈Σk−1
f2
m(ν)wk−1(ν)

= λk−1ϵk−1.
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The case of D follows similarly. ■
The following lemma bounds the changes in (k + 1)-simplices with ϵk.

Lemma S2. Let W be either Wk or Ŵk, and E be either Ek+1,+ or Ek+1,− defined in Assumption
S1, we have ∥∥∥WBk+1EB⊤

k+1W
∥∥∥ ≤ λkϵk.

Proof. Consider the case of Wk and Ek+1,+. For any σ ∈ Σk,

wk(σ) = |Bk+1(σ)|wk+1;

w̃k(σ) = |Bk+1(σ)|w̃k+1.

Therefore, for any σ ∈ N (do not count the one in Ek,±) we have,

ϵkwk(σ) ≥ ϵkw̃k(σ) ≥ wk(σ)− w̃(σ) = |Bk+1(σ)|(wk+1 − w̃k+1) = |Bk+1(σ)|Ek+1,+.

Let fm be the k-eigencochain corresponding to the largest eigenvalue of the matrix
W

−1/2
k Bk+1Ek+1,+B

⊤
k+1W

−1/2
k . From Eq. (3.6) of [26],∥∥∥W−1/2

k Bk+1Ek+1,+B
⊤
k+1W

−1/2
k

∥∥∥ ≤ (k + 2) ·
∑

σ∈N f2
m(σ) deg(σ)∑

σ∈N f2
m(σ)wk(σ)

≤ λkϵk

∑
σ∈N f2

m(e)wk(e)∑
σ∈N f2

m(e)wk(e)
= λkϵk

Here deg(σ) = |Bk+1(σ)diag(Ek+1,+)|. Consider the case when W ← Ŵk and E ← Ek+1,+,
we have,

ϵkŵk(σ) ≥ ϵkw̃k(σ) ≥ wk(σ)− w̃(σ) = |Bk+1(σ)|(wk+1 − w̃k+1) = |Bk+1(σ)|Ek+1,+.

The result follows similarly for E ← Ek+1,−; this completes the proof. ■

A.4 Proof of Theorem 1

Now we start the formal proof of Theorem 1. We will break the proof into two parts, i.e., the down
and up parts involving DiffLdown

k and DiffLupk , respectively.

Proof of the DiffLdown
k term in Theorem 1. The explicit form of the down Laplacian can be

written as

L̂d =

 MNŴ
1/2

k B⊤
k Ŵ

−1

k−1BkŴ
1/2

k MN 0 MNŴ
1/2

k B⊤
k Ŵ

−1

k−1BkE1/2
k,−MD

0 MCE1/2
k,+B

⊤
k W

−1
k−1BkE1/2

k,+MC 0

MDE1/2
k,−B

⊤
k Ŵ

−1

k−1BkŴ
1/2

k MN 0 MDE1/2
k,−B

⊤
k Ŵ

−1

k−1BkE1/2
k,−MD

 .

And,

Ld =


MNW

1/2
k B⊤

k W
−1
k−1BkW

1/2
k MN MNW

1/2
k B⊤

k W
−1
k−1BkE1/2

k,+MC 0

MCE1/2
k,+B

⊤
k W

−1
k−1BkW

1/2
k MN MCE1/2

k,+B
⊤
k W

−1
k−1BkE1/2

k,+MC 0

0 0 MDE1/2
k,−B

⊤
k Ŵ

−1

k−1BkE1/2
k,−MD

 .
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Here, MN, MC, and MD are diagonal masks for k-simplex sets N, C, and D, respectively. By
triangular inequality,∥∥∥Ld − L̂d

∥∥∥ ≤ ∥∥∥∥MNW
1/2
k B⊤

k W
−1
k−1BkW

1/2
k MN −MNŴ

1/2

k B⊤
k Ŵ

−1

k−1BkŴ
1/2

k MN

∥∥∥∥︸ ︷︷ ︸
(∗)

+

2

∥∥∥MNW
1/2
k B⊤

k W
−1
k−1BkE1/2

k,+MC

∥∥∥︸ ︷︷ ︸
(†)

+

∥∥∥∥MNŴ
1/2

k B⊤
k Ŵ

−1

k−1BkE1/2
k,−MD

∥∥∥∥
 .

(S4)

Expand the Wk with Ŵk and omit MN for simplicity, the first term of (S4) can be bounded by

(*) ≤
∥∥∥∥Ŵ1/2

k

(
I+ (E+

k,+ −E+
k,−)

)
B⊤

k Ŵ
−1

k−1 (I− (Ek−1,+ −Ek−1,−))BkŴ
1/2

k

(
I+ (E+

k,+ −E+
k,−)

)
−Ŵ

1/2

k B⊤
k Ŵ

−1

k−1BkŴ
1/2

k

∥∥∥∥
≤

[(∥∥∥2 · (E+
k,+ −E+

k,−

)∥∥∥+

∥∥∥∥(E+
k,+ −E+

k,−

)2
∥∥∥∥) · ∥∥∥L̂d

∥∥∥+
(
1 +

√
ϵ′k

)2 ∥∥∥∥Ŵ1/2

k B⊤
k Ŵ

−1

k−1 (Ek−1,+ −Ek−1,−)BkŴ
1/2

k

∥∥∥∥
]

≤

[∥∥∥2 · (E+
k,+ −E+

k,−

)∥∥∥+

∥∥∥∥(E+
k,+ −E+

k,−

)2
∥∥∥∥+

(
1 +

√
ϵ′k

)2

∥Ek−1,+ −Ek−1,−∥

]
· ∥L̂d∥

∗
≤

[
2
√
ϵ′k + ϵ′k +

(
1 +

√
ϵ′k

)2 √
ϵ′k−1

]
·
∥∥∥L̃d

∥∥∥ .
The last two terms of (S4) can be bounded using Lemma S1, i.e.,

(†) =
∥∥∥MNW

1/2
k B⊤

k W
−1
k−1BkE1/2

k,+MC

∥∥∥ ≤ ∥∥∥MNW
1/2
k B⊤

k W
−1/2
k−1

∥∥∥ · ∥∥∥W−1/2
k−1 BkE1/2

k,+MI

∥∥∥
≤ ∥Ld∥

√
ϵk−1.

The last term of (S4) can also be bounded by ∥L̃d∥
√
ϵk−1 using Lemma S1. Since ∥Ld∥,

∥∥∥L̂d

∥∥∥, and∥∥∥L̃d

∥∥∥ have the same upper bound λk−1, we have

∥∥∥Ld − L̂d

∥∥∥2 ≤ [
2
√

ϵ′k + ϵ′k +

(
1 +

√
ϵ′k

)2 √
ϵ′k−1 + 4

√
ϵk−1

]2

λ2
k−1.

■

Proof of the DiffLupk term in Theorem 1. The explicit form of L̂u is,

L̂u =

 MNŴ
−1/2

k Bk+1Ŵk+1B
⊤
k+1Ŵ

−1/2

k MN 0 MNŴ
−1/2

k Bk+1Ŵk+1B
⊤
k+1E

1/2
k,−MD

0 MCE−1/2
k,+ Bk+1Wk+1B

⊤
k+1E

−1/2
k,+ MC 0

MDE−1/2
k,− Bk+1Ŵk+1B

⊤
k+1Ŵ

−1/2

k MN 0 MDE−1/2
k,− Bk+1Ŵk+1B

⊤
k+1E

−1/2
k,+ MD

 .

And,
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Lu =

 MNW
−1/2
k Bk+1Wk+1B

⊤
k+1W

−1/2
k MN MNW

−1/2
k Bk+1Wk+1B

⊤
k+1E

1/2
k,+MC 0

MCE−1/2
k,+ Bk+1Wk+1B

⊤
k+1W

−1/2
k MN MCE−1/2

k,+ Bk+1Wk+1B
⊤
k+1E

−1/2
k,+ MC 0

0 0 MDE−1/2
k,− Bk+1Ŵk+1B

⊤
k+1E

−1/2
k,+ MD

 .

The perturbation is,

∥∥∥Lu − L̂u

∥∥∥ ≤ ∥∥∥∥MNW
−1/2
k Bk+1Wk+1B

⊤
k+1W

−1/2
k MN −MNŴ

−1/2

k Bk+1Ŵk+1B
⊤
k+1Ŵ

−1/2

k MN

∥∥∥∥︸ ︷︷ ︸
(∗)

+

2

∥∥∥MNW
−1/2
k Bk+1Wk+1B

⊤
k+1E

1/2
k,+MC

∥∥∥︸ ︷︷ ︸
(†)

+

∥∥∥∥MNŴ
−1/2

k Bk+1Ŵk+1B
⊤
k+1E

1/2
k,−MD

∥∥∥∥
 .

(S5)

The first term of (S5) can be bounded by expanding Wk+1 w.r.t. Ŵk+1, i.e., Wk+1 = Ŵk+1 +
(Ek+1,+ − Ek+1,−). As slight abuse of notation, we let Wk ←Wk[N,N], Bk+1 ← Bk+1[N, :].
The first term (∗) of (S5) becomes

(∗) ≤
∥∥∥∥W−1/2

k Bk+1Ŵk+1B
⊤
k+1W

−1/2
k − Ŵ

−1/2

k Bk+1Ŵk+1B
⊤
k+1Ŵ

−1/2

k

∥∥∥∥
≤

∥∥∥∥W−1/2
k Bk+1Ŵk+1B

⊤
k+1W

−1/2
k − Ŵ

−1/2

k Bk+1Ŵk+1B
⊤
k+1Ŵ

−1/2

k

∥∥∥∥+∥∥∥∥W−1/2
k Bk+1Ek+1,+B

⊤
k+1W

−1/2
k − Ŵ

−1/2

k Bk+1Ek+1,−B
⊤
k+1Ŵ

−1/2

k

∥∥∥∥
‡
≤

(
2∥E−

k,+ −E−
k,−∥+

∥∥∥∥(E−
k,+ −E−

k,−

)2
∥∥∥∥) · ∥∥∥L̂u

∥∥∥+∥∥∥∥W−1/2
k Bk+1Ek+1,+B

⊤
k+1W

−1/2
k − Ŵ

−1/2

k Bk+1Ek+1,−B
⊤
k+1Ŵ

−1/2

k

∥∥∥∥
§
≤

[
2
√
ϵ′k + ϵ′k + 2ϵk

]
λk

The ‡ term holds by expanding W
−1/2
k = Ŵ

−1/2

1

(
I− (E−

k,+ −E−
k,−)

)
and following a similar

approach of the down Laplacian. The § term holds by bounding E−
k,+ − E−

k,− with Assumption S1
(ϵ′k) and using Lemma S2 (ϵk).

The (†) term in (S5) can be bounded by ϵk using Lemma S2, i.e.,

(†) ‡
=

∥∥∥MNW
−1/2
k Bk+1Ek+1,+B

⊤
k+1E

−1/2
k,+ MC

∥∥∥
≤

∥∥∥MNW
−1/2
k Bk+1E1/2

k+1,+

∥∥∥ · ∥∥∥E1/2
k+1,+B

⊤
k+1E

−1/2
k,+

∥∥∥
≤

√
λkϵk ·

∥∥∥E1/2
k+1,+B

⊤
k+1E

−1/2
k,+

∥∥∥
§
≤
√
ϵkλk.

‡ holds because the intersection of triangles of Ek,+, and Wk is the triangles with non-zero entries in
Ek+1,+. § holds (the

√
λk term) because E1/2

k+1,+B
⊤
k+1E

−1/2
k,+ is a submatrix of W1/2

k+1B
⊤
k+1W

−1/2
k ;

hence, the spectral norm will be upper bounded by the up Laplacian ∥Lu∥ ≤ λk.
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Therefore, we have ∥∥∥Lu − L̂u

∥∥∥2 ≤ [
2
√
ϵ′k + ϵ′k + 2ϵk + 4

√
ϵk

]2
λ2
k.

Combining the bound involving DiffLdown
k completes the proof of Theorem 1. ■

B Proofs of propositions in Applications (Section 5)

B.1 Proof of Proposition 3: the properties of the induced digraph

The proof is based on the convenient properties of the harmonic flow (the basis of the homology
vector space), i.e., they are both divergence-free and curl-free [12, 35, 48].

Proof of Proposition 3. Reachable: the harmonic flow is divergence free, indicating that the
incoming flow must be equal to the outgoing flow. If there exists a vertex that is not reachable to
itself, then this vertex will either be a source or sink in the digraph. It violates the assumption that
the flow is divergence free. Therefore such vertex will not exist.

No short-circuiting: the harmonic flow is curl free; from Stoke’s theorem (or Poincaré Lemma
[33]), we have that any path-integral travel along any homology class will be a constant. If there
exists a loop such that it does not traverse along with any homology class, the loop integral along this
cycle will be zero (by Stoke’s theorem). By assumption, the path-integral will always be positive.
To generate a loop whose integral is zero, one has to travel “upward” in the digraph; this violates the
assumption that we are finding a cycle in the digraph, implying that every loop will traverse along
at least one homology class. ■

B.2 Proof of Proposition 4: H1 embedding of Tm

The proof is based on the fact that each harmonic 1-form of the flat m-(flat) torus can be expressed
as the m-dimensional standard basis multiplied with some intensities in the intrinsic coordinate. The
closed-form of the upper bound of the embedding distribution in any direction can be derived using
the (high-dimensional) polar coordinate system, indicating that the envelope is an m-dimensional
ellipsoid. The detailed proof is provided below.

Proof of Proposition 4. The harmonic vector field in an m-flat torus Tm is a constant in each
coordinate, i.e., v = [v1, · · · , vm] ∈ Rm. The manifold Tm is an m-dimensional cube with the
periodic boundary condition, i.e., 0 = 2π. From [12, 59], the edge flow ωe for an edge e = (i, j) ∈
E can be written exactly as a linear map, i.e.,

ωe =

∫ 1

0

v⊤(γ(t))γ′(t)dt =

∫ 1

0

[v(xi) + (v(xj)− v(xi))t]
⊤(xj − xi)dt

=
1

2
(v(xi) + v(xj))

⊤(xj − xi)

Where γ(t) is the geodesic onM connecting xi and xj with γ(0) = xi and γ(1) = xj . Any point
x ∈ Rm, with r = ∥x∥, can be written as x = [rf1(Φ), rf2(Φ), · · · , rfm(Φ)], where Φ ∈ Rm−1 is
the high-dimensional polar coordinate; for instance, a point in 2D is [r cos(θ), r sin(θ)] with Φ = [θ],
while a point in 3D having Φ = [θ, φ] is [r cosφ sin θ, r sinφ sin θ, r cos θ]. The conditional distri-
bution given a fixed Φ is simply the distribution of edge lengths, i.e., p(rv1f1, · · · , rvmfm|Φ) =
p(r). Since p(r) is bounded by some constant δ representing the maximum edge length, the envelope
of the distribution is bounded by [δv1f1(Φ), · · · , δvmfm(Φ)], indicating that it is an m-ellipsoid
with the length of the i-th semi-axes being δvi. ■

C The maximum eigenvalue of Lk constructed from a cubical complex

In this section, we would like to show the bound on the spectral norm of Lk built from a cubical
complex. The property is found useful in extending Theorem 1 to Corollary 2; namely, the goal is
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to show that ∥Lk∥2 ≤ λk = (2k + 2). Note that ∥Ldown
k ∥ = ∥A⊤

k Ak∥ = ∥AkA
⊤
k ∥ = ∥L

up
k−1∥.

W.l.o.g., one can inspect only the up-Laplacian. We provide the following proposition that is largely
based on the similar analysis [26] of ∥Lk∥ for SC.

Proposition S3. Given an up k-Laplacian Lup
k = Ak+1A

⊤
k+1 with Ak+1 = W

−1/2
k Bk+1W

1/2
k+1

built from a cubical complex, we have

∥Lup
k ∥2 ≤ λk = 2k + 2.

Proof. From [48], the eigenvalues of the k-th renormalized up-Laplacian Lup
k are identical to

those of the k-th random-walk up-Laplacian Lrw
k = W−1

k Bk+1Wk+1Bk+1. Further, let Lup
k =

Bk+1Wk+1B
⊤
k+1, following the analysis of [26], we have

f⊤Lup
k f =

(
W

1/2
k+1B

⊤
k+1f

)⊤ (
W

1/2
k+1B

⊤
k+1f

)
=

∑
σ∈Kk

∑
τ∈coface(σ)

f2(σ)wk+1(τ)

†
≤ (2k + 2)

∑
σ∈Kk

f2(σ)
∑

τ∈coface(σ)

wk+1(τ)

= (2k + 2)
∑
σ∈Kk

f2(σ) deg(σ).

The inequality † holds using the Cauchy-Schwarz inequality; the 2k + 2 term comes from the fact
that a (k + 1)-cube has (2k + 2) faces. Following the rest of the proof in [26], we have

∥Lup
k ∥ = ∥L

rw,up
k ∥ =

∥Lup
k ∥

f⊤Wkf
≤ (2k + 2)

∑
σ∈Kk

f2(σ) deg(σ)∑
σ∈Kk

f2(σ)wk(σ)
= 2k + 2.

The first equality holds due to the identical eigenvalues of Lk and Lrw
k ; the last inequality holds

because we have wk(σ) = |Bk+1(σ)|wk+1 = deg(σ) for all σ ∈ Kk. ■

D Datasets, experiment details, and discussions

The edge set E of the neighborhood graph constructed using the CkNN kernel [8] is

E =

{
i, j ∈ V :

∥xi − xj∥√
ρk(xi)ρk(xj)

≤ δ

}
.

Here, ρk(x) is the distance from x to its k-th nearest neighbor; throughout the experiment, we fix
k = 30. The δ parameter can be chosen by a variant of the geometric consistent (GC) algorithm
[29] suitable for CkNN graphs; for real datasets (except for the ocean drifter data whose geometric
property is known), we use the modified GC to choose this parameter. For the rest of the datasets
(synthetic manifolds and the ocean drifter), δ’s are chosen manually since the topologies are known.
The weights on the triangles are selected by a modification to the kernel in [12], with a similar choice
of ε = δ

2
3 /3,

w2(i, j, ℓ) = exp

(
− ∥xi − xj∥2

ερk(xi)ρk(xj)

)
· exp

(
− ∥xj − xℓ∥2

ερk(xj)ρk(xℓ)

)
· exp

(
− ∥xi − xℓ∥2

ερk(xi)ρk(xℓ)

)
.

With this choice of parameters, the corresponding L1 has a large sample size limit (in terms of ∆1)
w.r.t. the metrics normalized by the k-nearest neighbor distance ρk.
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D.1 Synthetic manifolds

PUNCTPLANE. PUNCTPLANE is a manifold generated by connected summing two punctured planes,
with a (sparsely connected) bridge in between. Each punctured plane has a rectangular hole with
width/height being 1/3 of the width of each manifold.

TORUS. This data is a two-dimensional torus and is generated from the parameterization below,

x1 = (1 + 0.5 cos θ1) cos θ2;

x2 = (1 + 0.5 cos θ1) sin θ2;

x3 = 1 + 0.5 sin θ1.

The sample size is n = 1, 156. Random Gaussian noise is added on the first three dimensions as
well as the additional 10 (noise) dimensions.

3-TORUS. The parameterization of 3-TORUS, a three torus with d = 3 and D = 4, is

x1 = (4 + (2 + cos θ1) cos θ2) cos θ3;

x2 = (4 + (2 + cos θ1) cos θ2) sin θ3;

x3 = (2 + cos θ1) sin θ2;

x4 = sin θ1.

We first sample n′ = 100, 000 points from this manifold; Algorithm S4 is used to generate X with
n = 2, 000.

GENUS-2. GENUS-2 is a two-dimensional (genus-2) surface generated by gluing two tori together.
The implicit equation of the surface is

((
x2
1 + x2

2

)2 − 0.75x2
1 + 0.75x2

2

)2

+ x2
3 = 0.01.

To sample from this surface, we create a 1, 000×1, 000 grid in the first two coordinates (x1, x2) and
solve for the corresponding x3 from the above implicit equation. The aforementioned procedure
generates a point cloud X̃ (n′ ≈ 551k) having a non-uniform sampling density on the genus-2
surface; we subsample X̃ by Algorithm S4 and obtain the final dataset X with n = 1, 500.

TORI-CONCAT. TORI-CONCAT is generated by concatenating four tori together. Four tori are gen-
erated by similar procedures as TORUS with horizontal movements (in x1) being a = −3, 0, 3, 6, i.e.,
x1 = (1 + 0.5 cos θ1) cos θ2 − a, respectively. The sample size of TORI-CONCAT is n = 4, 624.

D.2 Real datasets

Small molecule datasets (ETH and MDA). The database 3 [13] contains several molecular dynam-
ics (MD) trajectories, with each for a single (small) molecule, e.g., ethanol CH3CH2OH (ETH) and
malondialdehyde CH2(CHO)2 (MDA). If a molecule has N atoms, then a point (molecular configu-
ration) in the dataset is specified by an N × 3 matrix representing the Euclidean coordinate of the
configuration. To generate a point cloud from a trajectory of configurations, we first preprocess the
data by calculating two angles of every triplet of atoms. Secondly, we remove the linear subspaces
by keeping the top principal components (PCs) such that the unexplained variance ratio is less than
10−4. The ambient dimensions of ETH and MDA are D = 102 and D = 98, respectively. We sub-
sample furthest n = 1, 500 points using Algorithm S4 for both datasets. The bond torsions (insets
of Figures 3a and 3d) are calculated by the dihedral angles of the corresponding chemical bonds for
each molecular configuration. For instance, the green torsion of ethanol (Figure 3a) for every point is

3Data from http://quantum-machine.org/datasets/
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computed by the angle of the planes spanned by OCC and CCH in the configuration (3D Euclidean)
space. One can think of the bond torsions as intrinsic coordinates of TORUS, i.e., θ1 and θ2; note that
the correct bond torsions parametrizing the manifold (or X) are usually unknown beforehand. In
this work, this information is provided based on our knowledge to validate our framework.

Single-cell RNA sequencing data PANCREAS. PANCREAS [7] is a single-cell RNA sequencing
data with cell cycles. The data and preprocessing codes can be found in https://github.com/
theislab/scvelo_notebooks/blob/master/Pancreas.ipynb. The original data has sample
size n′ = 3, 696; we subsample n = 2, 000 furthest points (Algorithm S4) to remove the non-
uniform sampling density on the original manifold.

3D graphics 3D-GRAPH. The 3D model of a Buddha statue, which can be downloaded from https:
//www.cc.gatech.edu/projects/large_models/, provides a triangulation computed by [15];
in other words, the simplicial complex SC′

2 = (V ′, E′, T ′) is available beforehand, with n′ ≈ 500k
and n′

1 ≈ 2M. To illustrate the efficacy of our framework (and Theorem 1), we treat 3D-GRAPH as a
point cloud and build SC from the subsampled n = 3, 000 furthest points by Algorithm S4.

Ocean buoys dataset ISLAND. The global Lagrangian drifter data (available in http://www.
aoml.noaa.gov/envids/gld/) was collected by NOAA’s Atlantic Oceanographic and Meteoro-
logical Laboratory and analyzed by Froyland and Padberg-Gehle [23] on the coherent flow structures
of the ocean current. The dataset contains multiple trajectories of buoys dated between 2010–2019,
with the location, velocity, and water temperature of each buoy recorded. The dataset itself is a 3D
point cloud by converting the location (in latitude and longitude coordinates) to the earth-centered,
earth-fixed (ECEF) coordinate system. We subsample n = 5, 000 furthest points/buoys (Algorithm
S4) with longitudes within 142◦E–179◦E and latitudes between 48◦S–33◦S; namely, we sampled
buoys that were located around the Tasman sea.

Medical imaging data RETINA. RETINA is one of the medical images of the STARE project [25],
a retinal imaging data collection. The database consists of around 400 raw images of human retinas,
with diagnosis codes, the segmented blood vessel, and the detected optic nerve available in http://
cecas.clemson.edu/~ahoover/stare/. We use the retinal image with ID being 179, which has
numerous bright (circular) spots visible. We construct the cubical complex by intensity thresholding
and morphological closing, resulting in n = 25, 237, n1 = 49, 793, and n2 = 24, 548.

D.3 Pairwise scatter plots

In this section, we show the pairwise scatter plots for Z (blue) and Y (red); specifically, we would
like to show that the independent homology embedding Z obtained by Algorithm 1 is (approxi-
mately) factorizable. The blue embeddings (lower diagonal) in Figures S1–S6 confirm this. By
contrast, most coordinate of the red embeddings Y do not correspond to a subspace, except for
PANCREAS and 3D-GRAPH in Figures S5 and S3, respectively.
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Figure S1: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
GENUS-2. The (i, j)-th (off-diagonal) subplot represents the two-dimensional scatter plot with the
i-th and j-th coordinates of the embedding; the i-th diagonal term is the histograms of the i-th
coordinate of the corresponding embedding.
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Figure S2: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
TORI-CONCAT.
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Figure S3: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
3D-GRAPH.
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Figure S4: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
ISLAND.
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Figure S5: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
PANCREAS.
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Figure S6: The independent (z, in blue) and the coupled (y, in red) homology embeddings of
RETINA.
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Figure S7: Comparison of the homologous loop detections on Z (the first row) and Y (the second
row). The first, the second, the third, and the fourth columns present the results on PANCREAS,
3D-GRAPH, ISLAND, and RETINA, respectively. Note that (a)–(d) are identical to Figures 3g–3j.

D.4 Experiments and discussions on the shortest homologous loops detection algorithm

D.4.1 Shortest homologous loops obtained from the coupled embedding Y

Figure S7 shows the results of the shortest homologous loop detection algorithm applied on the
coupled homology embeddings Y on the real datasets. Note that Figures S7a–S7d are identical to
Figures 3g–3j; they are presented here as comparisons to the loops detected from Y (the second
row). As shown in Figures S7g and S7h, duplicated loops might be extracted if using the coupled
embedding Y; these loops are clearly sub-optimal.

D.4.2 Comparison to existing homologous loop detection algorithms

In this section, we discuss some existing methods in solving the problem of homologous loop detec-
tion. Some of these works offer efficient and elegant alternatives in cases when extra information is
available, e.g., a triangular mesh, having an initial non-trivial loop, or in the special case of surfaces
in 3D. Therefore, we see the proposed Algorithm 2, which does apply to point clouds/VR complexes
with any ambient or intrinsic dimension, as complementary to these methods.

Dey et al. [17] proposed an integer programming formulation of finding the optimal homology loops
given a non-trivial cycle; this problem is intrinsically different from our spectral loops extraction al-
gorithm since no loops are given up-front. Nevertheless, the integer programming problem can be
relaxed to linear programming when the boundary matrix B2 is total unimodular, which can be
solved in O∗(

√
n1n2 + n

5/2
1 ) by Lee and Sidford [34]. An example of the total unimodularity as-

sumption to hold is when SC is constructed from a triangularization of the finite manifold. Even in
this scenario, the proposed spectral loop extraction method (Algorithm 2) scales better asymptoti-
cally.

The method by Dey et al. [16] has runtime O(N4), where N = n+ n1 + n2 is the size of SC2 (the
detailed runtime is in the paper). By contrast, the persistent cycles extraction methods by Dey et al.
[19], Wu et al. [60] use the annotation algorithm [10]. The annotation stage has a time complexity
of O(N2.37···). As discussed in the main paper, they are tractable for the simplicial complexes built
from triangularization; however, this is not the case for VR complex since n2 will grow fast as n
increases.

Lastly, Chambers et al. [11], Dey et al. [18], Feng and Tong [22] have relatively fast runtime (in the
order of O(n log n)). However, they either assume that the points are sampled from surfaces in 3D
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(i.e., a genus-g surface due to the classification theorem) or the graph can be triangularized. It is
oftentimes not the case for real datasets such as ETH or MDA in Figure 3.

E Pseudocodes

Algorithm S1: Spectral homologous loop detection—an alternative to Algorithm 2
Input :Z = [z1, · · · , zβ1 ], V , E, edge distance d

1 for i = 1, · · · , β1 do
2 E+

i ← {(s, t) : e = (s, t) ∈ E and [zi]e > 0}
3 E−

i ← {(t, s) : e = (s, t) ∈ E and [zi]e < 0}
4 Ei ← E+

i ∪ E−
i

5 Gi ← (V,Ei), with weight of e ∈ Ei being [d]e
6 e∗ = (t, s0)← argmaxe∈Ei

[zi]e
7 [s0, s1, · · · , t]← DIJKSTRA(Gi, from=s0, to=t)
8 Ci ← [t, s0, s1, · · · , t]

Return : C1, · · · , Cβ1

Algorithm S2: BOUNDARYMAPS

Input :SCℓ = (Σ0, · · · ,Σℓ), k
▷ Requires ℓ ≥ k + 1

1 Bk ← BOUNDARYMAP(Σk−1,Σk) ▷ Algorithm S3
2 Bk ← BOUNDARYMAP(Σk,Σk+1)

Return :Boundary maps Bk, Bk+1

Algorithm S3: BOUNDARYMAP

Input :Set of (k − 1) and k-simplices Σk−1, Σk (or cubes Kk−1, Kk)
1 Bk ← 0nk−1

0⊤
nk
∈ Rnk−1×nk

2 for every σk−1 ∈ Σk−1 do
3 for every σk ∈ Σk do
4 if σk−1 is a face of σk then
5 [Bk]σk−1,σk

← ORIENTATION(σk−1, σk)

6 else
7 [Bk]σk−1,σk

← 0

Return :k-th boundary map Bk

Algorithm S4: Furthest points sampling

Input :Initial point cloud X̃ ∈ Rn′×D, number of furthest points n
1 X← ∅
2 Pick a point x̂ ∈ RD randomly from X̃

3 for i = 1, · · · , n− 1 do
4 X← X ∪ {x̂} ▷ Add x̂ to X

5 X̃← X̃\{x̂} ▷ Remove x̂ from X̃

6 x̂← argmaxx∈X minx̃∈X̃ ∥x− x̃∥
▷ Find the point x̂ in X that is furthest from X̃

Return :Point cloud X ∈ Rn×D
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