
Table 4: Sample complexity comparisons with MDP and POMDP-RL algorithms

Algorithm Setting Transition Sample Complexity

OOM-UCB [26] POMDP non-stationary Õ
⇣

H4S6A4O3

�min(O)8✏2

⌘

EEPORL [21] POMDP stationary Õ
⇣

H4V 2
maxA

12R4O4S12

Cd,d,d(
�
3
2)�a(Ta)6�a(Ra)8�a(Oa)8✏2

⌘

Observe-then-Plan ACNO-MDP stationary Õ
⇣

H5S5A2R3
max

✏3

⌘

Reward-free exploration [28] MDP non-stationary Õ
⇣

H5S2A
✏2 + S4AH7

✏

⌘

Appendix

Appendix A. Proofs

The analysis in Appendix A focuses on the sample complexity guarantee of the following instantiation
of Observe-then-Plan (Algorithm 3) using EULER [76] as a black-box algorithm for reward-free
exploration [28]. We note our sample complexity guarantee holds for tabular state and action settings
with reward bounded between [0, Rmax]. As described in Problem Setting, ACNO-MDPs assume
p(o|s0, aobserve) = 1 if and only if o = s0 while p(o0|s0, aobserve) = 0 for all other observations that do
not match the true underlying state (i.e., o0 6= s0), and anot observe yields a missing observation with
p(omissing|s0, anot observe) = 1. In this section, we show that with a sufficiently large N0, after SAN0

episodes of exploration using EULER, the ACNO-MDP model estimates can yield an ✏-optimal
policy with probability at least 1� �.

We use a constant N(si,ai) to denote the number of episodes spent on each state-action (si, ai) pair
to collect sufficiently many samples. This N(si,ai) provides guarantees on the model estimation
accuracy if that (si, ai) pair is ⇣-significant (analogous to �-significant states by Jin et al. [28]; review
Definition 4). We also use n(s, a, s0), n(s, a) to represent the counts of samples from the dataset
D that are used for MLE estimation (note N(si,ai) 6= n(s, a) since n(s, a) is the number of times
EULER successfully makes a visit to the pair during exploration and N(si,ai) is a constant determined
by relevant quantities from M such as S,A,H,Rmax).

Algorithm 3 Observe-then-Plan
Input original environment POMDP M, S , A, �, S, A,N(si,ai), obs cost c(·)
Output policy b⇡ mapping state beliefs to actions

1: Phase 1:
2: Set dataset D ;
3: for all (si, ai) 2 S ⇥A do
4: Create a POMDP M

0 with state-space S , action-space A from M

5: Change rewards in M
0 so that r(s) = [s = si] for the target state si

6: Make si a terminal state in M
0

7: Fix ⇡(si) = ai
8: �(si,ai), (si, ai, s0, r) EULER(M0,M, N(si,ai), �

0 = �
4SA)

9: D D [{si, ai, s0, r} (collect all samples observed while executing EULER)
10: end for
11: Return the dataset D
12: Phase 2:
13: for all (s, a, s0, r) 2 D do
14: T̂ (s, a, s0) = n(s,a,s0)

n(s,a)

15: R̂(s, a) =
P

r(s,a)
n(s,a)

16: end for
17: ⇡̂ = POMDP plan(T̂ , R̂, cobs)
18: Return policy ⇡̂.

18

Line 6 of Algorithm 3 guarantees that the EULER exploration rewards are bounded between [0, 1] as
required since they represent the probabilities of visiting a target state (i.e., the target state cannot be
visited multiple times to accumulate reward larger than 1 if the target state is also a terminal state).
However, for efficient data collection, once si is reached, we could continue to execute ai to observe
the next state s0 and collect the tuple of (si, ai, s0, r) ⇠M to the dataset D.

We begin our analysis of the above algorithm with several important definitions and comments.

Sample Complexity. We evaluate our algorithm using the notion of sample complexity, which
measures how much data is needed to learn a near-optimal policy [30, 65]:
Definition 1 (Sample complexity). Let c = (s1, a1, r1, s2, a2, r2, ...) 3 be a random path generated
by executing an algorithm A for a MDP M. For any fixed ✏ > 0, the sample complexity for
exploration (sample complexity, for short) of A is the number of time steps t such that the policy at
time t,At satisfies V At(st) < V ⇤(st)� ✏.

This extends to POMDP settings by replacing st with bt which represents the belief over states. In
particular, we show that Observe-then-Plan achieves V (b0) � V ⇤(b0) � ✏ with a policy obtained
after a fixed number of episodes.

Probably Approximately Correct (PAC). A near-optimal policy is defined by this ✏ suboptimality
gap between the algorithm’s value estimate and the value estimate under the optimal policy. Under
the Probably Approximately Correct (PAC) framework [65], we consider a relaxed notion of sample
complexity:
Definition 2 (Probably Approximately Correct). An algorithm A is said to be PAC if, for any ✏ > 0
and 0 < � < 1, the sample complexity of A is less than some polynomial in the relevant quantities
(S,A, 1/✏, 1/�, 1/(1� �)), with probability at least 1� �.

We represent value function estimates over belief states as the dot product of a belief b and an ↵-vector,
V (b) = hb,↵i.
Definition 3 (↵-vector equation). The ↵-vector for a t-step conditional policy ⇡t is defined as:

↵⇡t
t (s) =

X

a2A,o2O,s02S

⇡t(a|s)p(s
0
|s, a)p(o|s0, a){r(s, a) + �↵⇡t�1

t�1 (s0)}. (1)

We observe that since the observation function p(o|s0, a) is 1 for a single o 2 O (if anot observe, then o
is deterministically a missingness observation and otherwise, o = s0 for the true underlying state s0)
and otherwise 0, we can simplify the ↵-vector for ACNO-MDP settings as:

↵⇡t
t (s) =

X

a2A,s02S

⇡t(a|s)p(s
0
|s, a){r(s, a) + �↵⇡t�1

t�1 (s0)}. (2)

Note that in ACNO-MDP settings, we can view each action as having two versions: an observed or
unobserved version. In both versions, the influence of the action on the state is identical: p(s0|s, a) is
the same for the unobserved version of a and the observed version. Therefore the learned dynamics
from the observed version of an action ai is identical to its unobserved counterpart. The only
difference is that the unobserved action counterpart is associated with deterministically observing the
“missingnes” observation instead of deterministically observing the true state.

We now proceed in stating and proving the main theorem of our analysis.
Theorem 2. Let M be any ACNO-MDP with observation cost c(s, aobserve) for all (s, a) 2 S ⇥A,
and reward bounded between [0, Rmax]. Let b0 be the initial belief distribution over states such that
b0 2 R

|S|, and let ✏ and � be two positive real numbers. Following Observe-then-Plan will achieve
an expected episodic reward of V (b0) � V ⇤(b0)� ✏ after a number of episodes that is bounded by
O(S

5A2H5R3
max◆

4

✏3), where ◆ = O(ln (SAH/�✏)) with probability at least 1� �.

This is stated as Theorem 1 in the main text. A proof sketch is also provided in the main manuscript,
though we additionally provide a brief overview of the proof strategy here for clarity. We note

3Note this defines c as an infinite horizon. We can adapt this definition to the episodic finite horizon case by
considering c as the concatenation of state-action sequences from multiple episodes.

19

from the prior work on POMDP-RL PAC analysis by Guo et al. [21] that with sufficiently accurate
estimates of the POMDP transition and reward models, we can bound the value function estimate
errors computed under those models. We follow the analysis of EEPORL [21] to bound value function
estimates using the ↵-vectors in order to achieve similar results in ACNO-MDP settings. In order
to obtain sufficiently accurate ACNO-MDP model estimates, we closely follow the recent work on
reward-free exploration by Jin et al. [28], but we assume stationary transition dynamics (unlike the
original work which assumes non-stationary transitions).

Below we include relevant lemmas and proofs to show the total number of episodes necessary for
obtaining an ✏-optimal policy in any ACNO-MDP setting by following our proposed tabular algorithm
Observe-then-Plan. Note that only exploration contributes to this sample complexity since planning
does not assume any further updating of the model estimates.

Proof.

We use the results from Lemma 1, 2, and 3, which are based on Model-based Interval Estimation
[64, 65] and reward-free exploration [28], to compute the necessary number of episodes for obtaining
sufficiently accurate ACNO-MDP model estimates with high probability. Once the model estimate
errors are guaranteed, Lemma 4 and Lemma 5 show that POMDP planning under these model
estimates using approximate ↵-vectors is ✏-optimal with probability at least 1� �.

In order to make claims about the probability with which we can achieve ✏-optimal poli-
cies, we must consider the failure events (and their associated probabilities) that could make our
algorithm suboptimal even after the specified number of episodes. These failure events are listed as
(2.1-4) below. Here m denotes the required number of visits per (s, a) as determined by Lemma
1, N(s,a) is the number of episodes EULER is executed on target (s, a) determined by Lemma 3,
⇣ is a fixed value between [0, 1] representing a probability threshold determined by S,Rmax, H
(review Definition 4), and ✏R, ✏T denote the reward and transition model errors. We call the set of
⇣-significant states K and the set of insignificant states K̃.

FChernoff =

8
<

:9s 2 K, a :

N(s,a)X

i=1

1[Xi] = n(s, a) < m,where Xi = [(s, a)is executed in the ith episode]

9
=

;
(2.1)

F EULER =

⇢
9s 2 K, a : E⇡⇠�(s,a)

P⇡(s, a|s0) <
⇣

2

�
(2.2)

FR = {9s 2 K, a : |r̂(s, a)� r(s, a)| > ✏R} (2.3)

FT = {9s,2 K, a : ||p̂(s, a)� p(s, a)||1 > ✏T } (2.4)

We show that the combined failure probability can still be bounded by � so long as our algorithm can
guarantee the accuracy of ACNO-MDP transition and reward model parameters (i.e., if we can bound
the errors of estimated transition and reward model parameters by ✏T and ✏R, respectively).

Lemmas 1 through 3 guarantee that the probability of each failure event for a particular (s, a) pair is
bounded by �0, thus the failure probabilities over all states and actions are also bounded as follows:

P (FChernoff)  SA�0, P (F EULER)  SA�0, P (FR)  SA�0, P (FT)  SA�0. (2.5)

By union bound, Observe-then-Plan has a failure probability of at most 4SA�0. With probability at
least 1�4SA�0, Observe-then-Plan guarantees that the algorithm visits each ⇣-significant state-action
pair at least m times after a certain number of episodes, N (i.e., SAN(s,a)). It is also important
to note that the algorithm does not need the same guarantee for ⇣-insignificant state-action pairs
because ⇣ is set (Lemma 4) such that even if the transition and reward estimates of the insignificant
state-action pairs are far from the truth, they do not affect the ↵-vector estimates too much. By
choosing ⇣ = ✏

18SHRmax
, ✏R = ✏

6SH , ✏T = ✏
6SH2Rmax

and �0 = �
4SA , we show this number N

is O(S
5A2H5R3

max◆
4

✏3) where ◆ = O(ln (SAH/✏�)). This N gives the final sample complexity of
eO(S

5A2H5R3
max

✏3) for obtaining an ✏-optimal policy in any ACNO-MDP setting by following Observe-
then-Plan. ⇤

20

We first formally define ⇣-significant states based on how likely the states are to be visited under
any policy. This definition is based on the definition of �-significant states by Jin et al. [28]. ⇣-
significant states are used during the exploration phase of Observe-then-Plan to show that only the
⇣-significant state-action pairs (whose probabilities of being seen under some possible policy exceed
a fixed threshold value) need to be visited sufficiently many times in order to guarantee an ✏-optimal
ACNO-MDP policy with high probability. We define ⇣-significant states as,
Definition 4. A state s is ⇣-significant if there exists a policy ⇡ such that the probability of reaching
s within H steps from the initial state s0 following ⇡ is at least ⇣. Any action taken from s makes a
⇣-significant state-action pair. Formally, s is ⇣-significant iff there is some policy ⇡ such that,

max
⇡

H�1X

t=0

P⇡(st = s|s0) � ⇣. (1.1)

For notational simplicity in Lemma 2 and Lemma 4, we use max⇡ P⇡(s) to denote
max⇡

PH�1
t=0 P⇡(st = s|s0) (i.e., the cumulative probability of visiting state s within H steps

from the initial state s0). Using this definition of ⇣-significant state-action pairs, we now deter-
mine the necessary number of visits to every ⇣-significant state-action pair in order to bound the
ACNO-MDP model estimates based on the Model-based Interval Estimation [64, 65].
Lemma 1. For any state-action pair (s, a), let r̂(s, a) be the sample mean of the observed rewards,
p̂(s, a) the empirical transition probability distribution, and n(s, a) be the number of times (s, a) is
visited in the ACNO-MDP environment. If n(s, a) � 72S3H4R2

max ln (4/�0)
✏2 , then with probability at

least 1 � 2�0, |r̂(s, a) � r(s, a)|  ✏R and ||p̂(s, a) � p(s, a)||1  ✏T . In particular, we consider
✏R = ✏

6SH and ✏T = ✏
6SH2Rmax

.

Proof.

For any state-action pair (s, a), with probability 1� 2�0, Model-based Interval Estimation [64, 65]
guarantees,

|r̂(s, a)� r(s, a)| 

s
ln (4/�0)R2

max

2n(s, a)
(1.1)

and

||p̂(s, a)� p(s, a)||1 

s
2[ln (2S � 2)� ln (�0)]

n(s, a)
. (1.2)

We wish to find the number of episodes, m, such that if n(s, a) � m, then |r̂(s, a)� r(s, a)|  ✏R
(1.1) and ||p̂(s, a)� p(s, a)||1  ✏T (1.2) are satisfied. We can therefore let

m � max
⇢
ln (4/�0)R2

max

2(✏R)2
,
2[ln (2S � 2) + ln (1/�0)]

(✏T)2

�
. (1.3)

Since ln (2S � 2)  S and a+ b  ab if a, b � 2, we can let

m � max
⇢
ln (4/�0)R2

max

2(✏R)2
,
2S ln (1/�0)

(✏T)2

�
. (1.4)

As required by Lemma 4 (4.17), we choose ✏R 
✏

6SH and ✏T 
✏

6SH2Rmax
, where ✏ corresponds to

the suboptimality bound described in Theorem 2. Then

m � max
⇢
ln (4/�0)R2

max · 36S
2H2

2✏2
,
2S ln (1/�0) · 36S2H4R2

max

✏2

�
(1.5)

=) m � max
⇢
18S2H2R2

max ln (4/�
0)

✏2
,
72S3H4R2

max ln (1/�
0)

✏2

�
(1.6)

=) m �
72S3H4R2

max ln (4/�
0)

✏2
. (1.7)

21

Equation (1.7) implies that if n(s, a) � 72S3H4R2
max ln (4/�0)
✏2 , then any (s, a) has both bounded

transition and reward model estimate errors, with probability at least 1� 2�0. ⇤
Next we want to determine a sufficient number of episodes N(s,a) such that if we run EULER for

N(s,a) episodes on any state-action pair, n(s, a) � 72S3H4R2
max ln (4/�0)
✏2 is guaranteed for any (s, a) if

that pair is ⇣-significant. This step closely follows the regret analysis of EULER algorithm [76] in
the context of reward-free exploration used by Jin et al. [28].

Lemma 2. With probability at least 1��0, if EULER is executed for N0 = O(S2AH
5
2 ◆3/⇣) episodes,

where ◆ := log (SAH/�0⇣), on any ⇣-significant state s 2 S as the exploration target, then EULER
finds a set of policies �(s) with |�(s)

| = N0 such that 1
2max⇡P⇡(s)  1

N0

P
⇡2�(s,a) P⇡(s).

Proof.

Similar to the reward-free exploration analysis in Jin et al. [28], our proposed Observe-then-Plan
also uses EULER as a black-box exploration algorithm to reach all ⇣-significant states and actions
with high probability (Algorithm 3, L3:9). We show that with a sufficiently large N0, the cumulative
probabilities are guaranteed to satisfy 1

2max⇡P⇡(s)  1
N0

P
⇡2�(s,a) P⇡(s).

For completeness, we begin with Proposition 6, Problem Independent Bound for EULER with
Bernstein Inequality by Zanette and Brunskill [76], which shows with probability at least 1� �0, the
regret of EULER at timestep T is bounded by

eO
 r

G2

H
SAT +

p

SSAH2(
p

S +
p

H)

!
(2.1)

Lemma 3.4 by Jin et al. [28] shows that the upper bound G2 in EULER can be replaced by 4V ⇤(s)
because the reward function under the exploration objective is zero for all states except the target
state s and thus

PH�1
t=0 r(st)  1.

Using V ⇤(s) = max⇡P⇡(s) and T = N0H , we expand the regret bound (2.1) as,

max⇡P
⇡(s)�

1

N0

X

⇡2�(s)

P⇡(s)  c0 ·

8
<

:

s
SA◆ · max⇡P⇡(s)

N0
+

S2AH
5
2 ◆3

N0

9
=

; (2.2)

for some constant c0.

We want to find N0 such that the right side of the inequality is bounded above by 1
2max⇡P⇡(s), i.e.,

c0 ·

8
<

:

s
SA◆ · max⇡P⇡(s)

N0
+

S2AH
5
2 ◆3

N0

9
=

; 
1

2
max⇡P⇡(s). (2.3)

Following the proof of Theorem 3.3 by Jin et al. [28], we choose N0 such that for some constant
0 < c1 < 1, s

SA◆ · max⇡P⇡(s)

N0
 c1 · max⇡P⇡(s) (2.4)

S2AH
5
2 ◆3

N0
 c1 · max⇡P

⇡(s). (2.5)

Below we show that choosing N0 �
S2AH

5
2 ◆3

c21max⇡P⇡(s)
is sufficient.

vuut
SA◆max⇡P⇡

S2AH
5
2 ◆3

c21max⇡P⇡(s)

= c1 ·

r
1

SH
5
2 ◆2

· max⇡P⇡(s)  c1 · max⇡P⇡(s). (2.6)

S2AH
5
2 ◆3

S2AH
5
2 ◆3

c21max⇡P⇡(s)

= c21 · max⇡P
⇡(s)  c1 · max⇡P

⇡(s). (2.7)

22

Thus if we choose N0 �
S2AH

5
2 ◆3

c21max⇡P⇡(s)
for a sufficiently small constant c1, we obtain max⇡P⇡(s)�

1
N0

P
⇡2�(s) P⇡(s)  1

2max⇡P⇡(s) and subsequently, 1
2max⇡P⇡(s)  1

N0

P
⇡2�(s) P⇡(s).

Since max⇡P⇡(s) � ⇣ for any ⇣-significant state by definition, if EULER is executed for

N0 = O

✓
S2AH

5
2 ◆3

⇣

◆
episodes, then 1

N0

P
⇡2�(s) P⇡(s), the expected probability of visiting s

while executing ⇡ 2 �(s) from the EULER-returned set of policies, is still at least as large as
1
2max⇡P⇡(s) � ⇣

2 . Thus we have

1

N0

X

⇡2�(s)

P⇡(s) �
1

2
max⇡P

⇡(s) (2.8)

for all ⇣-significant states after SAN0 episodes, where N0 = O

✓
S2AH

5
2 ◆3

⇣

◆
. ⇤

We conclude the exploration phase of Observe-then-Plan with Lemma 3 by running EULER on each
target state-action pair for sufficiently many episodes to satisfy Lemma 1 and Lemma 2.

Lemma 3. After N(s,a) = O

✓
max

⇢
4 72S3H4R2

max ln (4/�0)
✏2⇣ , S2AH

5
2 ◆3

⇣ , 16 ln (1/�0)
⇣

�◆
episodes of EU-

LER, any ⇣-significant state-action (s, a) is observed at least 72S3H4R2
max ln (4/�0)
✏2 times with probabil-

ity at least 1� �0.

Proof.

For any ⇣-significant state-action pair (s, a), let Xi be the indicator variable
1[(s, a) is visited while following ⇡i]. Let �i = Pr{Xi = 1}, and let SN(s,a)

=
PN(s,a)

i=1 Xi,

and µ =
PN(s,a)

i=1 �i. We want to find N(s,a) such that with probability at least 1 � �0, any

⇣-significant (s, a) pair is observed at least 72S3H4R2
max ln (4/�0)
✏2 times after executing EULER for

N(s,a) episodes.

First assume N(s,a) = O

✓
S2AH

5
2 ◆3

⇣

◆
which provides the guarantee that µ =

PN(s,a)

i=1 �i �

N(s,a)(
⇣
2) from Lemma 2.

Using the lower tail Chernoff bound on SN(s,a)
and µ,

P

✓
SN(s,a)


1

2
µ

◆
 e(�µ/8) (3.1)

Replace µ = N(s,a)(
⇣
2) and set the failure probability on the right side to be bounded by �0.

e(�N(s,a)
⇣
16)  �0 (3.2)

N(s,a)
⇣

16
� ln (1/�0) (3.3)

N(s,a) �
16 ln (1/�0)

⇣
(3.4)

We also want to satisfy
µ

2
� N(s,a)(

⇣

4
) �

72S3H4R2
max ln (4/�

0)

✏2
(3.5)

to ensure that any ⇣-significant (s, a) pair is visited at least 72S3H4R2
max ln (4/�0)
✏2 times. Equation

(3.5) guarantees that the error probability from Equation (3.1) is an upper bound on Pr{SN(s,a)
<

72S3H4R2
max ln (4/�0)
✏2 } since {SN(s,a)

< 72S3H4R2
max ln (4/�0)
✏2 } ⇢ {SN(s,a)

< µ
2 }.

23

Determine N(s,a) as,

N(s,a) � max

(
4
72S3H4R2

max ln (4/�
0)

✏2⇣
,
16 ln (1/�0)

⇣
,
S2AH

5
2 ◆3

⇣

)
(3.6)

After N(s,a) �
288S3AH4R2

max◆
3 ln (4/�0)

✏2⇣ episodes, EULER observes at least 72S3H4R2
max ln (4/�0)
✏2 sam-

ples of any ⇣-significant (s, a) with probability at least 1��0. We choose �0 = �
4SA and ⇣ = ✏

18SHRmax
,

as will be discussed in Lemma 4, so N(s,a) � 288 · 18 · S4AH5R3
max◆

3 ln (16SA/�)
✏2 . We multiply N(s,a),

the necessary number of episodes for running EULER on a single (s, a) pair as the exploration
target, by SA in order to guarantee that all ⇣-significant states and actions are visited at least
72S3H4R2

max ln (4/�0)
✏2 times. ⇤

After the exploration phase of Observe-then-Plan, we use the transition and reward model estimates
to plan a t-step conditional policy ⇡t such that for any known initial state distribution, the ↵-vector
difference is bounded in terms of the model estimate errors.
Lemma 4. Suppose we have approximate ACNO-MDP model parameters with errors ||p̂(s, a) �
p(s, a)||1  ✏T and |r̂(s, a)�r(s, a)|  ✏R for all ⇣-significant states and actions, then for any t-step
conditional policy ⇡t starting from any initial state s0, |↵̂⇡t

t (s0)� ↵⇡t
t (s0)|  ✏RSt+ ✏TSRmaxt2 +

3⇣SRmaxt.

Proof.

Separate every state s 2 S into ⇣-significant states (call this set K) and ⇣-insignificant states (call
this set K̃). This proof closely follows the analysis by Jin et al. [28], leveraging the separation of
⇣-significant versus ⇣-insignificant states. Use the guarantee by Lemma 3 that all ⇣-significant states
and actions have error-bounded model estimates, and for any ⇣-insignificant states and actions, the
↵-vector estimates of those states have negligible effect on the final value function estimate.

First, we provide a version of the Value Difference Lemma by Dann et al. [11] (Lemma E.15)
(also stated by Jin et al. [28] (Lemma C.1)). Unlike these previous expositions, we write the Value
Difference Lemma with ↵-vectors instead of with V estimates. From Definition 3 (eq 2), we note the
↵-vector definition in ACNO-MDP settings does not require the summation over every observation in
O. Consider any t-step conditional policy ⇡t and its ↵-vector estimates, ↵̂t, from any initial state s0.
If t = 0, we know |↵̂⇡t

t (s0)� ↵⇡t
t (s0)| = |↵̂⇡0

0 (s0)� ↵⇡0
0 (s0)| = 0 since there is no actionable step.

For any t � 1 and ACNO-MDP M, the Value Difference Lemma states that

|↵̂⇡t
t (s0)� ↵⇡t

t (s0)| (4.1)

= EM

hn���
Pt

i=1 (r̂(si, ai)� r(si, ai) +
P

s0 (p̂(s
0
|si, ai)� p(s0|si, ai)) · ↵̂i�1(s0))

���
o
|s0
i

(4.2)

 EM

hnPt
i=1 (|r̂(si, ai)� r(si, ai)|+

P
s0 |(p̂(s

0
|si, ai)� p(s0|si, ai)| · ↵̂i�1(s0))

o
|s0
i

(4.3)
since ↵̂i�1(s) � 0 for any s given r(s, a) 2 [0, Rmax], as stated in Theorem 2.

By definition of expectation, we can express the inequality 4.2 as follows:

|↵̂⇡t
t (s0)� ↵⇡t

t (s0)| (4.4)


Pt

i=1

P
si2S P (si|s0;⇡) (|r̂(si, ai)� r(si, ai)|+

P
s0 |(p̂(s

0
|si, ai)� p(s0|si, ai)| · ↵̂i�1(s0)) (4.5)

First consider the reward difference term.
tX

i=1

X

si2S

P (si|s0;⇡)|r̂(si, ai)� r(si, ai)| (4.6)

Separate every si 2 S into either K or K̃:

24

tX

i=1

X

si2S

P (si|s0;⇡)|r̂(si, ai)� r(si, ai)| (4.7)

=
Pt

i=1

P
si2K P (si|s0;⇡)|r̂(si, ai)� r(si, ai)|+

P
si2 eK P (si|s0;⇡)|r̂(si, ai)� r(si, ai)|(4.8)

Since the reward estimate error is bounded above by ✏R for every ⇣-significant state-action pair and
|r̂(si, ai)� r(si, ai)|  |r̂(si, ai)|  Rmax, we obtain

tX

i=1

X

si2S

P (si|s0;⇡)|r̂(si, ai)� r(si, ai)| 
tX

i=1

X

si2K

P (si|s0;⇡)✏R +
tX

i=1

X

si2 eK

P (si|s0;⇡)Rmax.

(4.9)
Because |K|  S and the order of summation can be interchanged,

tX

i=1

X

si2K

P (si|s0;⇡)✏R +
tX

i=1

X

si2 eK

P (si|s0;⇡)Rmax  tS✏R +Rmax
X

si2K̃

tX

i=1

P (si|s0;⇡) (4.10)

By definition of ⇣-insignificant state,
Pt

i=1 P
⇡(si|s0) < ⇣ for any policy ⇡ if si 2 eK and | eK|  S.

Thus

tS✏R +Rmax
X

si2K̃

tX

i=1

P (si|s0;⇡)  tS✏R + S⇣Rmax (4.11)

Next consider the transition difference term:
tX

i=1

X

si2S

P (si|s0;⇡)

(
X

s0

|(p̂(s0|si, ai)� p(s0|si, ai)| · ↵̂i�1(s
0)

)
. (4.12)

Similarly separate all si 2 S into either K or K̃.

tX

i=1

(
X

si2K

P (si|s0;⇡)
X

s0

|(p̂(s0|si, ai)� p(s0|si, ai)| · ↵̂i�1(s
0)

)
+ (4.13)

tX

i=1

8
<

:
X

si2 eK

P (si|s0;⇡)
X

s0

|(p̂(s0|si, ai)� p(s0|si, ai)| · ↵̂i�1(s
0)

9
=

; (4.14)



tX

i=1

8
<

:
X

si2K

✏T · maxs0 ↵̂i�1(s
0) +

X

si2 eK

P (si|s0;⇡)
X

s0

|(p̂(s0|si, ai)� p(s0|si, ai)| · ↵̂i�1(s
0)

9
=

;

(4.15)



tX

i=1

8
<

:
X

si2K

✏T ·Rmaxi+
X

si2K̃

P (si|s0;⇡) · 2 ·Rmaxi

9
=

; (4.16)

=

(
tX

i=1

X

si2K

✏T ·Rmaxi

)
+

8
<

:
X

si2K̃

tX

i=1

P (si|s0;⇡)

!
· 2 ·Rmaxt

9
=

; (4.17)

where line 4.12 follows from the fact that the transition estimate error is bounded above by ✏T for
all ⇣-significant state-action pairs and line 4.13 follows from the facts that max↵̂i�1  Rmaxi andP

s0 |p̂(s
0
|si, ai)�p(s0|si, ai)| 

P
s0 |p̂(s

0
|si, ai)|+ |p(s0|si, ai)| = ||p̂(si, ai)||1+ ||p(si, ai)||1 =

2.

By the definition of ⇣-insignificant states,

(
tX

i=1

X

si2K

✏T ·Rmaxi

)
+

8
<

:
X

si2K̃

tX

i=1

P (si|s0;⇡)

!
· 2 ·Rmaxt

9
=

; (4.18)

25



(
tX

i=1

X

si2K

✏T ·Rmaxi

)
+

8
<

:
X

si2K̃

⇣ · 2 ·Rmaxt

9
=

; . (4.19)

 tS✏TRmaxt+ 2S⇣Rmaxt (4.20)
Combining the bounds from (4.8) and (4.16), we conclude

|↵̂⇡t
t (s0)� ↵⇡t

t (s0)|  ✏RSt+ S⇣Rmax + ✏TSRmaxt
2 + 2⇣SRmaxt (4.21)

 ✏RSt+ ✏TSRmaxt
2 + 3⇣SRmaxt. (4.22)

By choosing ⇣ = ✏
18SHRmax

, ✏R 
✏

6SH , ✏T 
✏

6SH2Rmax
, we have for any t  H ,

|↵̂⇡t
t (s0)�↵⇡t

t (s0)| 
⇣ ✏

6SH

⌘
SH+

✓
✏

6SH2Rmax

◆
SH2Rmax +

✓
✏

18SHRmax

◆
3SHRmax =

✏

2
(4.23)

⇤
Once the ↵-vector estimates are bounded, we closely follow the proof of EEPORL (217-229) by Guo
et al. [21] to show the value function estimates are near-accurate as shown below.
Lemma 5. If an ↵-vector for state s0 following any t-step conditional ACNO-MDP policy ⇡t has
bounded error |b↵⇡t

t (s0) � ↵⇡t
t (s0)| 

✏
2 and the initial belief b0 (i.e., state distribution) is known,

then V ⇤(b0)� V ⇡̂(b0)  ✏ for the true optimal policy ⇡⇤ and returned policy ⇡̂.

Proof.
V ⇤(b0)� V b⇡(b0) = b0 · ↵

⇡⇤
� b0 · ↵

b⇡ (4.1)

= b0 · ↵
⇡⇤
� b0 · ↵

b⇡ + (b0 · b↵b⇡
� b0 · b↵b⇡) + (b0 · b↵⇡⇤

� b0 · b↵⇡⇤
) (4.2)

= b0 · (�↵
b⇡ + b↵b⇡) + b0 · (b↵⇡⇤

� b↵b⇡) + b0 · (↵
⇡⇤
� b↵⇡⇤

) (4.3)
Since b⇡ is found optimal under b↵-vectors, b↵b⇡

� b↵⇡⇤
and therefore

b0 ·(�↵
b⇡+b↵b⇡)+b0 ·(b↵⇡⇤

�b↵b⇡)+b0 ·(↵
⇡⇤
�b↵⇡⇤

)  b0 ·(�↵
b⇡+b↵b⇡)+b0 ·(b↵b⇡

�b↵b⇡)+b0 ·(↵
⇡⇤
�b↵⇡⇤

)
(4.4)

 b0 · |b↵b⇡
� ↵b⇡

|+ b0 · |b↵⇡⇤
� ↵⇡⇤

|. (4.5)
Since b0 2 R

|S| is an initial probability distribution over the states and ↵ 2 R
|S| is also defined over

the states,

b0 · |b↵b⇡
� ↵b⇡

|+ b0 · |b↵⇡⇤
� ↵⇡⇤

|  ||b↵b⇡
� ↵b⇡

||1 + ||b↵⇡⇤
� ↵⇡⇤

||1. (4.6)

Thus
V ⇤(b0)� V b⇡(b0)  ||b↵b⇡

� ↵b⇡
||1 + ||b↵⇡⇤

� ↵⇡⇤
||1. (4.7)

For any policy ⇡t and initial state s0 2 S, |↵̂⇡t
t (s0)� ↵⇡t

t (s0)| 
✏
2 by Lemma 4, so the `1-norm

over the ↵-vectors is also bounded above by ✏
2 . Therefore V ⇤(b0)� V ⇡̂(b0) is bounded above by ✏.

This guarantees that after O
⇣

S5A2H5R3
max◆

4

✏3

⌘
episodes, with probability at least 1� �, the bounded

↵-vector estimates yield near-accurate value function estimates. By finding an optimal policy under
these value function estimates, Observe-then-Plan guarantees that the returned t-step ACNO-MDP
policy is ✏-optimal with high probability. ⇤

Appendix B. Experimental details

Our code is available on https://github.com/nam630/acno_mdp.

Appendix B.1 Algorithms for tabular states and actions

We describe the training details of the algorithms used to obtain a policy for treating a Sepsis patient.
At the end of training episodes, the estimated transition and reward model (or Q-function estimates),
are used to evaluate the final policy under 50 rollouts. (Evaluation results are included in Table 3 of
the manuscript.)

26

https://github.com/nam630/acno_mdp

Partially observable Monte-carlo tree search (POMCP) details Observe-then-Plan and ACNO-
POMCP plan optimal action trajectories using POMCP. In particular, ACNO-POMCP uses POMCP
to simulate rollouts under the transition and reward models based on samples observed during the
exploration phase of Observe-then-Plan. As the Observe-then-Plan algorithm decouples exploration
from planning, these estimated transition and reward model parameters are no longer updated once
the algorithm enters the planning phase following an initial 1,000 episodes of exploration.

We use the POMDPy implementation of POMCP [14] with the following parameters: 2000 particles at
the root node, 5000 roll-outs, and a max search depth of 5. During simulation, actions are selected
by UCB1, which adds an uncertainty bonus to Q values as Q�(h, a) = Q(h, a) + c

q
logN(h)
N(h,a) with

coefficient c = 3. The action resulting in the highest estimated reward (using information aggregated
from simulated rollouts) is the action that the agent executes in the true environment.

The best next action is recomputed after each step in the environment. In summary, our process
follows: First start with a set of 2,000 initial belief states, simulate trajectories by choosing actions
based on UCB from the initial state, take an action in the real environment and collect observations
(either missing or of the true underlying states) and rewards, re-sample previous belief particles to
keep them consistent with the received observation, simulate trajectories again from the resampled
belief particle set. If the agent chooses to not observe, every belief particle is kept between steps in
the environment because the missing observation cannot completely rule out any states from its belief
set as implausible; on the other hand, if the agent chooses to observe, resampling rejects any particles
whose next state observation would not match the true state observation. In order to speed up the
runtime, we additionally set a particle selection timeout of 0.2 second per step if the particle set has
at least 3 belief particles.

EULER exploration details for Observe-then-Plan We implement Algorithm 2 of EULER [76]
with the following adjustments to the originally proposed parameters: ln 4SAT

�0 (denoted by C

hereafter)= 0.01, H = 5, Bv =
p
2C, J = H ⇤ C/3, Bp = HBv. Note S = 720, A = 8 in Sepsis

but for practical reasons, we approximate the log failure probability to be 0.01 and adjust the relevant
parameters (e.g., J,Bv, Bp) accordingly. Additionally, we modify the reward function following the
reward-free exploration approach proposed by Jin et al. [28], but we assume transition dynamics
are stationary. First, fix an arbitrary state-action pair (s, a). Construct an auxiliary MDP M

0 where
the reward is 1 only for the chosen (s, a) pair and 0 for all other states and actions. Also make s
a terminal state in M’. While executing EULER, every actionable step is observed and the tuple
(s, a, s0, r) is collected into the dataset. While our theoretical guarantees would require a much larger
number of episodes, empirically on the Sepsis simulator, we observe that after 1k episodes, the
transition and reward model estimates are sufficiently good for learning an optimal policy using
POMCP.

EULER exploration details for EULER-VI We use the same implementation for EULER as
Observe-then-Plan. The main difference is that actions in EULER-VI are chosen based on the
confidence intervals of the value estimates calculated from the observed rewards from the true
environment M instead of the modified reward function used only during reward-free exploration
[28] under M0. Once the transition and reward model estimates are learned after 1k episodes, standard
value iteration is computed under the learned model to extract the highest reward policy, which maps
every state at a given timestep to some action. During evaluation, same as with other algorithms, we
evaluate the value-iteration policy with 50 rollouts in the real environment but additionally assuming
the observation cost is incurred at every actionable timestep since the standard value iteration assumes
the environment is an MDP.

ACNO-POMCP training details The transition model is initialized to uniform distributions
over the entire state space, and the reward function is initialized to 0. The algorithm maintains
n(s, a), n(s, a, s0), r(s, a) and estimates the transition p(s, a, s0) as n(s,a,s0)

n(s,a) and the average instan-

taneous reward as
P

i ri(s,a)
n(s,a) . Every time a tuple (s, a, s0, r) is observed, the associated counts are

incremented and the model is recomputed at the end of every episode if there is any changes to the
counts. Unlike Observe-then-Plan which only chooses greedy actions to execute in the real envi-
ronment, ACNO-POMCP selects actions by ✏-greedy to explore the real environment. In particular,
ACNO-POMCP uses an initial ✏ value of 1.0 and minimum of 0.1 with a decaying factor of 0.95

27

applied after every episode. ACNO-POMCP does not require any fixed number of observations to be
made prior to planning since whether and when to observe the outcome of actions is determined by
the online agent. The total training episode length is 2000, same with DRQN.

DRQN training details DRQN takes in as input a length 721 one-hot encoded vector of the patient
state (720 states for patient state and additional 1 for a missingness observation). The network has
one hidden layer of size 16, one LSTM layer of 16 hidden weights. The LSTM output is passed
through another hidden layer of size [16] followed by ReLU activation and mapped to the 16 values
each representing a discrete action choice. The DRQN network parameters are optimized with Adam
using a learning rate of 1e-3. The buffer size is kept at the maximum number of training episodes.
For exploration, we use ✏-greedy with the initial value of 1 and a decaying factor of 0.999 applied
after every episode. The Q estimate parameters are updated at the end of every episode for a total of
2k training episodes. Only greedy actions are selected with ✏ = 0 during the 50 evaluation episodes.

Appendix B.2 Algorithms for continuous states and actions

A2C training details Same as the original implementation for DVRL by Maximilian et al. [43],
our implementation uses 16 parallel environments and 5 steps for update. In total, we train for
2.5 ⇥ 107 frames (steps). The encoder, the policy, and the value function are trained end-to-end
with the following weights to the loss function: action coefficient �A = 1, entropy coefficient �H =
0.01, value loss coefficient �V = 0.5, and encoding loss coefficient �E = 1, and the loss function at
timestep t is defined as Lt = �A

L
A
t + �H

L
H
t + �V

L
V
t + �E

L
E
t [43], which is a standard A2C loss

function plus the belief encoding loss LE . For the standard A2C implementation (under the always
observing assumption), we simply exclude L

E and use the state observations as inputs to the policy
and value function networks. We use RMSProp optimizer with ↵ = 0.99, max gradient norm = 0.5,
and a learning rate of 0.0001.

The policy is one fully connected layer with 5 outputs (i.e., 2 for Guassian mean, 2 for standard
deviation, and 1 binary output for whether to observe or not) on Mountain Hike and 4 (i.e., {Left,
Right}⇥ {Observe, Not observe}) on Cart Pole. The observing action part of the policy for Mountain
Hike is passed through a Sigmoid layer and converted to 0 (if  0.5) if not observing and 1 (if >
0.5) if observing. The output of the Cart Pole policy is passed through a Softmax layer to generate
a probability distribution over the action space. The value function is also a fully connected layer
whose input size is the same as the size of an RNN latent state ht and output size is always 1.

Belief encoder update Both encoders update 30 belief particles (= K) and each belief at timestep
t is represented by a latent state zt, an RNN latent state ht, and a weight wt. For learning the actor and
the critic, the belief particles are passed through one GRU layer and encoded into a single aggregated
1d array ĥt which has the same size as ht. The policy and value function networks are defined over
the aggregated ĥt. Below we describe vanilla DVRL belief encoder [43] and our modified version of
ACNO-belief encoder. While other approaches, such as Bayesian filtering, may be considered for
state estimation, the original work on DVRL points out that many existing methods are not scalable to
large or continuous states and observations. Their paper also includes ablation studies on the influence
of belief particle resampling after weights are readjusted according to the received observation, and a
comparison of DVRL encoders with RNN encoders which aggregate observations and actions into a
belief history without any reconstruction loss (see Algorithms 1 and 2 of Appendix in the original
DVRL paper [43]).

DVRL belief encoder model architecture DVRL [43] has three encoders for observations 'o,
latent states 'z and actions 'a, four networks for belief update (i.e., proposal, emission, transition,
and deterministic transition) and one network for belief aggregation to output ĥt. The observation
encoder 'o has two fully connected layers of size [64, 64], each followed by ReLU activation, and
we use an observation encoding of size 64. The action encoder 'a, which outputs an encoding of
dimension 128, is one fully connected layer with ReLU activation. The latent state zt (of size 128 on
Mountain Hike and 256 on Cart Pole) is also passed through one fully connected layer and ReLU
activation to generate 'z . The size of zt is the same as the size of an RNN latent state ht as well as the
aggregated belief state ĥt. The proposal network q✓(zt|ht�1, xo, xa) is one fully connected layer with
ReLU activation with two heads that additionally takes in an encoded observation xo and an encoded
action xa. The latent state is assumed Gaussian, so one head outputs a mean and the other head

28

outputs a standard deviation. The emission network p✓(ot|ht, xz, xa) is one fully connected layer
with ReLU activation where xz is an encoded latent state. The transition network p✓(zt|ht�1, xa)
has one hidden layer of size [ht] with ReLU activation and two heads simiarly for outputting a mean
and a standard deviation. The last transition network is a GRU cell that outputs the aggregated ht

from the concatenated encodings of latent states, observations, and actions, (ht�1, xz, xo, xa).

This pseudocode is from DVRL by Maximilianet al. [43] Algorithm 1 DVRL encoder.

Algorithm 4 DVRL encoder

Input Previous state belief b̂t�1, observation ot, action at�1.
Output b̂t, and model estimation loss LELBO

t .
1: Unpack w1:K

t�1 , z
1:K
t�1 , h

1:K
t�1, ĥt�1 b̂t�1

2: xo
 'o

✓(ot)
3: xa

 'a
✓(at�1)

4: for every particle k = 1, . . . ,K do
5: Resample hk

t�1 ⇠ h1:K
t�1 based on weights

6: Sample zkt ⇠ q✓(zkt |h
k
t�1, x

o, xa)
7: xz

 'z
✓(zt)

8: wk
t p✓(zkt |h

k
t�1, x

a)p✓(ot|hk
t�1, x

z, xa)/q✓(zkt |h
k
t�1, x

o, xa)
9: hk

t GRU(hk
t�1, x

z, xo, xa)
10: end for
11: L

ELBO
t � log

P
k w

k
t � log (K)

12: ĥt GRU(Concat(wk
t , z

k
t , h

k
t)

K
k=1passed sequentially)

13: Pack b̂t (w1:K
t , z1:Kt , h1:K

t , ĥt)

ACNO-A2C belief encoder model architecture Our model also has the same encoders 'o,'z,'a

with the same architecture as the DVRL model. We also use the same one layer GRU for belief
aggregation to output ĥt. However, for belief update, our encoder only has two networks: one for
predicting the next state and the other for ouputting an aggregated latent state ht. We additionally
leverage that dim(zt) = dim(ot) since ot gives the true underlying state zt, but keep the same
aggregate state ht dimensions as the original DVRL (e.g., dim(ht) = 128 on Mountain Hike and 256
on Cart Pole). The first network p✓(zt|ht�1, xa) has one hidden layer of size [ht] followed by ReLU
activation, and two heads for outputting a mean and a standard deviation. The network for outputting
ht has the same architecture as DVRL, and the GRU network aggregates every concatenated encoding
into ĥt. We only include the belief encoding loss LE

t to the total loss Lt if ot is observed, and no
encoding loss is added if the underlying state is not observed.

This pseudocode modifies the original implementation of the DVRL encoder to incorporate the
ACNO-MDP observation structure into the inference network.

29

Algorithm 5 ACNO-A2C belief encoder (including encoding networks 'a,o,z)

Input Previous state belief b̂t�1, observation ot, action at�1.
Output b̂t, and next state prediction loss Lt.

1: Unpack w1:K
t�1 , z

1:K
t�1 , h

1:K
t�1, ĥt�1 b̂t�1

2: xo
 'o

✓(ot)
3: xa

 'a
✓(at�1)

4: for every particle k = 1, . . . ,K do
5: Resample hk

t�1 ⇠ h1:K
t�1 based on weights

6: if at�1 = observe then
7: zkt = ot, wk

t = 1
K

8: Lt Lt � log p✓(ot|hk
t�1, x

a)
9: else

10: Sample zkt ⇠ p✓(zkt |h
k
t�1, x

a)
11: wk

t p✓(zkt |h
k
t�1, x

a)
12: end if
13: xz

 'z
✓(zt)

14: hk
t GRU(hk

t�1, x
z, xo, xa)

15: end for
16: ĥt GRU(Concat(wk

t , z
k
t , h

k
t)

K
k=1passed sequentially)

17: Pack b̂t w1:K
t , z1:Kt , h1:K

t , ĥt and include Lt if at�1 = observe.

Standard A2C model architecture Standard A2C assumes that the observation is made at every
timestep and uses a state encoder which maps the observation input into an encoding dimension.
Here we still use the same dimensions for the hidden state as the above two algorithms (e.g., 128 on
Mountain Hike and 256 on Cart Pole) followed by ReLU activation. The encoded output is passed
through a single layer linear policy and a value function network. The policy network uses a Softmax
layer to output a distribution over the two action choices on Cart Pole (e.g., |A| = 2 assuming
every step is observed) and 2-dimensional Gaussian mean and also 2-dimensional standard deviation
outputs for actions on Mountain Hike, and a fixed observation cost is applied to every actionable step
in the environment.

Appendix B.3 Experimental domains

Sepsis The patient starts from the initial state consisting of {heart rate = normal, blood pressure
= low, oxygen concentration = low, glucose level = normal, antibiotic state = off, vasopressor
state = off, ventilation state = off} which is represented by a tabular value “256”. S = 720 and
A = 8 (treatment choices)⇤2 (option of observing or not) = 16 for choosing both whether to observe
or not and which treatment option to take. We assume the patient is non-diabetic and model the same
stochastic transitions used in the Sepsis simulator code by Oberst and Sontag [48]. Every episode
has maximum 5 actionable steps and may terminate early if the patient is discharged or shows more
than 3 abnormal symptoms. As described in the main text, a reward of 1 is given for discharge, 0 for
death, and 0.25 for neutral states. We use a discount factor of 0.7.

Mountain Hike Mountain Hike is run for 75 steps per episode with a discount factor of 0.99. In the
code implementation of DVRL by Maximilian et al. [43], the transition is defined as: (xt+1, yt+1) =
(xt, yt)+ (4xt,4yt)+N(0, 0.025 · I2⇥2) where (4xt,4yt) is given by action at. Goal position is
(0.7, 0.5) with radius (0.1). The starting x, y coordinates are drawn independently from N(�0.85, 0.1).
We use 64 for the action encoding and 128 for the dimensions of both the latent state ht and the
aggregated belief state ĥt.

Cart Pole Cart Pole is run for maximum 200 steps per episode. An episode terminates early if the
pole falls more than ±12 degrees angle or the cart position is more than ±2.4 from the center of the
screen. A reward of 1 is given to every surviving step with a discount factor of 0.98. The action
encoding has 128 dimensions and both the hidden state ht and aggregated hidden state ĥt have 256
dimensions.

30

Appendix B.4 Experiment runtime

We include the logged wall clock runtimes of running different algorithms on the simulated/toy
environments below:

Environment Algorithm Experiment time (hr:min:sec)

Sepsis Observe-then-Plan 9:52:0.66
ACNO-POMCP 17:03:50.04

DRQN 00:00:12.03
EULER-VI 1:43:54.33

Mountain Hike ACNO-A2C 1 day, 15:15:37
DVRL 1 day, 20:30:01

Standard A2C 4:38:59

Cart Pole ACNO-A2C 1 day, 6:59:50
DVRL 1 day, 13:50:49

Standard A2C 1:42:38

Appendix B.5 Full experimental results

Table 3 Table 3 in the manuscript shows the average discounted returns and 1 standard error from
3 separate seed averages (for example, for EULER-VI with observation cost of -0.1 the mean of
the expected rewards is calculated from the results of {0.478, 0.484, 0.513} and the standard errors
included in the table below indicate the errors over 50 simulated runs), each with rewards averaged
across 50 simulated rollouts. The table below shows the average reward and 1 standard error over 50
simulation episodes at the end of training (each row shows the results from a different run).

Observation Observe-then-Plan ACNO-POMCP DRQN EULER-VI POMCP-planning
Cost (Observe before planning) (Observe while planning) (Generic POMDP-RL) (MDP-RL) (With true models)

-0.1 0.739 ± 0.023 0.554 ± 0.040 0.650 ± 0.020 0.478 ± 0.019 0.747 ± 0.025
0.775 ± 0.025 0.653 ± 0.023 0.693 ± 0.0 0.484 ± 0.021 0.760 ± 0.026
0.749 ± 0.024 0.600 ± 0.032 0.436 ± 0.022 0.513 ± 0.019 0.760 ± 0.024

-0.05 0.735 ± 0.024 0.605 ± 0.030 0.649 ± 0.010 0.594 ± 0.020 0.758 ± 0.023
0.713 ± 0.026 0.671 ± 0.012 0.525 ± 0.013 0.679 ± 0.023 0.751 ± 0.021
0.772 ± 0.020 0.597 ± 0.033 0.605 ± 0.021 0.642 ± 0.021 0.764 ± 0.024

Table 4 This table shows the average discounted returns and standard deviations from 3 seed
averages for 1000 episodes (in the case of DRQN, the results show the last 1000 episodes from
training and planning since DRQN mixes model training with planning). These values correspond to
the second half of the plot from Figure 1 during which the agent switched from exploring to planning.
For clarification, the difference between Table 3 and Table 4 is that Table 3 only reports results from
50 evaluation episodes, during which, for example, the networks of DRQN were frozen while the
results in Table 4 report the average returns from continuously training the model throughout the
2000 episodes (unless the algorithm switches from exploring to planning), which are also presented
in Figure 1 of the main text.

Since we do not know the exact optimal behavior in the Sepsis environment, we provide the results
from POMCP-planning with the true model parameters to show the planner’s performance when
model estimation is assumed to be optimal.

Observation Observe-then-Plan ACNO-POMCP DRQN EULER-VI POMCP-planning
Cost (Observe before planning) (Observe while planning) (Generic POMDP-RL) (MDP-RL) (With true models)

0.743 ± 0.174 0.592 ± 0.236 0.524 ± 0.156 0.477 ± 0.134 0.725 ± 0.180
-0.1 0.738 ± 0.182 0.609 ± 0.227 0.607 ± 0.149 0.512 ± 0.142 0.728 ± 0.182

0.748 ± 0.165 0.606 ± 0.232 0.613 ± 0.186 0.505 ± 0.150 0.736 ± 0.168

31

Figure 3: Supplement to Figure 1. Shows cumulative returns across 2000 episodes of model estimation
and planning. The dotted vertical line shows when the algorithm switches from exploring purely for
model estimation to planning for an optimal action sequence.

32

	Introduction
	Related work
	Problem setting
	Algorithms
	Observe-then-Plan algorithm for tabular ACNO-MDPs (``Observe before Planning'')
	ACNO-POMCP/ACNO-A2C algorithms (``Observe while Planning'')

	Analysis
	Experimental results
	Algorithms for tabular ACNO-MDPs
	Algorithms for ACNO-MDPs with continuous state-action spaces

	Conclusion

