
Adversarially Robust 3D Point Cloud Recognition
Using Self-Supervisions

Supplementary Materials

Jiachen Sun ∗1, Yulong Cao 1, Christopher Choy 2, Zhiding Yu 2, Anima Anandkumar 2,3,
Z. Morley Mao 1, and Chaowei Xiao 2,4

1University of Michigan , 2NVIDIA , 3Caltech , 4ASU

A Implementation Detail

In this section, we introduce our implementation details of the adopted model architectures and
self-supervised learning tasks.

A.1 Model Architecture

As we summarized in § 1, 3D point cloud recognition models could be mainly categorized into three
groups, including shared multi-layer-perceptron (MLP)-based, convolution-based, and transformer-
based architectures. We select three representatives: PointNet [1], DGCNN [2], and PCT [3] in our
study. We utilize the open-sourced codebase in [4], [5], and [6] as our base implementations and
follow their MIT licenses to use the codes.
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Figure A: Illustration of Different Backbone Architectures.

PointNet. We adopt the same architecture as the original implementation except for the T-Nets,
because the isometric robustness is out of the scope of this paper, and T-Nets will make the adversarial
training unstable. PointNet leverages a shared MLP to extract features:

x′i = ReLU(θp · xi) (S1)

The detailed parameters are illustrated in Figure A.

DGCNN. We also adopt the same architecture as the original implementation, as illustrated in
Figure A. DGCNN leverages EdgeConv as their basic operation to extract features. EdgeConv finds
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the k = 20 neighbor points and uses the symmetric function to aggregate the local features:
x′i = maxj∈ζki [ReLU(θq · (xj − xi) + θp · xi)] (S2)

where ζki represents the neighbor points of xi and the max value is extracted from each feature
channel to aggregate the local feature. The EdgeConv layers are stacked to form the DGCNN
backbone.

PCT. As introduced in § 3.2, we replace the PointNet++-based operation [7] with EdgeConv [2] in
the encoding phase of PCT because PointNet++ uses Farthest Point Sampling (FPS). In FPS, different
anchor points are sampled from each iteration, so that the local features will not be consistent in
adversarial training. EdgeConv generalizes the PointNet++ operation, which aggregates local features
from each point without sampling [2]. We adopt EdgeConv with k = 32 in PCT. The detailed
parameters are illustrated in Figure A.

Please refer to our codebase for detailed parameters like batch normalization and activation functions.

A.2 Self-Supervised Learning Task

We follow exactly the same setting as Poursaeed et al. [8] and Sauder et al. [9] for 3D rotation and
jigsaw proxy tasks since they are model-agnostic.

3D Rotation. For rotation angles η = 6, we use directions as ±x, ±y, and ±z axes. For η = 18, we
evenly choose six directions in xy, xz, and yz planes, as shown in Figure B.

(a) Pre-defined Angle η = 6. (b) Pre-defined Angle η = 18.

Figure B: Illustration of 3D Rotation Pre-defined Angles [8].

3D Jigsaw. As introduced in § 2.2, we
choose k = 3, 4 in this task. There-
fore, the edge-length-2 3D space will be
into 33 = 27 and 43 = 64 small cells
C = {ci}k

3−1
i=0 . Each point in cell ci will

be assigned a label as i. We randomly
permute the cells in the 3D space and
make the model predict the segmentation
label assigned to each point.

Autoencoder. For the autoencoder task,
as mentioned in § 2.2, we leverage the
FoldingNet [10] decoder in our study. We use PointNet [1], DGCNN [2], and PCT [3] backbones as
the encoder, respectively. We illustrate the FoldingNet architecture in Figure C. As it shows, there
is a positional encoding in the decoding phase, and we leverage 2D plane (m × 2), 3D Gaussian
(m× 3), and 3D sphere (m× 3) [11]. Positional encoding serves as a prior to help achieve better
reconstructions.
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Figure C: Illustration of FoldingNet Architecture.

We leverage Chamfer distance [12] to bound the reconstruction loss:

Chamfer(x,x′) =
1

||x′||0

∑
y∈x′

min
x∈x
||x− y||22 (S3)

Although Chamfer distance does not hold for the triangle inequality, it can be still used as the objective
for the autoencoder task, and we use the following formulation in the adversarial pre-training of the
autoencoder task:

argmin
θE

[max
σ
||E(x)− E(x+ σ)||1] + argmin

[θE ;θD]

Chamfer(x, D(E(x))) (S4)

where E(·) and D(·) represent the encoder and decoder, respectively, and θE := θm. By doing
so, we shift the adversarial training focus from the whole encoder-decoder architecture to the
encoder/backbone only, since our goal is to enhance the backbone’s robustness.
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B Evaluation Detail

In this section, we first introduce the detailed formulations of the adopted attack methods. Then, we
present additional evaluation results.

B.1 Attack Method

We introduce the detailed formulation of attack methods used in our study.

Salient Point Dropping. We follow the attack setups in [13] to formulate our attack. We first
calculate the median “point” of the point cloud xmedianj = median({xij |xi ∈ x})(j ∈ {1, 2, 3})
as an anchor. Next, the gradients of the coordinates can be calculated as:

∂L
∂ri

=

3∑
j=1

∂L
∂xij

·
xij − xmedianj

ri
(S5)

where ri =
√∑3

j=1(xij − xmedianj)2 is the radius of each point in the sphere coordinate. The
saliency scores are further calculated by:

saliency(xi) = −
∂L
∂ri
· ri1+α (S6)

where α = 1 is chosen, suggested by [13]. As introduced in § 2.1, we drop k = 14, 5 points with
highest saliency scores in each iteration of the training and testing phases, respectively, until a total
drop of N = 100 points.

Momentum Iterative Method. The Momentum Iterative Method (MIM) attack introduces a mo-
mentum term into the adversarial optimization:

gs+1 = µ · gs +
∇xs
L(xs,y;F)

||∇xsL(xs,y;F)||1
xs+1 = xs + α · sign(gs+1)

(S7)

We empirically set µ = 1, followed by [14]. The other setups are similar to PGD attacks.

Auto Attack. We adopt the A-PGD attack in Auto Attack (AA) [15]. We follow exactly the same
implementation in [16], which is the official codebase of AA.

B.2 Additional Experiments and Results

In this section, we introduce the evaluation results which are not presented in the main paper due to
space constraints.

B.2.1 Model Adaptation to Adversarial Training

Table A: PointNet Adaptation
Results (%) on ModelNet40.

Model CA RA

PointNet 87.2 ± 0.27 34.1 ± 5.59
- T-Net 87.6 ± 0.15 37.9 ± 3.76

As introduced in § 3.2, we leverage some tricks to improve the stan-
dard adversarial training baseline [17]. We provide insights on how
different components contribute to the overall improvements. First,
the default T-Net [1] in PointNet can be regarded as a self-attention
module with restricted capacity since it learns a transformation matrix
Tn×n to holistically transform the feature: F ′n×m = Fn×m×Tm×m,
where F ′n×m and Fn×m denote the output and input features. The
adversarial perturbations on Tm×m, therefore, will have a significant impact on the downstream
features, which will make adversarial training unstable. The primary goal of T-Net is to improve the
isometric stability of PointNet. Since isometry is out of the scope of our study, we do not utilize T-Net
in our PointNet implementation. Second, the feature extraction in PCT leverages PointNet++ [7],
which uses sampling and grouping for local feature aggregation. As introduced in § 3.2 and § A.1,
Farthest Point Sampling (FPS) is leveraged to sample the anchor points. However, since the point
cloud is perturbed every iteration, different anchor points will be sampled in the learning procedure,
making the adversarial training ineffective. As demonstrated in [2], EdgeConv generalizes PointNet++
operation with a larger capacity. EdgeConv can be at high-level viewed as a PointNet++ operation
that samples every point in the point cloud. We thus adopt two layers of EdgeConv in the PCT
implementation.
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B.2.2 Preliminary Study on Contrastive Pre-training

We conduct a preliminary study on contrastive pre-training and adapt PointContrast [18] to our
problem setting with two schemes. For the first scheme, we positively pair the same objects with
different rotation and Gaussian jitters and treat the remaining 2(N-1) samples in the mini-batch as
negative examples. For the second scheme, we leverage the original point-level pairing and PointIn-
foNCE loss proposed in [18] as our pre-training objective. PointContrast leverages two different
views of a point cloud scene and computes the point-level mapping for pairing. Such a construction
procedure corresponds to rotation and scale transformations in their official implementation [19]. We
empirically choose the temperature parameter = 0.07 in our experiments. Table B shows the results.

Table B: Evaluation Results (%) of PointContrast Pre-training.
ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

Pre-training Scheme Parameters CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline N/A 87.7 37.9 90.6 62.0 89.7 49.1 69.9 23.7 74.4 30.9 72.4 20.5 96.6 79.7 98.1 86.3 97.4 80.0

PointContrast Adapted 87.7 47.5 91.6 62.7 89.8 49.1 69.4 24.6 76.2 36.6 70.4 25.1 96.7 80.0 98.1 87.5 97.0 80.1

PointContrast Original 87.2 47.0 91.5 62.5 89.7 49.1 69.5 24.3 75.6 32.8 70.5 22.9 96.9 79.5 98.0 86.4 97.1 80.1

We find that although our contrastive pre-training indeed shows improvements compared to the
adversarial training (AT) baseline, it cannot beat the jigsaw-based pre-training strategy. We summarize
several potential reasons. First, the current dataset for point cloud classification is much smaller than
the datasets in 2D vision (e.g., ImageNet [20]). However, contrastive learning usually requires a large
and sophisticated dataset to work well [21, 22]. In PointContrast, they need to rely on a much larger
dataset, ScanNet [23] (consisting of both spatial and color information), even for the downstream
classification task. Specifically, ScanNet contains 2.5 million views in more than 1,500 scans [23].
However, in our study, we find that pre-text task-based methods can work well purely on the original
dataset. PointContrast also explicitly mentioned that even pre-training on ShapeNet [24], which is
also extracted from CAD models but a much larger dataset than ModelNet40, cannot effectively
improve the fine-tuning performance of point cloud learning. Second, to construct different views
of a point cloud scene, PointContrast still leverages global transformation to pair points. Therefore,
we believe such a scheme may also focus more on global feature learning. In an extreme case, if
the network could learn the transformation applied in constructing different views, the network will
accurately identify the positive pairs. Therefore, it will reduce to learning the transformation itself,
which can explain why the results are no better than 3D rotation.

B.2.3 Reproducible Results of Adversarial Pre-training for Fine-tuning

All the evaluation results from Table 2 in the main paper are based on experiments using the same
random seed. To confirm the robustness improvements are non-trivial, we utilize five different random
seeds to re-run the experiments. As it is too time-consuming and resource-intensive to re-schedule all
the experiments for pre-training and fine-tuning, we only select the best adversarial pre-training for
fine-tuning (APF) setting in Table 2 (main paper) for this evaluation. As Table C shows, we find that
the variances of the fine-tuned models are relatively small and there are still significant improvements
compared to the adversarial training baseline, which demonstrates that the pre-training on useful
proxy tasks indeed help achieve stronger robustness in the fine-tuning stage.

B.2.4 Evaluation of PGD Attack with Different ε and C&W Attack

We evaluate our adversarially trained model on more attacks including PGD attacks with ε ∈
[0.02, 0.04, 0.06] and C&W attack [25].

From Table D, we observe that models from our best APF strategy could achieve non-trivial robustness
among different epsilons (even with ε = 0.06), and it is expected that the adversarially trained models
perform better with ε < 0.05. Our models trained with self-supervised learning also achieve
consistently stronger robustness than the AT baselines. It further verifies the significance of self-
supervised learning for 3D point cloud robustness.

We also measure the attack success rate (ASR) of targeted C&W attack [25] with the `∞ norm
constraint [26]. Table E shows that C&W attack cannot easily achieve the adversarial goal on models
protected even by standard adversarial training.
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Table C: Evaluation Results (%) of Adversarial Pre-training for Fine-tuning.

ModelNet40 ScanObjectNN ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA CA RA

AT Baseline
Average 87.6 37.9 90.5 61.7 89.4 48.9 69.7 23.5 74.4 31.9 72.4 20.6 96.5 79.6 98.2 86.1 97.7 80.0
Variance 0.15 3.76 0.15 1.01 0.29 0.82 0.23 1.71 0.13 0.98 0.38 0.53 0.08 0.23 0.05 0.19 0.07 0.21

Average 87.9 51.8 90.7 66.9 89.9 51.0 70.6 25.6 76.2 40.8 73.1 27.2 97.0 80.7 98.3 90.5 97.3 83.8
Best APF

Variance 0.13 0.40 0.31 0.71 0.32 0.14 0.61 0.51 1.09 1.52 0.87 0.69 0.06 0.13 0.06 0.18 0.10 0.23

Table D: Robust Accuracy (%) of PGD Attack with Different ε.
ModelNet40 ScanObjectNN ModelNet10

Pre-training Scheme Parameter PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

AT Baseline ε = 0.02 63.2 80.9 78.8 43.6 54.9 54.1 91.9 93.3 92.1
Best APF ε = 0.02 76.0 84.3 79.4 47.4 62.0 56.1 92.1 96.2 94.6

AT Baseline ε = 0.04 46.2 70.9 61.3 28.5 39.6 35.1 84.5 91.0 86.2
Best APF ε = 0.04 61.1 76.7 62.9 31.8 48.9 37.4 85.2 92.9 88.4

AT Baseline ε = 0.06 25.1 48.9 37.2 17.8 25.6 19.1 74.1 84.2 77.1
Best APF ε = 0.06 43.2 54.1 39.6 19.3 33.1 20.5 75.0 86.4 77.6

Table E: Attack Success Rate (%) of C&W Attack.
ModelNet40 ScanObjectNN ModelNet10

Pre-training Scheme Parameter PointNet DGCNN PCT PointNet DGCNN PCT PointNet DGCNN PCT

ST Baseline ε = 0.05 98.3 98.1 99.0 100.0 100.0 100.0 95.3 96.2 95.1

AT Baseline ε = 0.05 11.2 7.6 9.8 35.9 24.4 39.7 5.9 5.5 6.0

Best APF ε = 0.05 6.9 5.2 5.7 30.1 20.0 30.4 5.5 4.2 5.5

B.2.5 Transfer Attacks on ScanObjectNN and ModelNet10

Similarly, we demonstrate that fine-tuned models from different pre-training tasks have different
vulnerabilities, and adversarial examples generated by attacking them do not transfer well among
each other on ScanObjectNN and ModelNet10. As Figure D and E shows, there is still a ∼15% gap
between robust accuracy on the diagonal and the other locations of the heat maps. We have presented
the results of the ensemble methods in the main paper (Table 2).

B.2.6 Point Dropping and Adding Threats on ModelNet

The quantitative results of point dropping (PD) and adding (PA) adversaries on ModelNet [27]
are summarized in Table F and G. We find that jigsaw-based APF still achieves the highest robust
accuracy, and DGCNN also performs the best among the three architectures. Since two ModelNet
datasets are extracted from CAD models, modifications on a small number of points would not result
in a large accuracy drop even in adversarial settings. We also observe that the robust accuracy will
sometimes surpass the clean accuracy. The reason is that the adversarial training always takes the
dropped or added point cloud samples as input so that the model fits the modified point clouds better,
while the clean accuracy still maintains.

Table F: Evaluation Results (%) of PD on ModelNet40 and ModelNet10.
ModelNet40 ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA

ST Baseline N/A 88.6 66.6 91.5 75.5 92.1 72.2 96.0 79.0 97.8 89.0 97.9 88.3

AT Baseline N/A 87.0 88.6 89.1 93.6 85.9 91.2 96.6 94.3 98.5 98.3 97.5 98.5

k = 3 87.6 88.3 88.6 93.6 86.4 94.0 96.5 94.2 98.3 98.6 97.4 98.43D Jigsaw
k = 4 86.7 88.7 87.6 94.3 85.4 94.3 97.0 94.7 98.5 98.5 97.3 98.4

k = 3 87.2 88.7 91.0 93.6 87.4 94.1 96.1 94.7 98.8 98.5 96.7 98.7Adversarial
3D Jigsaw k = 4 87.4 89.1 90.1 93.4 87.5 94.2 96.8 95.0 97.8 98.4 98.0 98.8
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(a) PointNet. (b) DGCNN. (c) PCT.
Figure D: Robust Accuracy on Transfer Attacks among Fine-tuned Models from Different SSL Tasks on
ScanObjectNN.

(a) PointNet. (b) DGCNN. (c) PCT.
Figure E: Robust Accuracy on Transfer Attacks among Fine-tuned Models from Different SSL Tasks on
ModelNet10.

Table G: Evaluation Results (%) of PA on ModelNet40 and ModelNet10.
ModelNet40 ModelNet10

PointNet DGCNN PCT PointNet DGCNN PCT

Pretext Task Parameters CA RA CA RA CA RA CA RA CA RA CA RA

ST Baseline N/A 88.6 78.6 91.5 65.5 92.1 52.6 96.0 95.2 97.8 93.1 97.9 93.1

AT Baseline N/A 89.3 83.3 91.6 85.3 90.4 82.4 96.5 95.3 98.2 96.4 97.9 96.1

k = 3 89.8 83.3 91.5 85.2 90.7 84.0 97.1 96.3 98.6 96.5 98.0 95.93D Jigsaw
k = 4 89.6 83.3 91.7 85.5 90.0 82.2 96.8 95.3 98.7 95.9 97.9 95.0

k = 3 89.5 83.4 91.4 85.7 90.0 85.0 96.8 95.8 98.6 96.5 98.1 96.6Adversarial
3D Jigsaw k = 4 89.0 83.4 92.2 86.6 90.4 85.1 96.6 95.4 98.1 96.5 97.9 96.4
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