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Appendix of CAM GAN

1 Preliminary

Generative Adversarial Network (GAN): We briefly introduce GAN [1, 2] for which our pro-
posed a lightweight continual learning scheme. GAN is a generative model consisting of two
networks; a discriminator network D and a generator network G. The generator focuses on emulating
the true data distribution, while the discriminator network focuses on efficiently differentiating the
true data samples from the samples generated by the generator network, thus forming a zero-sum
game architecture. The GAN objective function can be formulated as:

Ex∼pdata
log(D((x; θd))) + Ez∼pz(z)log((1−D(G(z; θg); θd)))] (1)

2 Experimental details

We conduct extensive experiments to show the efficacy of our approach in generation of various tasks
in streamed manner. We also demonstrate that our approach can be used to perform pseudo-rehearsal
of tasks to assist discriminative models to incorporate continual learning. Our approach leverages
feature space for style modulation to adapt to the novel task. While performing experiments, we
observe that our approach requires significant less number of iterations to adapt to new task than
approaches which rely on weight space to adapt to the new task.

2.1 Unconditional

We train our model on various datasets to show the effectiveness of our approach in generating high-
dimensional and diverse domains images in a streamed manner. We conduct experiments on Flower
[3], Cathedrals [4], Cat [5], Brain-MRI images [6] , Chest X-ray images [7], and Anime faces 1. The
modelM is trained on CelebA [8] which serves as global parameters for the remaining tasks in the
sequence. We show robustness of our model to the source task, we also consider LSUN-Bedroom[4]
dataset as base task.

Due to limited space, we could only demonstrate part of the generated images in the main pa-
per(Sec.2.3). To provide better clarity about the perceptual aspects of our results, Figures 1, and 2
present the qualitative results of our approach. As evidenced from the figures, our approach generates
quality samples for current as well as previously learnt tasks. Our approach leverages feature maps
to preform style modulation unlike other approaches which rely on weight space transformations.
Empirically, we observed that while training the model for a new task in the data stream, our approach
requires significantly less number of training iterations. Please refer to Table-1 for the training
iterations used in the proposed model compared to the GAN-Memory [9]. We can observe that for

1https://github.com/jayleicn/animeGAN
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the flower and X-Ray dataset, our approach requires 20K iteration to train while GAN-Memory [9]
requires 60K iteration. We observe a similar pattern for the Brain-MRI dataset where we require
30K iteration compared to GAN-memory which trained for the 60K iteration.

2.2 Continual Data generation as Replay

We further perform experiments to show efficacy of our approach as generative replay to assist the
discriminative model to inculcate continual learning. We train our model for four task sequences
comprising of four groups of Imagenet dataset [10] (fish,bird,snake,dog). These groups further
contain six sub-classes. In generative replay framework for discriminative models, we first train the
model to generate a sequence of historical tasks using our method, GAN-memory, and MeRGAN. i).
While training the classifier network for current task Tt, we generate samples from all the previous
tasks T1 . . . Tt−1 using the continually trained model. We combine these generated samples with
the training samples of the current task in the sequence to train the classifier network. We perform
labelled conditional generation, as the selected dataset comprises of defined sub-classes within each
task. We have used base model trained on the CelebA dataset for conditional generation setup for
our approach and baseline models. We demonstrate perceptual results of conditional generation for
generative replay in Figure 3. The batch size for EWC is set as n=24, and for replay based methods,
while training task t, the batch size is set to t× n. We select ResNet18 model as classifier network,
and utilizes the ResNet-18 model pretrained on Imagenet dataset. Adam optimizer with learning rate
5× 1e−5, and coefficient (β1, β2)= (0.9,0.999) has been used for training of ResNet-18 model.

2.3 Architectural Details

We inherit GAN architecture from “Which Training Methods for GANs do actually Converge?”(GP-
GAN)2 [11]. We select GP-GAN architecture as it has been very successful in generating quality
samples in high-dimensional spaces, by providing stable training. We use R1 regularizer defined
in GP-GAN paper, which regularizes the discriminator network when it deviates from the Nash
equilibrium of zero-sum game defined by GAN networks. It penalizes the gradient of a discriminator
for the real data term alone to provide training stability. The R1 regularizer is given by

R1(ψ) =
γ

2
EPD(x)[||∇Dψ(x)]||2

where ψ represents discriminator parameters and γ is a regularization constant. In our experiments
we use γ = 10.

We first train the network on celebA T0 dataset with resolution 256x256. The base model’s parameters
trained on CelebA serve as global parameters for model M. We have also shown robustness of
our approac to the base task, We further train our model considering lsun-Bedroom dataset image
generation as base task. Table 2 support our claim, our model achieves comparable FIDs for all the
tasks in the sequence even considering LSUN-bedroom[4] as base task. We annex adapter modules
in all convolutional layers of generator network except the last layer. We annex the adapter module
in model trained on the first task also to provide better training stability across multiple tasks. The
discriminator network architecture is kept similar to the architecture used in GP-GAN. We keep all
the discriminator network parameters unfrozen so that the discriminator network can enforce the
generator network for high-quality samples generation.

We use Fŕechet Inception Distance (FID) [12] as evaluation metric to show quantitative results, as it
correlates with human evaluation and is efficient to compute. FID between the two distribution X1

and X2 is defined as

FID(X1,X2) = ||µ1 − µ2||2 + Tr(Σ1 + Σ2 − 2(Σ1Σ2)
1
2 )

where X1 and X2 represents a set of real images and generated images, respectively. For calculating
FID, we select min(10000,|Ds|), here |Ds| represents the total images in the chosen dataset. The
lower value of FIDs implies better generation, and we provide an FID score comparison with the
recent approaches for continual learning in GANs.

2https://github.com/LMescheder/GAN_stability
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3 Algorithm

Algorithm 1 Task similarity

Require: Task sequence Tt: t = 1 . . .K
1: for (t = 1, . . . ,K) do
2: Calculate task embedding vt corresponding to each task Tt.
3: Store the task vector vt.
4: if t > 1 then
5: for i = (t− 1) : 1 do
6: Calculate task similarity TS(vt,vi)
7: end for
8: Find the task Tc from the historical task sequence(T(t−1) . . . T1) having maximum task

similarity with the current task.
9: Initialize the adapter modules with the adapter parameters of the Task Tc.

10: Train the task specific parameters for the current task in the sequence.
11: end if
12: end for

4 Task-similarity based Transfer learning (TSL)

We know that transfer learning is the primary ingredient to improve the model performance. However
transfer learning with most closest task not only improves the model’s performance but also requires
very few parameters to learn and provides a fast convergence. Therefore it further provides a room to
reduce the model’s local parameters.

The detailed model are discussed in the main paper, where we calculate the FIM of the model for
each task. To calculate the FIM we consider the generator loss and it does not requires the samples
label. The size of the FIM embedding is same as number of parameters in the model, therefore
to save the embedding for each task we requires significant storage. We empirically observe that
instead of learning embedding of the whole parameters only the mean fisher information of each
filter in adapter module is sufficient to capture the task information. Therefore discarding the fully
connected layer and calculating the mean fisher information for each convolutional filter in adapter
modules provides a close approximation for the complete FIM. The above approximation drastically
reduce the embedding size and requires a negligible storage space. For each task we estimate the
FIM embedding and save in the memory, when novel task arrives we trained the GAN for the few
epoch and learn the FIM embedding for the generator loss. The current embedding is used to measure
the task similarity with all previously learned task and initialize the model parameters with the most
similar task’s parameters. In the Table-5 we provide the similarity score for each task with all the
previously learned task. Also, in the Table-3 we provide the results of the model with similarity
based initialization. We can observe that similarity based initialization significantly boost the model
performance. Also, TSL based initialization further provides a room to compress the model growth.
In the Table-3, CAM-GAN (TSL) (50% params) performs only half parameters growth compared to

Task Flower Cathedral Cat Brain-MRI X-Ray Anime Faces
GAN-Memory [9] 60k 60k 60k 60k 60k 60k
Ours 20k 60k 60k 30k 20k 60k

Table 1: Number of iterations required to train novel task in the streamed sequence.

Task Flower Cathedral Cat Brain-MRI X-Ray Anime
GAN-Memory [9] 14.8 15.6 18.2 15.59 17.18 13.29
CAM-GAN (CelebA) 23.0 9.52 18.21 15.6 14.24 13.1
CAM-GAN (LSUN) 24.1 8.63 17.3 14.96 11.8 14.2

Table 2: Quantitative comparison (FID score) of the images generated for the task sequence using
GAN-memory and CAM-GAN (using CelebA and Lsun-Bedroom as base task)
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the CAM-GAN (TSL) and we can observe that it shows highly competitive result with CAM-GAN
(w/o TSL) with 100 % parameters growth. Therefore using only 50% parameters in the adapter with
TSL based initialization we can achieve the same FID score as we obtained using the CAM-GAN
with previous task initialization.

CAM-GAN (w/o TSL) CAM-GAN (TSL) CAM-GAN (TSL) (50%params)
Cat 18.2 16.4 18.8

brain 15.8 15.0 15.9
Anime 13.3 10.9 13.8

Table 3: FID score based on the similarity measure. Here TSL (50% params) represents the model
with half parameter growth compared to the TSL.

CAM-GAN (100% params) CAM-GAN (50% params)
Flower 23.0 35.67
Church 9.52 14.01
Cat 18.21 21.17

Table 4: FID score of various tasks using CAM-GAN(100% parameters), CAM-GAN(50% params).
Here CAM-GAN(50% params) represents the model with half parameters to the actual architecture
considered in our approach.

CelebA Flower Cathedral Cat Brain-MRI X-ray Anime
CelebA 0.00000 ——— ———- ———— ———- ———- ———-
Flower 0.17347 0.00000 ———– ———— ———– ———– ———–
Cathedral 0.19235 0.19719 0.00000 ———— ———– ———– ———–
Cat 0.13226 0.17392 0.21314 0.00000 ———— ———– ———–
Brain-MRI 0.27495 0.27205 0.28336 0.32030 0.00000 ———– ———–
X-ray 0.39600 0.42941 0.41496 0.45344 0.35121 ———– ———–
Anime 0.16374 0.17057 0.22379 0.16971 0.33241 0.50362 0.00000

Table 5: Similarity score obtained using the FIM for the task sequence.

4.1 Experimental details

We firstly train the model for small number of iterations to learn the FIM corresponding to current
task T , In our case, we train the model for K = 1000 iterations to learn the FIM for each task. While
training task t = i, we calculate task similarity of the current task from all the previously stored task
embeeding. We initialize the adapter parameters of the current task with the most similar previous
task. We fine-tune the pretrained base model for finding FIM corresponding to each task. While
calculating FIM may require few additional iterations, it not only boosts the model performance but
also achieves the required performance in significantly fewer iterations if tasks are highly correlated.
We further performed experiments by reducing the adapters parameter by half while considering
the similar task for initialization. We only provide additional adapter parameters in the second
convolutional layer of residual block, while considering the adapters of first convolutional layer
of residual block same as the previous similar task. The results are provided in table 3. Because
of the task similarity based initialization we can improve the model performance and achieved the
similar model performance even further reducing the 50% parameters. In the Table-4 we have shown
the results of CAM-GAN by reducing the 50% model parameters when we don’t follow the task
similarity based initialization. We can observe without TSL, CAM-GAN’s performance significantly
degraded with the reduced parameter.

5 Interpolation between two tasks

Our method exhibits smooth interpolations among various task generation processes. We can
transfer images of one task to the other by providing weighted combination of parameters trained for
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respective tasks using our approach. We require following steps to be performed for interpolating
images belonging to various tasks:

• We first train our model for the datasets considered for interpolation (e.g. church, flowers).
• We take weighted combination of the task-specific parameters to perform the interpolation.

Let φi and φj be the adapter parameters for the task i and j. Then the interpolation
parameters (φinterp) between two task can be defined as:

φinterp = λ ∗ φi + (1− λ) ∗ φj (2)

where λ ∈ [0, 1] defining the relative weight in this combination. If λ = 1, the interpolation
parameters contains only the parameters of task i, and λ = 0 contains the parameters of the
task j.

• We annex the task-specific parameters φinterp to the global parameters θ to obtain the
complete modelM.

• The interpolated samples x can be generated as:

x = G(z; θ, φinterp) (3)

where z ∈ R256 is a fixed noise and z ∈ N (0, I) and for the unconditional generation c = 1.
G(z; θ, φinterp) is the generator network with the interpolated parameters.

In Figures 4, and 5, we demonstrate smooth interpolations of images between two diverse tasks.
Figure 4 shows interpolations of the celebA dataset to a completely diverse flower dataset. In Figure
6, we interpolate between the gray and color scale. The results clearly depict that we can modulate
the images of source dataset to the target dataset by making changes in the value of λinterp, which
shows the effectiveness of our approach in transferring the feature map space of one task to another
to incorporate continual learning.

We further demonstrate the interpolation results in Figures 7, 8, 9. The results clearly depict that
the transfer of target images from source images is smoother and fast, while considering task based
similarity for the initialization of target adapters. We can perceptually observe that Anime dataset
has more similarity to the CelebA dataset than X-ray dataset, which is evident through the smooth
interpolation between CelebA and Anime images.
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Figure 1: Images generated using our approach, Top:Church Bottom: Flower
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Figure 2: Images generated using our approach, Top: Brain MRI Bottom: Anime faces

8



Figure 3: Conditional images generated using our approach for generative replay a)Bird(Top),
Fish(Bottom)
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 Figure 4: Smooth interpolations of task’s parameters between CelebA and Flower images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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 Figure 5: Smooth interpolations of task’s parameters between Church and Cat images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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 Figure 6: Smooth interpolations of task’s parameters between X-ray and Anime images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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 Figure 7: Smooth interpolations of task’s parameters between CelebA and Cat images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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 Figure 8: Smooth interpolations of task’s parameters between Flower and Brain images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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 Figure 9: Smooth interpolations of task’s parameters between CelebA and Anime images generation
using our approach for λ = [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
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