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A Proofs of Theorems

A.1 Proof of Theorem 1

We consider using Theorem 5.7 of Van der Vaart [2000] to show the results of Theorem 1. For brevity,
we denote

S0n(u, g1) =
1

n

n∑
i=1

∆iKb(Ri(g1)− u), S0(u, g1) =
dP(∆ = 1, R(g1) ≤ u)

du
,

and

S1n(u, g1, g2) =
1

n

n∑
i=1

eg2(Xi)

eg1(Xi)

∫ Ri(g1)−u

−∞
Kb((v)dv,

S1(u, g1, g2) = E[eg2(X)−g1(X)I(R(g1) ≥ u)].

Then the pseudo-likelihood function is expressed as

Ln(g1, g2) =
1

n

n∑
i=1

∆ig2(Xi)−
1

n

n∑
i=1

∆iRi(g1) +
1

n

n∑
i=1

∆i log
{ S0n(u, g1)

S1n(u, g1, g2)

∣∣∣
u=Ri(g1)

}
.

Let G = {g ∈ G(d, s,M,A) : E[∆g(X)] = 0} and

L(g1, g2) = E
[
∆g2(X)−∆R(g1) + ∆ log

{ S0(u, g1)

S1(u, g1, g2)

∣∣∣
u=R(g1)

}]
.

By Lemma 2.4 of Schuster [1969], Lemma 2.4.3 of Van der Vaart and Wellner [1996] and Lemma 5
of Schmidt-Hieber [2020], we have

sup
g1,g2∈G,u∈R

|S0n(u, g1)− S0(u, g1)| → 0, a.s.,

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



and
sup

g1,g2∈G,u∈R
|S1n(u, g1, g2)− S1(u, g1, g2)| → 0, a.s.,

which further implies that

sup
g1,g2∈G

|Ln(g1, g2)− L(g1, g2)| → 0, as n→∞. (1)

Next, we show that, with the true functions h1 and h2, for any δ > 0,

sup
g1,g2∈G,

‖g1−h1‖L2+‖g2−h2‖L2≥δ

L(g1, g2) < L(h1, h2). (2)

For any g1, g2 ∈ G, define Ψ(u, v; g1, g2) = L(h1 + u(g1 − h1), h2 + v(g2 − h1)). Then by Taylor
expansion and assumptions (A1) and (A2), we get

Ψ(u, v; g1, g2)−Ψ(0, 0; g1, g2) � −E{[u(g1 − h1)]2 + [v(g1 − h1)]2}, (3)

where an � bn means that there exists c1, c2 > 0 such that c1an ≤ bn ≤ c2an. Hence it implies (2)
if we let u = v = 1.

Furthermore, Let

h̄1 = arg min
g1∈G

‖g1 − h1‖L2 and h̄2 = arg min
g2∈G

‖g2 − h2‖L2 .

Then, by (1), (3) and Theorem 5 in Schmidt-Hieber [2020], it follows that

|Ln(h̄1, h̄2)− Ln(h1, h2)| ≤|Ln(h̄1, h̄2)− L(h̄1, h̄2)|+ |L(h1, h2)− Ln(h1, h2)|
+ |L(h̄1, h̄2)− L(h1, h2)|

.op(1) + op(1) + E[(h̄1 − h1)2 + (h̄2 − h2)2]

=op(1), as n→∞.

(4)

where an . bn means that there exists c1 > 0 such that an ≤ c1bn.

The the definition of (ĥ1, ĥ2) and (4) gives

Ln(ĥ1, ĥ2) ≥ Ln(h̄1, h̄2)− ρ[J(h̄1, h̄2)− J(ĥ1, ĥ2)]

= Ln(h1, h2)− op(1),
(5)

where |ρ[J(h̄1, h̄2)− J(ĥ1, ĥ2)]| ≤ 2ρs→ 0, as n→∞.
Therefore, combining (1), (2) and (5), Theorem 5.7 of Van der Vaart [2000] implies that, for any
ε > 0,

P(‖(ĥ1, ĥ2)− (h1, h2)‖L2 ≥ ε)→ 0 as n→∞.

For the consistence of the survival estimator Ŝ(·|X). Denote κ = maxx∈[0,1]p τe
h1(x). Let

R0n(v, g1) =
1

nv

n∑
i=1

∆iKb(Ri(g1)− log v), R0(v, g1) =
dP(∆ = 1, Oeg1(X) ≤ v)

dv

and

R1n(v, g1, g2) =
1

n

n∑
i=1

eg2(X)

eg1(X)

∫ Ri(g1)−log v

−∞
Kb(v)dv,

R1(v, g1, g2) = E[eg2(X)−g1(X)I(Oeg1(X) ≥ v)].

Then

λ̂0(v)− λ0(v) =
R0n(v, ĥ1)

R1n(v, ĥ1, ĥ2)
− R0(v, h1)

R1(v, h1, h2)
.

Note that

R0n(v, ĥ1)

R1n(v, ĥ1, ĥ2)
− R0(v, h1)

R1(v, h1, h2)
=
R0n(v, ĥ1)R1(v, h1, h2)−R1n(v, ĥ1, ĥ2)R0(v, h1)

R1n(v, ĥ1, ĥ2)R1(v, h1, h2)
.
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The denominator R1n(v, ĥ1, ĥ2)R1(v, h1, h2) is asymptotically bounded away from zero by As-
sumption (A3), and the numerator is

R0n(v, ĥ1)R1(v, h1, h2)−R1n(v, ĥ1, ĥ2)R0(v, h1)

=[R0n(v, ĥ1)−R0(v, h1)]R1(v, h1, h2)− [R1n(v, ĥ1, ĥ2)−R1(v, h1, h2)]R0(v, h1).

By assumptions (A2) and (A3), we further observe that

‖R0n(·, ĥ1)−R0(·, h1)‖L2([0,κ])

≤‖R0n(·, ĥ1)−R0(·, ĥ1)‖L2([0,κ]) + ‖R0(·, ĥ1)−R0(·, h1)‖L2([0,κ])

→0, as n→∞.
Following similar discussions, we also have

‖R1n(·, ĥ1, ĥ2)−R1(·, h1, h2)‖L2([0,κ]) → 0, as n→∞.

And R0(v, h1) and R1(v, h1, h2) are asymptotically bounded. Thus, by Lebesgue’s dominated
convergence theorem, we have∥∥∥ R0n(·, ĥ1)

R1n(·, ĥ1, ĥ2)
− R0(·, h1)

R1(·, h1, h2)

∥∥∥L2([0,κ]) → 0, as n→∞,

which implies that, for any ε > 0, lim
n→∞

P(‖λ̂0 − λ0‖L2([0,κ]) ≥ ε) = 0.

Furthermore, by

Λ̂(u)− Λ0(u) =

∫ u

0

{λ̂0(v)− λ0(v)}dv,

we have
‖Λ̂− Λ0‖L2([0,κ]) ≤ κ‖λ̂0 − λ0‖L2([0,κ]) → 0, as n→∞.

This gives lim
n→∞

P(‖Λ̂0 − Λ0‖L2([0,κ]) ≥ ε) = 0, for any ε > 0. And by combining Theorem 1, we
obtain, for any ε > 0,

lim
n→∞

P(‖Ŝ(·|X)− S(·|X)‖L2([0,τ ]) ≥ ε) = 0.

A.2 Proof of Theorem 2.

Denote Aδ = {g = (g1, g2) ∈ G × G : δ/2 ≤ d(g,h) ≤ δ} and

L̃n(g1, g2) =
1

n

n∑
i=1

∆ig2(Xi)−
1

n

n∑
i=1

∆iRi(g1) +
1

n

n∑
i=1

∆i log
{ S0(u, g1)

S1(u, g1, g2)

∣∣∣
u=Ri(g1)

}
.

Note that, when b = O(n−1/(2α∗+1)),

E{sup
g∈Aδ

|[Ln(g)− L̃n(g)]− [Ln(h)− L̃n(h)]|} . δn−
α∗

2α∗+1 [log(n)]1/2. (6)

Then, we show that

E{sup
g∈Aδ

√
n|[L̃n(g)− L(g)]− [L̃n(h)− L(h)]|} . ϕn(δ), (7)

where ϕn(δ) = δ
√
s log U

δ + s√
n

log U
δ with U = K

∏K
k=0(dk + 1)

∑K
k=0 dkdk+1. Denote

Gn =
√
n(En − E), where EnX = 1/n

∑n
i=1Xi. Let ψ1(g) = ∆[−R(g1) + g2] and ψ2(g) =

∆ log
{

[S0(u, g1)/S1(u, g1, g2)]|u=Ri(g1)
}
, then

√
n{[L̃n(g)− L(g)]− [L̃n(h)− L(h)]} = Gn[ψ1(g)− ψ1(h)] + Gn[ψ2(g)− ψ2(h)].

Let Fδ = {ψ1(g)− ψ1(h) : g ∈ Aδ}. For any g1, g2 ∈ Aδ, we have

E[ψ1(g1)− ψ1(g2)]2 . d2(g1, g2).
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By Lemma 5 of Schmidt-Hieber [2020], it follows that

N[ ](ε,Fδ, L2(P )) . s log
(U
ε

)
,

where N[ ] is the bracketing number. This implies the bracketing integral

J[ ](δ,Fδ) :=

∫ δ

0

√
1 +N[ ](ε,Fδ, L2(P ))dε . δ

√
s log

(U
δ

)
.

Then we obtain

E
{

sup
g∈Aδ

|Gn[ψ1(g)− ψ1(h)]|
}
. J[ ](δ,Fδ)

[
1 +

J[ ](δ,Fδ)
δ2
√
n

]
. δ

√
s log

(U
δ

)
+

s√
n

log
(U
δ

)
.

Likewise, by Taylor expansion, it follows that

E
{

sup
g∈Aδ

|Gn[ψ2(g)− ψ2(h)]|
}
. δ

√
s log

(U
δ

)
+

s√
n

log
(U
δ

)
.

Hence (7) holds.

On the other hand, an easy calculation yields

ϕ(rn log2 n) .
√
n(rn log2 n)2. (8)

By (3), (6), (7) and the definition of ĥ, we get

Ln(ĥ) ≥ Ln(h)−Op((rn log2 n)2). (9)

Therefore, d(ĥ,h) = Op(rn log2 n) by (6), (7), (8) and (9) with an application of Theorem 3.4.1 in
Van der Vaart and Wellner [1996].

Furthermore, similar to the proof in Theorem 1, we get

‖Ŝ(·|X)− S(·|X)‖L2([0,τ ]) = Op(rn log2 n).

B Additional Results and Simulation Studies

As a finer-grained presentation of Figures 1-2, Table 1 shows the C-index and IBS achieved on each
real dataset by various survival methods (both mean and standard deviation).

To further understand the empirical performance of our methods in a controlled setting, we also apply
them to synthetically generated datasets. For each simulation study, we generate datasets with sample
size n = 1, 000, 2, 000, 4, 000 and use these datasets to compare EH and DeepEH. We first define:

h1(x) =
1

5

(
x1 − x2 + x3 − x4 + x5 + x6 − 5

)
h2(x) =

1

5

(
x1 + x2 + x3 + x4 + x5 + x6 − 8

)
h3(x) =

1

5

(
x21 − x22 + x23 − x24 + x25 + x6 − 5

)
h4(x) =

1

5

(
x21 + x22 + x33 + x44 + x55 + x6 − 8

)
Here, we consider 6-dimensional covariates, with continuous features X1, · · · , X5 uniformly dis-
tributed over the unit interval, and X6 ∼ Bernoulli(p = 0.5) as a binary feature. Based on this feature
distribution, we sample data from four different underlying models:

Case 1: The event times are distributed according to the following hazard function:

λ(t|X = x) = λ0(teh1(x))eh2(x)
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Table 1: C-index and IBS achieved on test data by various methods in four datasets. Results listed
here are the mean and standard deviation (in parenthesis) of the C-index and IBS over five different
train/test splits of each dataset (best performance in bold).

Methods C-index IBS

RotGBSG METABRIC WHAS COLON RotGBSG METABRIC WHAS COLON

CoxPH 0.6638 0.6332 0.7598 0.6489 0.1853 0.1879 0.1492 0.1989
(0.0111) (0.0131) (0.0120) (0.0411) (0.0046) (0.0126) (0.0051) (0.0115)

AFT 0.7077 0.6277 0.7617 0.6556 0.1846 0.1974 0.1735 0.1932
(0.0512) (0.0189) (0.0153) (0.0247) (0.0091) (0.0148) (0.0037) (0.0071)

EH 0.6656 0.6290 0.8111 0.6450 0.1802 0.1920 0.1466 0.1895
(0.0418) (0.0187) (0.0299) (0.0267) (0.0159) (0.0131) (0.0048) (0.0064)

RSF 0.6717 0.6469 0.8694 0.6558 0.1766 0.1639 0.1197 0.1874
(0.0130) (0.0157) (0.0179) (0.0210) (0.0037) (0.0057) (0.0028) (0.0107)

DeepSurv 0.7116 0.6335 0.8309 0.6380 0.1782 0.1665 0.1314 0.1954
(0.0096) (0.0147) (0.1554) (0.0431) (0.0043) (0.0070) (0.0330) (0.0121)

CoxTime 0.6733 0.6577 0.8400 0.6322 0.1813 0.1643 0.1227 0.1952
(0.0091) (0.0122) (0.0115) (0.0483) (0.0025) (0.0078) (0.0047) (0.0149)

PCHazard 0.6729 0.6481 0.8389 0.6304 0.1790 0.1670 0.1206 0.1885
(0.0131) (0.0167) (0.0101) (0.0380) (0.0039) (0.0069) (0.0062) (0.0380)

DeepHit 0.7281 0.6631 0.8403 0.6487 0.1965 0.1719 0.1419 0.2054
(0.0168) (0.0159) (0.0168) (0.0426) (0.0028) (0.0068) (0.0058) (0.0063)

DSM 0.7289 0.6173 0.8330 0.6494 0.1840 0.2187 0.1306 0.2009
(0.0630) (0.0167) (0.0347) (0.0436) (0.0020) (0.0047) (0.0117) (0.0143)

DeepAFT 0.7255 0.6393 0.8322 0.6596 0.1801 0.1931 0.1271 0.1864
(0.0277) (0.0143) (0.0117) (0.0334) (0.0049) (0.0100) (0.0061) (0.0113)

DeepEH 0.7308 0.6690 0.8416 0.6662 0.1746 0.1910 0.1168 0.1855
(0.0266) (0.0129) (0.0108) (0.0371) (0.0040) (0.0084) (0.0032) (0.0101)

with baseline hazard function:
λ0(t) = 0.05et (10)

The data in this case thus stem from a classical EH model. The censoring time C are randomly
generated uniformly from the interval [0, 15.6] for each individual, which results in an overall
censoring rate of = 0.45.

Case 2: Here λ0 is the same as in (10). The hazard function of the event time is

λ(t|X = x) = λ0(teh3(x))eh4(x)

The censoring times C are from a uniform distribution on [0,15], which leads to an overall censoring
rate of 0.46. The data in this case thus stem from a DeepEH model.

We perform Q = 100 simulation runs for each sample size n. Let D(q) = {X(q)
i , O

(q)
i ,∆

(q)
i }ni=1 be

the q-th dataset among the replicated runs. Since the true survival functions are known, rather the
integrated Brier score, we consider the relative integrated squared error (RISE):

RISE(q) = ave
k

{‖Ŝ(q)(·|Xk)− S(·|Xk)‖L2([0,τq ])

‖S(·|Xk)‖L2([0,τq ])

}
,

where the average is taken over a held-out test set from five-fold cross-validation, and τq is the
maximum observed time of the test set. We also report the concordance index (C-index) produced by
all methods.

Table 2 reports the RISE and C-index achieved by EH and DeeepEH methods in each simulation case.
The survival function estimates and C-index are clearly improved as the sample size n increases from
1, 000 to 4, 000. In addition, the proposed DeepEH performs better than classical EH in Case 2 while
they are comparable when the underlying model is Case 1.
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Table 2: The relative integrated squared error (RISE) of estimated survival function and C-index for
simulation studies with EH and DeepEH methods. We report the average and standard deviation (in
parentheses) over 100 simulated datasets from each underlying model. In each simulation run, 80%
of the data were used for estimation, and 20% are held out to evaluate RISE.

RISE C-index

n EH DeepEH EH DeepEH

1,000 0.2510 0.2533 0.5693 0.5661
(0.0153) (0.0160) (0.0315) (0.0328)

Case 1 2,000 0.2261 0.2271 0.5662 0.5655
(0.0132) (0.0143) (0.0234) (0.0235)

4,000 0.2251 0.2259 0.5698 0.5691
(0.0127) (0.0129) (0.0227) (0.0229)

1,000 0.1964 0.1958 0.5585 0.5777
(0.0280) (0.0257) (0.0337) (0.0323)

Case 2 2,000 0.1827 0.1796 0.5655 0.5838
(0.0218) (0.0203) (0.0260) (0.0253)

4,000 0.1752 0.1698 0.5668 0.5885
(0.0159) (0.0139) (0.0162) (0.0142)

C Implementation Details

As there are relatively few missing values in each real survival dataset used in our experiments (the
highest proportion of missing values among the four datasets is 4.4%), we simply omit subjects with
at least one missing feature. We employ one hot encoding for categorical features, and standardize
the continuous and ordinal features with zero mean and a standard deviation of one.

We use a Gaussian kernel as our kernel function K(·), so the function Φ(t) =
∫ t
0
K(s)ds is simply

the cumulative distribution function of the standard normal distribution. Theoretically, the optimal
order of the bandwidth is O((8

√
2/3)1/5n−1/5) for kernel smoothing methods [Sheather and Jones,

1991]. In our experiments, we pre-select the bandwidth to be (8
√

2/3)1/5n−1/5. The results of
baseline methods are obtained by running the code provided in the corresponding papers, including
the choice of hyperparameters.

Implemented in PyTorch, our neural networks are simple multilayer perceptrons with the same
number of neurons in every hidden layer and the same activation function between layers. Training
was performed using the AdamW optimizer [Loshchilov and Hutter, 2017] with L2 regularization for
up to 5000 epochs, with early stopping based on pseudo-likelihoods evaluated on the validation data.
The activation function we employed is Rectified Linear Units. Based on the pseudo-likelihood of
the validation data, we used grid search select hyperparameters such as learning rate, weight decay,
number of neurons and hidden layers, dropout rate. The search space is as follows:

• Learning rate: 0.0005, 0.0008, 0.001, 0.005, 0.01;

• Weight decay: 0.0005, 0.005, 0.05, 0.1;

• Number of neuron: 32, 64, 128, 256, 512;

• Number of hidden layer: 1, 2, 3, 5;

• Dropout rate: 0, 0.2, 0.4, 0.6.

The implementations of other deep survival methods are based on publicly available codes from the
corresponding papers. All of our experiments were carried out on a standard MacBook Pro laptop
(Processor: 3.5 GHz Intel Core i7, Memory: 16 GB 2133 MHz LPDDR3).
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1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] In Conclusion section and

assumptions section for theory.
(c) Did you discuss any potential negative societal impacts of your work? [Yes]

It is possible survival modeling may have some hypothetical negative societal impacts
if automation is overly relied upon in critical healthcare decision-making (or some
nefarious use by health insurance providers). That said, we do not believe more accurate
survival models (of the form introduced here) would have much potential negative
impact if simply replacing existing less accurate survival models. We do not believe
this work will change somebody’s mind about whether or not to use survival modeling
for their application in the first place. Thus we have just stated in the Conclusion
section that: we believe the broader impact of this work will be to improve estimation
accuracy in existing survival analysis applications.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [Yes] Our results report standard deviations in parenthesis.
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes] In Appendix.
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes] We cited them.
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

In the supplemental material.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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