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A Appendix

Lemma (Lemma 1). Given a L-layer (L ≥ 2) fully-connected neural network with width
(m0, . . . ,mL), for any network parameters θ = (W [1], b[1], · · · ,W [L], b[L]) and for any l ∈ [L−1],
s ∈ [ml], we have the expressions for θ′ := T αl,s(θ) (see Fig. S2 for an illustration)
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Next, by the construction of θ′ again, it is clear that f [l′]
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Recalling the recurrence relation for l′ ∈ [l + 1 : L− 1], then we recursively obtain the following
equality for l′ from L− 1 down to l + 1:
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This with the recurrence relation again leads to z[l
′]
θ′ = z
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θ for all l′ ∈ [1 : l − 1].

Proposition (Proposition 1: one-step embedding preserves network properties). Given a L-
layer (L ≥ 2) fully-connected neural network with width (m0, . . . ,mL), for any network parameters
θ = (W [1], b[1], · · · ,W [L], b[L]) and for any l ∈ [L−1], s ∈ [ml], the following network properties
are preserved for θ′ = T αl,s(θ):

(i) output function is preserved: fθ′(x) = fθ(x) for all x;

(ii) empirical risk is preserved: RS(θ′) = RS(θ);

(iii) the sets of features are preserved:
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Proof. The properties (i)–(iii) are direct consequences of Lemma 1.

Theorem (Theorem 1: criticality preserving). Given a L-layer (L ≥ 2) fully-connected neural
network with width (m0, . . . ,mL), for any network parameters θ = (W [1], b[1], · · · ,W [L], b[L])
and for any l ∈ [L− 1], s ∈ [ml], if∇θRS(θ) = 0, then ∇θRS(θ′) = 0.

Proof. Gradient of loss with respect to network parameters of each layer can be computed from F ,
G, and Z as follows
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Similarly, for any j ∈ [ml]\{s},k ∈ [ml−1], we have
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Collecting all the above equalities, we have∇θRS(θ′) = 0.

Lemma (Lemma 2: increment of the degree of degeneracy). Given a L-layer (L ≥ 2) fully-
connected neural network with width (m0, . . . ,mL), if there exists l ∈ [L − 1], s ∈ [ml], and a
q-dimensional differential manifoldM consisting of critical points of RS such that for any θ ∈M,
W

[l+1]
[1:ml+1],s

6= 0, then M′ := {T αl,s(θ)|θ ∈ M, α ∈ R} is a (d + 1)-dimensional differential
manifold consists of critical points for the corresponding L-layer fully-connected neural network
with width (m0, . . . ,ml−1,ml + 1,ml+1, . . . ,mL).

Proof. For any θ ∈ M, let {ei(θ)}di=1 be a basis of its tangent space TθM. Then for any α ∈ R,
the tangent space of θ′ = T αl,s(θ) ∈ M′ is spanned by {Tl,s(e1(θ)), · · · , Tl,s(ed(θ)),Vl,s(θ)}.
Since Tl,s is linear and injective, {Tl,s(ei(θ))}di=1 is also a linearly independent set. More-
over, since W [l+1]

[1:ml+1],ml+1 = 0 for any vector in parameter space applied with Tl,s, then,
{Tl,s(e1(θ)), · · · , Tl,s(ed(θ)),Vl,s(θ)} are independent if and only if Vl,s(θ) 6= 0, i.e.,
W
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6= 0.

Remark 1. The requirement that M is a q-dimensional differential manifold can be relaxed to
thatM is a q-dimensional topological manifold. In the latter case,M′ is a (d + 1)-dimensional
topological manifold.

Theorem (Theorem 2: degeneracy of embedded critical points). Consider two L-layer (L ≥ 2)
fully-connected neural networks NNA({ml}Ll=0) and NNB({m′l}Ll=0) which is K-neuron wider than
NNA. Suppose that the critical point θA = (W [1], b[1], · · · ,W [L], b[L]) satisfyW [l] 6= 0 for each
layer l ∈ [L]. Then the parameters θA of NNA can be critically embedded to a K-dimensional
critical affine subspace MB = {θB +

∑K
i=1 αivi|αi ∈ R} of loss landscape of NNB . Here

θB = (
∏K
i=1 Tli,si)(θA) and vi = TlK ,sK · · · Vli,si · · · Tl1,s1θA.

Proof. The assumptionW [l] 6= 0, l ∈ [L] implies the existence of non-silent neurons, i.e., existing
s ∈ [ml] such thatW [l+1]

[1:ml+1],s
6= 0, for any l ∈ [L− 1] with m′l > ml.

In this proof, we misuse notation and denote ml = ml(θ) for the width of the l-th layer for any
fully-connected neural network with parameters θ. For such a general network with parameters θ,
we introduce the following operator. Given an index set J and for any l ∈ [L], s ∈ [ml], we define
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Clearly, Vl,s,J =
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Now we are ready to prove the lemma. Let Ji = {si} ∪ {ml + #{i|li = l, i ∈ [j]}|lj = l, sj =
s, j ∈ [K]}, where # indicates number of elements in a set. Then
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which is a critical embedding for any [αi]
K
i=1 ∈ RK . This completes the proof.

A.1 Trivial critical transforms

In general, neuron-index permutation among the same layer is a trivial criticality invariant transform
because of the layer-wise intrinsic symmetry of DNN models. Therefore, any critical point/manifold
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Figure S1: Illustration of Tl,s, Vl,s, and T αl,s.

Figure S2: Illustration of F and Z

may result in multiple "mirror" critical points/manifolds of the loss landscape through all possible per-
mutations. However, this transform does not inform about the degeneracy of critical points/manifolds.

For any p-homogeneous activation function σ i.e., σ(βx) = βpσ(x) for any β > 0 and x ∈ R, we
define for any l ∈ [L− 1], s ∈ [ml] the following scaling transform θ′ = Sβl,s(θ) (β 6= 0) such that

W
′[l+1]
[1:ml+1],s

= 1
βpW

[l+1]
[1:ml+1],s

andW ′[l]
s,[1:ml−1]

= βW
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,b′[l]s = βb
[l]
s , and all the other entries

remain the same. Clearly, this transform is also a critical transform. Moreover, it informs about one

more degenerate dimension for each neuron with
∥∥∥W [l+1]

[1:ml+1],s

∥∥∥
2

∥∥∥(W [l]ᵀ
s,[1:ml−1]

, b
[l]
s

)ᵀ∥∥∥
2
6= 0. This

critical scaling transform is trivial in a sense that it is an obvious result of the cross-layer scaling
preserving intrinsic to each DNN of homogeneous activation function, not relevant to cross-width
landscape similarity between DNNs we focus on.

B Details of experiments

For the 1D fitting experiments (Figs. 1, 3(a), 4), we use tanh as the activation function, mean squared
error (MSE) as the loss function. We use the full-batch gradient descent with learning rate 0.005 to
train NNs for 300000 epochs. The initial distribution of all parameters follows a normal distribution
with a mean of 0 and a variance of 1

m3 .
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For the iris classification experiment (Fig. 3(b)), we use sigmoid as the activation function, MSE as
the loss function. We use the default Adam optimizer of full batch with learning rate 0.02 to train for
500000 epochs. The initial distribution of all parameters follows a normal distribution with mean 0
and variance 1

m6 .

For the experiment of MNIST classification (Fig. 5), we use ReLU as the activation function, MSE
as the loss function. We also use the default Adam optimizer of full batch with learning rate 0.00003
to train for 100000 epochs. The initial distribution of all parameters follows a normal distribution
with mean 0 and variance 1

m6 .

To obtain the empirical diagram in Fig. 4, we run 200 trials each for width-1, width-2 and width-3
tanh NNs with variance of initial parameters 1

m3 (m = 1, 2, 3) for 300000 epochs. Then we find all
parameters with gradient less than 10−10, which we define as empirical critical points, throughout the
training in total 600 trajectories. Next, we cluster them based on their loss values, output functions,
input parameters of neurons and only 4 different cases arises after excluding the trivial case of
constant zero output. Their output functions are shown in the figure.

Remark that, although Figs. 1 and 5 are case studies each based on a random trial, similar phenomenon
can be easily observed as long as the initialization variance is properly small, i.e., far from the
linear/kernel/NTK regime.
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