
A Supplemental materials for Section 2

A.1 Definitions in convex optimization

Definition 1 (Convexity). A differentiable function f is convex if for every x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)>(y − x).

Definition 2 (Smoothness). A differentiable function f is L-smooth for some positive constant L if
its gradient is L-Lipschitz; namely, for every x, y ∈ Rd, we have

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

Corollary 1. If f is L-smooth, then for every x, y ∈ Rd,

|f(y)− f(x)−∇f(x)>(y − x)| ≤ 1

2
L‖y − x‖2. (12)

Proof. See Lemma 3.4 in [2].

Definition 3 (Strong convexity). A differentiable function f is τ -strongly convex for some positive
constant τ , if for all x, y ∈ Rd,

f(y) ≥ f(x) +∇f(x)>(y − x) +
τ

2
‖y − x‖2.

A.2 Proof of Proposition 1

Proposition 1. If f is L-smooth, then for any (x, v) with ‖v‖ = 1, |gµ(v;x)−∇f(x)>v| ≤ 1
2Lµ.

Proof. In Eq. (12), setting y = x+ µv and dividing both sides by µ, we complete the proof.

B Supplemental materials for Section 3

B.1 Proofs of Lemma 1, Theorem 1 and Theorem 2

Lemma 1. Let Ct :=
(
∇f(xt)

>
vt

)2

and L′ := L

1−(1−L
L̂

)
2 , then in Algorithm 1, we have

Et[δt+1] ≤ δt −
Et[Ct]

2L′
‖∇f(xt)‖2. (13)

Proof. We have

δt+1 − δt = f(xt+1)− f(xt) (14)

= f

(
xt −

1

L̂
∇f(xt)

>vt · vt
)
− f(xt) (15)

≤ − 1

L̂

(
∇f(xt)

>vt
)2

+
1

2
L ·
(

1

L̂
∇f(xt)

>vt

)2

(16)

= − 1

2L′
(
∇f(xt)

>vt
)2
. (17)

Hence,

Et[δt+1]− δt ≤ −
1

2L′
Et
[(
∇f(xt)

>vt
)2]

= −Et[Ct]
2L′

‖∇f(xt)‖2, (18)

where the last equality holds because xt is Ft−1-measurable since we require Ft−1 to include all the
randomness before iteration t in Remark 2 (so ‖∇f(xt)‖2 is also Ft−1-measurable).

Remark 9. The proof actually does not require f to be convex. It only requires f to be L-smooth.

13

Remark 10. From the proof we see that δt+1 − δt ≤ 0, so f(xt+1) ≤ f(xt). Hence, the sequence
{f(xt)}t≥0 is non-increasing in Algorithm 1.

Theorem 1 (Algorithm 1, smooth and convex). Let R := maxx:f(x)≤f(x0) ‖x− x∗‖ and suppose
R <∞. Then, in Algorithm 1, we have

E[δT] ≤
2L′R2

∑T−1
t=0 E

[
1

Et[Ct]

]
T (T + 1)

. (19)

Proof. Since f is convex, we have

δt = f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗) ≤ ‖∇f(xt)‖ · ‖xt − x∗‖ ≤ R‖∇f(xt)‖, (20)

where the last inequality follows from the definition of R and the fact that f(xt) ≤ f(x0) (since
δt+1 ≤ δt for all t). The following proof is adapted from the proof of Theorem 3.2 in [1]. Define
Φt := t(t+ 1)δt. By Lemma 1, we have

Et[Φt+1]− Φt = (t+ 1)(t+ 2)Et[δt+1]− t(t+ 1)δt (21)
= (t+ 1)(t+ 2)(Et[δt+1]− δt) + 2(t+ 1)δt (22)

≤ −(t+ 1)(t+ 2)
Et[Ct]

2L′
‖∇f(xt)‖2 + 2(t+ 1)R‖∇f(xt)‖ (23)

≤ (2(t+ 1)R)2

4(t+ 1)(t+ 2)Et[Ct]
2L′

(24)

=
2L′(t+ 1)R2

(t+ 2)Et[Ct]
(25)

≤ 2L′R2

Et[Ct]
, (26)

where Eq. (24) follows from the fact that −at2 + bt ≤ b2

4a for a > 0. Hence

E[Φt+1]− E[Φt] = E[Et[Φt+1]− Φt] ≤ 2L′R2E
[

1

Et[Ct]

]
. (27)

Since Φ0 = 0, we have E[ΦT] ≤ 2L′R2
∑T−1
t=0 E

[
1

Et[Ct]

]
. Therefore,

E[δT] =
E[ΦT]

T (T + 1)
≤

2L′R2
∑T−1
t=0 E

[
1

Et[Ct]

]
T (T + 1)

. (28)

Remark 11. By inspecting the proof, we note that Theorem 1 still holds if we replace the fixed
initialization x0 in Algorithm 1 with a random initialization x′0 for which f(x′0) ≤ f(x0) always
holds. We formally summarize this in the following proposition. This proposition will be useful in the
proof of Theorem 3.

Proposition 3. Let xfix be a fixed vector, R := maxx:f(x)≤f(xfix) ‖x − x∗‖ and suppose R < ∞.
Then, in Algorithm 1, using a random initialization x0, if f(x0) ≤ f(xfix) always hold, we have

E[δT] ≤
2L′R2

∑T−1
t=0 E

[
1

Et[Ct]

]
T (T + 1)

. (29)

Proof. By Remark 10, f(xt) ≤ f(x0). We note that ‖xt−x∗‖ ≤ R since f(xt) ≤ f(x0) ≤ f(xfix).
The remaining proof is the same as the proof of Theorem 1.

Next we state the proof regarding the convergence guarantee of Algorithm 1 under smooth and
strongly convex case.

14

Theorem 2 (Algorithm 1, smooth and strongly convex). In Algorithm 1, if we further assume that f
is τ -strongly convex, then we have

E

 δT

exp
(
− τ
L′

∑T−1
t=0 Et[Ct]

)
 ≤ δ0. (30)

Proof. Since f is τ -strongly convex, we have

δt = f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗)−

τ

2
‖xt − x∗‖2 (31)

≤ ‖∇f(xt)‖ · ‖xt − x∗‖ −
τ

2
‖xt − x∗‖2 (32)

≤ ‖∇f(xt)‖2

2τ
. (33)

Therefore we have

‖∇f(xt)‖2 ≥ 2τδt. (34)

By Lemma 1 and Eq. (34) we have

Et[δt+1] ≤ δt −
Et[Ct]τ
L′

δt =
(

1− τ

L′
Et[Ct]

)
δt. (35)

Let αt := τ
L′Et[Ct], then Et[δt+1] ≤ (1− αt)δt. We have

δ0 = E[δ0] ≥ E
[

1

1− α0
E0[δ1]

]
= E

[
E0

[
δ1

1− α0

]]
= E

[
δ1

1− α0

]
≥ E

[
E1[δ2]

(1− α0)(1− α1)

]
= E

[
E1

[
δ2

(1− α0)(1− α1)

]]
= E

[
δ2

(1− α0)(1− α1)

]
≥ . . .

≥ E

[
δT∏T−1

t=0 (1− αt)

]
.

Since exp(−x) ≥ 1− x ≥ 0 when 0 ≤ x ≤ 1, the proof is completed.

Remark 12. Indeed, the proof does not require f to be strongly convex or convex. It only requires
the Polyak-Łojasiewicz condition (Eq. (34)) which is weaker than strong convexity [14, 8, 7].

B.2 Proof of Proposition 2

We note that in Algorithm 1, ‖vt‖ = 1. If vt ∈ A, then we have the following lemma by Proposition 1
in [10].
Lemma 4. Let u1, u2, . . . , uq be q fixed vectors in Rd and A := span{u1, u2, . . . , uq} be the
subspace spanned by u1, u2, . . . , uq. Let ∇f(xt)A denote the projection of ∇f(xt) onto A, then
∇f(xt)A = argmaxvt∈A,‖vt‖=1 Ct.

We further note that∇f(xt)A could be calculated with the values of {∇f(xt)
>ui}qi=1:

Lemma 5. Let A := span{u1, u2, . . . , uq} be the subspace spanned by u1, u2, . . . , uq , and suppose
{u1, u2, . . . , uq} is linearly independent (if they are not, then we choose a subset of these vectors
which is linearly independent). Then∇f(xt)A =

∑q
i=1 aiui, where a := (a1, a2, · · · , aq)> is given

by a = G−1b, where G is a q × q matrix in which Gij = u>i uj , b is a q-dimensional vector in which
bi = ∇f(xt)

>ui.

Proof. Since ∇f(xt)A ∈ span{u1, u2, . . . , uq}, there exists a ∈ Rq such that ∇f(xt)A =∑q
i=1 aiui. Since ∇f(xt)A is the projection of ∇f(xt) onto A and u1, u2, . . . , uq ∈ A,

∇f(xt)
>
Aui = ∇f(xt)

>ui holds for any i. Therefore, Ga = b. Since {u1, u2, . . . , uq} is lin-
early independent and G is corresponding Gram matrix, G is invertible. Hence a = G−1b.

15

Therefore, if we suppose vt ∈ A, then the optimal vt is given by∇f(xt)A, which could be calculated
from {∇f(xt)

>ui}qi=1. Now we are ready to prove Proposition 2 through an additional justification.
Proposition 2 (Optimality of subspace estimator). In one iteration of Algorithm 1, if we have queried
{∇f(xt)

>ui}qi=1, then the optimal vt maximizing Ct s.t. ‖vt‖ = 1 should be in the following form:
vt = ∇f(xt)A, where A := span{u1, u2, . . . , uq}.

Proof. It remains to justify the assumption that vt ∈ A. We note that in Line 3 of Algorithm 1,
generally it requires 1 additional call to query the value of∇f(xt)

>vt, but if vt ∈ A, then we can al-
ways save this query by calculating∇f(xt)

>vt with the values of {∇f(xt)
>ui}qi=1, since if vt ∈ A,

then we can write vt in the form vt =
∑q
i=1 aiui, and hence ∇f(xt)

>vt =
∑q
i=1 ai∇f(xt)

>ui.
Now suppose we finally sample a vt /∈ A. Then this additional query of ∇f(xt)

>vt is neces-
sary. Now we could let A′ := span{u1, u2, . . . , uq, vt} and calculate v′t = ∇f(xt)A′ . Obviously,

(∇f(xt)
>
v′t)

2 ≥ (∇f(xt)
>
vt)

2, suggesting that v′t is better than vt. Therefore, without loss of
generality we can always assume vt ∈ A, and by Lemma 4 the proof is complete.

B.3 Details regarding RGF and PRGF estimators

B.3.1 Construction of RGF estimator

In Example 1, we mentioned that the RGF estimator is given by vt = ∇f(xt)A where A =
span{u1, u2, . . . , uq} (q > 0) and ∀i, ui ∼ U(Sd−1) (u ∼ U(Sd−1) means that u is sampled
uniformly from the (d− 1)-dimensional unit sphere, as a normalized d-dimensional random vector),
and u1, u2, . . . , uq are sampled independently. Now we present the detailed expression of vt by
explicitly orthogonalizing {u1, u2, . . . , uq}:

u1 ∼ U(Sd−1);

u2 = (I− u1u>1)ξ2, ξ2 ∼ U(Sd−1);

u3 = (I− u1u>1 − u2u>2)ξ3, ξ3 ∼ U(Sd−1);

...

uq =

(
I−

q−1∑
i=1

uiu>i

)
ξq, ξq ∼ U(Sd−1).

Then we let vt =
∑q
i=1∇f(xt)>ui · ui. Since gt = ∇f(xt)

>∇f(xt)A · ∇f(xt)A = ∇f(xt)A,
we have gt =

∑q
i=1∇f(xt)

>ui · ui. Therefore, when using the RGF estimator, each iteration in
Algorithm 1 costs q queries to the directional derivative oracle.

B.3.2 Properties of RGF estimator

In this section we show that for RGF estimator with q queries, Et[Ct] = q
d . We first state a simple

proposition here.

Proposition 4. If vt =
∑q
i=1∇f(xt)>ui · ui and u1, u2, . . . , uq are orthonormal, then(
∇f(xt)

>
vt

)2

=

q∑
i=1

(
∇f(xt)

>
ui

)2

. (36)

Proof. Since ∇f(xt)
>vt · vt := gt =

∑q
i=1∇f(xt)

>ui · ui, we have ∇f(xt)
>
vt · vt =∑q

i=1∇f(xt)
>
ui · ui. Taking inner product with ∇f(xt) to both sides, we obtain the result.

By Proposition 4,

Et[Ct] = Et
[(
∇f(xt)

>
vt

)2
]

=

q∑
i=1

Et
[(
∇f(xt)

>
ui

)2
]

=

q∑
i=1

(
∇f(xt)

>
Et[uiu>i]∇f(xt)

)
.

(37)

16

In RGF, ui is independent of the history, so in this section we directly write E[uiu
>
i] instead of

Et[uiu>i].

For i = 1, since u1 ∼ U(Sd−1), we have E[u1u
>
1] = I

d . (Explanation: the distribution of u1

is symmetric, hence E[u1u
>
1] should be something like aI; since Tr(E[u1u

>
1]) = E[u>1 u1] = 1,

a = 1/Tr(I) = 1/d.)

For i = 2, we have E[u2u
>
2 |u1] =

I−u1u
>
1

d−1 . (See Section A.2 in [4] for the proof.) Therefore,

E[u2u
>
2] = E[E[u2u

>
2 |u1]] =

I−E[u1u
>
1]

d−1 = I
d .

Then by induction, we have that ∀1 ≤ i ≤ q, E[uiu
>
i] = I

d . Hence by Eq. (37), Et[Ct] = q
d .

B.3.3 Construction of PRGF estimator

In Example 2, we mentioned that the PRGF estimator is given by vt = ∇f(xt)A where
A = span{pt, u1, u2, . . . , uq} (q > 0), where pt is a vector corresponding to the prior message
which is available at the beginning of iteration t, and ∀i, ui ∼ U(Sd−1) (u1, u2, . . . , uq are sam-
pled independently). Now we present the detailed expression of vt by explicitly orthogonalizing
{pt, u1, u2, . . . , uq}. We note that here we leave pt unchanged (we only normalize it, i.e. pt ← pt

‖pt‖
if ‖pt‖ 6= 1) and make {u1, u2, . . . , uq} orthogonal to pt. Specifically, given a positive integer
q ≤ d− 1,

u1 = (I− ptp>t)ξ1, ξ1 ∼ U(Sd−1);

u2 = (I− ptp>t − u1u>1)ξ2, ξ2 ∼ U(Sd−1);

u3 = (I− ptp>t − u1u>1 − u2u>2)ξ3, ξ3 ∼ U(Sd−1);

...

uq =

(
I− ptp>t −

q−1∑
i=1

uiu>i

)
ξq, ξq ∼ U(Sd−1).

Then we let vt = ∇f(xt)>pt · pt +
∑q
i=1∇f(xt)>ui · ui. Since gt = ∇f(xt)

>∇f(xt)A ·
∇f(xt)A = ∇f(xt)A, we have gt = ∇f(xt)

>pt ·pt+
∑q
i=1∇f(xt)

>ui ·ui. Therefore, when using
the PRGF estimator, each iteration in Algorithm 1 costs q + 1 queries to the directional derivative
oracle.

B.3.4 Properties of PRGF estimator

Here we prove Lemma 2 in the main article (its proof appears in [10]; we prove it in our language
here), but for later use we give a more useful formula here, which can derive Lemma 2. Let

Dt :=
(
∇f(xt)

>
pt

)2

. We have

Proposition 5. For t ≥ 1,
Ct = Dt + (1−Dt)ξ

2
t , (38)

where ξ2
t :=

∑q
i=1 ξ

2
ti, ξti := ∇f(xt)H

>
ui

14 in which eH := e− ptp>t e denotes the projection of
the vector e onto the (d− 1)-dimensional subspace H , of which pt is a normal vector.

Proof. By Proposition 4, we have

Ct =
(
∇f(xt)

>
vt

)2

= Dt +

q∑
i=1

(
∇f(xt)

>
ui

)2

. (39)

By the definition of u1, u2, . . . , uq , they are in the subspace H . Therefore(
∇f(xt)

>
ui

)2

=
(
∇f(xt)

>
Hui

)2

= ‖∇f(xt)H‖
2
(
∇f(xt)H

>
ui

)2

= (1−Dt)
(
∇f(xt)H

>
ui

)2

.

(40)
14Note that in different iterations, {ui} are different. Hence here we explicitly show this dependency on t in

the subscript of ξ.

17

By Eq. (39) and Eq. (40), the proposition is proved.

Next we state Et[ξ2
t], the conditional expectation of ξ2

t given the history Ft−1. We can also derive it
in the similar way as in Section B.3.2, but for later use let us describe the distribution of ξ2

t in a more
convenient way. We note that the conditional distribution of ui is the uniform distribution from the
unit sphere in the (d−1)-dimensional subspaceH . Since ξti := ∇f(xt)H

>
ui, ξti is indeed the inner

product between one fixed unit vector and one uniformly random sampled unit vector in H . Indeed,

ξ2
t is equal to

∥∥∥(∇f(xt)H

)
A′

∥∥∥2

where A′ := span(u1, u2, · · · , uq) is a random q-dimensional

subspace of H . Therefore, ξ2
t is equal to the squared norm of the projection of a fixed unit vector in

H to a random q-dimensional subspace of H . By the discussion in the proof of Lemma 5.3.2 in [15],
we can view a random projection acting on a fixed vector as a fixed projection acting on a random
vector. Therefore, we state the following proposition.

Proposition 6. The conditional distribution of ξ2
t given Ft−1 is the same as the distribution of∑q

i=1 z
2
i , where (z1, z2, . . . , zd−1)> ∼ U(Sd−2), where Sd−2 is the unit sphere in Rd−1.

Then it is straightforward to prove the following proposition.

Proposition 7. Et[ξ2
t] = q

d−1 .

Proof. By symmetry, E[z2
i] = E[z2

j] ∀i, j. Since E[
∑d−1
i=1 z

2
i] = 1, E[z2

i] = 1
d−1 . Hence by

Proposition 6, Et[ξ2
t] = E[

∑q
i=1 z

2
i] = q

d−1 .

Now we reach Lemma 2.

Lemma 2. In Algorithm 1 with PRGF estimator,

Et[Ct] = Dt +
q

d− 1
(1−Dt), (41)

where Dt :=
(
∇f(xt)

>
pt

)2

.

Proof. Since Dt is Ft−1-measurable, by Proposition 5 and Proposition 7, we have

Et[Ct] = Dt + (1−Dt)Et[ξ2
t] = Dt +

q

d− 1
(1−Dt).

Finally, we note that Proposition 6 implies that ξ2
t is independent of the history (indeed, for all i,

ξ2
ti is independent of the history). For convenience, in the following, when we need the conditional

expectation (given some historical information) of quantities only related to ξ2
t , we could directly

write the expectation without conditioning. For example, we directly write E[ξ2
t] instead of Et[ξ2

t],
and write Var[ξ2

t] instead of the conditional variance Vart[ξ
2
t].

B.4 Proof of Lemma 3 and evolution of E[Ct]

In this section, we discuss the key properties of History-PRGF before presenting the theorems in
Section B.5. First we mention that while in History-PRGF we choose the prior pt to be vt−1, we can
choose p0 as any fixed normalized vector. We first present a lemma which is useful for the proof of
Lemma 3.

Lemma 6 (Proof in Section B.4.1). Let a, b and c be vectors in Rd, ‖a‖ = ‖c‖ = 1, B := {b :

‖b− a‖ ≤ k · a>c}, 0 ≤ k ≤ 1, a>c ≥ 0. Then minb∈B b
>
c ≥ minb∈B b

>c = (1− k)a>c.

Lemma 3. In History-PRGF (pt = vt−1), we have

Dt ≥
(

1− L

L̂

)2

Ct−1. (42)

18

Proof. In History-PRGF pt = vt−1, so by the definitions of Dt and Ct we are going to prove(
∇f(xt)

>
vt−1

)2

≥
(

1− L

L̂

)2 (
∇f(xt−1)

>
vt−1

)2

. (43)

Without loss of generality, assume∇f(xt−1)>vt−1 ≥ 0. Since f is L-smooth, we have

‖∇f(xt)−∇f(xt−1)‖ ≤ L‖xt − xt−1‖ =
L

L̂
∇f(xt−1)>vt−1, (44)

which is equivalent to ∥∥∥∥ ∇f(xt)

‖∇f(xt−1)‖
− ∇f(xt−1)

∥∥∥∥ ≤ L

L̂
∇f(xt−1)

>
vt−1. (45)

Let a = ∇f(xt−1), b = ∇f(xt)
‖∇f(xt−1)‖ , c = vt−1. By Lemma 6 we have

∇f(xt)
>
vt−1 ≥

(
1− L

L̂

)
∇f(xt−1)

>
vt−1. (46)

By the definition of vt, the right-hand side is non-negative. Taking square on both sides, the proof is
completed.

When considering the lower bound related to Ct, we can replace the inequality with equality in
Lemma 3. Therefore, by Proposition 5 and Lemma 3, we now have full knowledge of evolution of

Ct. We summarize the above discussion in the following proposition. We define a′ :=
(

1− L
L̂

)2

in
the following.

Proposition 8. Let a′ :=
(

1− L
L̂

)2

. Then in History-PRGF, we have

Ct ≥ a′Ct−1 + (1− a′Ct−1)ξ2
t . (47)

Proof. By Proposition 5, Ct = (1 − ξ2
t)Dt + ξ2

t . By Lemma 3, Dt ≥ a′Ct−1. Since ξ2
t ≤ 1, we

obtain the result.

As an appetizer, we discuss the evolution of E[Ct] here using Lemma 2 and Lemma 3 in the following
proposition.

Proposition 9. Suppose q
d−1 = kL

L̂
(k > 0), then in History-PRGF, E[Ct] ≥ (1−e−n) 2

2+k
q
d−1

1
1−a′

for t ≥ nd−1
q .

Proof. By Eq. (47), we have

E[Ct] = E[Et[Ct]] ≥ E[a′Ct−1 + (1− a′Ct−1)Et[ξ2
t]] (48)

= E[a′Ct−1 + (1− a′Ct−1)E[ξ2
t]] (49)

=

(
1− q

d− 1

)
a′E[Ct−1] +

q

d− 1
. (50)

Letting a := a′(1 − q
d−1), b := q

d−1 , then E[Ct] ≥ aE[Ct−1] + b and 0 ≤ a < 1. We have
E[Ct] − b

1−a ≥ a(E[Ct−1] − b
1−a) ≥ a2(E[Ct−2] − b

1−a) ≥ . . . ≥ at(E[C0] − b
1−a), hence

E[Ct] ≥ b
1−a − a

t(b
1−a − E[C0]) ≥ (1− at) b

1−a .

Since 1− a = 1− (1− q
d−1)(1− L

L̂
)2 = 1− (1− kL

L̂
)(1− L

L̂
)2, noting that

1− (1− L
L̂

)2

1− (1− kL
L̂

)(1− L
L̂

)2
=

L
L̂

+ L
L̂

(1− L
L̂

)
L
L̂

+ L
L̂

(1− L
L̂

) + kL
L̂

(1− L
L̂

)2
≥ 2

2 + k
, (51)

19

we have 1−a′
1−a ≥

2
2+k . Meanwhile, a ≤ 1− q

d−1 . Therefore, if t ≥ nd−1
q , we have

at ≤ (1− q

d− 1
)n

d−1
q ≤ exp(− q

d− 1
)n

d−1
q = e−n. (52)

Since 1−a′
1−a ≥

2
2+k and at ≤ e−n, we have

E[Ct] ≥ (1− at) b

1− a
≥ 2

2 + k
(1− e−n)

1

1− a′
q

d− 1
. (53)

Corollary 2. In History-PRGF, lim inft→∞ E[Ct] ≥ 2
2+k

q
d−1

1
1−a′ .

Recalling that L′ := L
1−a′ , the propositions above tell us that E[Ct] tends to O

(
q
d
L′

L

)
in a fast rate,

as long as k is small, e.g. when q
d ≤

L
L̂

(which means that the chosen learning rate 1
L̂

is not too small

compared with the optimal learning rate 1
L : 1

L̂
≥ q

d
1
L). If E[Ct] ≈ q

d
L′

L , then E[Ct]
L′ is not dependent

on L′ (and thus independent of L̂). By Lemma 1, Theorem 1 and Theorem 2, this roughly means that
the convergence rate is robust to the choice of L̂, i.e. robust to the choice of learning rate. Specifically,
History-PRGF with L̂ > L (but L̂ is not too large) could roughly recover the performance of RGF
with L̂ = L, since E[Ct]

L′ ≈
q
d

L where q
d is the value of Et[Ct] when using the RGF estimator.

B.4.1 Proof of Lemma 6

In this section, we first give a lemma for the proof of Lemma 6.

Lemma 7. Let a and b be vectors in Rd, ‖a‖ = 1, ‖b‖ ≥ 1. Then ‖b− a‖ ≤ ‖b− a‖.

Proof.

‖b− a‖2 − ‖b− a‖2 = ‖b− b‖2 + 2(b− b)>(b− a) (54)

≥ 2(b− b)>(b− a) (55)

= 2(‖b‖ − 1)b
>

(b− a) (56)

= 2(‖b‖ − 1)(1− b>a) (57)
≥ 0. (58)

Then, the detailed proof of Lemma 6 is as follows.

Proof. ∀b ∈ B, b>c = a>c − (a − b)>c ≥ a>c − ‖a − b‖‖c‖ ≥ (1 − k)a>c, and both equality
holds when b = a− k · a>c · c.
Case 1: ‖b‖ ≥ 1 By Lemma 7 we have ‖b− a‖ ≤ ‖b− a‖, hence if b ∈ B, then b ∈ B, so when
‖b‖ ≥ 1 we have b

>
c ≥ minb∈B b

>c.

Case 2: ‖b‖ < 1 ∀b ∈ B, if ‖b‖ ≤ 1, then b
>
c = b>c

‖b‖ ≥ b
>c ≥ minb∈B b

>c.

The proof of the lemma is completed.

B.5 Proofs of Theorem 3 and Theorem 4

B.5.1 Proof of Theorem 3

As mentioned above, we define a′ :=
(

1− L
L̂

)2

to be used in the proofs. In the analysis, we first
try to replace the inequality in Lemma 3 with equality. To do that, similar to Eq. (47), we define
{Et}T−1

t=0 as follows: E0 = 0, and

Et = a′Et−1 + (1− a′Et−1)ξ2
t , (59)

20

where ξ2
t is defined in Proposition 5.

First, we give the following lemmas, which is useful for the proof of Theorem 3.
Lemma 8 (Upper-bounded variance; proof in Section B.5.2). If d ≥ 4, then ∀t, Var[Et[Et]] ≤

1
1−(a′)2

2q
(d−1)2 .

Lemma 9 (Lower-bounded expectation; proof in Section B.5.2). If q
d−1 ≤

L
L̂

and t ≥ d−1
q , then

E[Et] ≥
1

2

1

1− a′
q

d− 1
. (60)

Lemma 10 (Proof in Section B.5.2). If a random variable X ≥ B > 0 satisfies that E[X] ≥ µB,
Var[X] ≤ (σB)2, then

E
[

1

X

]
≤ 1

µB

(
4σ2

µ
+ 2

)
. (61)

Then, we provide the proof of Theorem 3 in the following.
Theorem 3 (History-PRGF, smooth and convex). In the setting of Theorem 1, when using the History-
PRGF estimator, assuming d ≥ 4, q

d−1 ≤
L
L̂
≤ 1 and T >

⌈
d
q

⌉
(d·e denotes the ceiling function), we

have

E[f(xT)]− f(x∗) ≤
(

32

q
+ 2

)
2LdqR

2

T −
⌈
d
q

⌉
+ 1

. (62)

Proof. Since E0 = 0 ≤ C0, and if Et−1 ≤ Ct−1, then

Et = a′Et−1 + (1− a′Et−1)ξ2
t (63)

≤ a′Ct−1 + (1− a′Ct−1)ξ2
t (64)

≤ Ct, (65)

in which the first inequality is because ξ2
t ≤ 1 and the second inequality is due to Eq. (47). Therefore

by mathematical induction we have that ∀t, Et ≤ Ct.

Next, if d ≥ 4, q
d−1 ≤

L
L̂

and t ≥ d−1
q , by Lemma 8 and Lemma 9, if we set B = q

d−1 , then
E[Et[Et]] = E[Et] ≥ 1

2
1

1−a′B, and Var[Et[Et]] ≤ 2
q

1
1−(a′)2B

2. Meanwhile, if t ≥ 1, then
Et[Et] = a′(1− q

d−1)Et−1 + q
d−1 ≥ B. Therefore, by Lemma 10 we have

E
[

1

Et[Et]

]
≤ 1

1
2

1
1−a′

q
d−1

(
4 2
q

1
1−(a′)2

1
2

1
1−a′

+ 2

)
(66)

=
d− 1

q
(1− a′)

(
32

q

1− a′

1− (a′)2
+ 2

)
(67)

≤ d

q
(1− a′)

(
32

q
+ 2

)
(68)

=
d

q

L

L′

(
32

q
+ 2

)
. (69)

Since Et ≤ Ct, Et[Et] ≤ Et[Ct]. Let s :=
⌈
d
q

⌉
, then ∀t ≥ s, E

[
1

Et[Ct]

]
≤ E

[
1

Et[Et]

]
≤

d
q
L
L′

(
32
q + 2

)
. Now imagine that we run History-PRGF algorithm with xs as the random initial-

ization in Algorithm 1, and set p0 to vs−1. Then quantities in iteration t (e.g. xt, vt, Ct) in the
imaginary setting have the same distribution as quantities in iteration t+ s (e.g. xt+s, vt+s, Ct+s)
in the original algorithm (indeed, the quantities before iteration t in the imaginary setting have
the same joint distribution as the quantities from iteration s to iteration t + s − 1 in the original
algorithm), and Ft−1 in the imaginary setting corresponds to Ft+s−1 in the original algorithm. Now
we apply Proposition 3 to the imaginary setting, and we note that if we set xfix to the original x0,

21

then the condition in Proposition 3 holds (since by Remark 10, f(xs) ≤ f(x0)). Since quantities in
iteration t in the original algorithm correspond to quantities in iteration t− s in the imaginary setting,
Proposition 3 tells us that if T > s, we have

E[f(xT)]− f(x∗) ≤
2L′R2

∑T−1
t=s E

[
1

Et[Ct]

]
(T − s)(T − s+ 1)

, (70)

so

E[f(xT)]− f(x∗) ≤
(

32

q
+ 2

)
2LdqR

2

T −
⌈
d
q

⌉
+ 1

. (71)

B.5.2 Proofs of Lemma 8, 9 and 10

In this section, we first present Lemma 11 for the proof of Lemma 8.

Lemma 11. Suppose d ≥ 3, then Var[ξ2
t] < 2q

(d−1)2 .

Proof. For convenience, denote D := d− 1 in the following. By Proposition 6, the distribution of
ξ2
t is the same as the distribution of

∑q
i=1 z

2
i , where (z1, · · · , zq)> ∼ U(SD−1). We note that the

distribution of z is the same as the distribution of x
‖x‖ , where x ∼ N (0, I). Therefore,

E

(q∑
i=1

z2
i

)2
 = E

(q∑
i=1

x2
i

‖x‖2

)2
 = E

 (∑q
i=1 x

2
i

)2(∑D
i=1 x

2
i

)2

 . (72)

By Theorem 1 in [6],
∑q
i=1 x

2
i

‖x‖2 and ‖x‖2 are independently distributed. Therefore, (
∑q
i=1 x

2
i)

2

(
∑D
i=1 x

2
i)

2 and(∑D
i=1 x

2
i

)2

are independently distributed, which implies

E

 (∑q
i=1 x

2
i

)2(∑D
i=1 x

2
i

)2

 =
E
[(∑q

i=1 x
2
i

)2]
E
[(∑D

i=1 x
2
i

)2
] . (73)

We note that
∑q
i=1 x

2
i follows the chi-squared distribution with q degrees of freedom. Therefore,

E
[∑q

i=1 x
2
i

]
= q, and Var

[∑q
i=1 x

2
i

]
= 2q. Therefore, E

[(∑q
i=1 x

2
i

)2]
= E

[∑q
i=1 x

2
i

]2
+

Var
[∑q

i=1 x
2
i

]
= q(q + 2). Hence

Var

[
q∑
i=1

z2
i

]
= E

(q∑
i=1

z2
i

)2
− E

[
q∑
i=1

z2
i

]2

=
q(q + 2)

D(D + 2)
− q2

D2
=

2q(D − q)
D2(D + 2)

<
2q

D2
.

(74)

Since D = d− 1, the proof is complete.

Then, the detailed proof of Lemma 8 is as follows.

22

Proof. By the law of total variance, using Proposition 7 and Lemma 11, we have

Var[Et] = E[Var[Et|Et−1]] + Var[E[Et|Et−1]] (75)

= E[(1− a′Et−1)2Var[ξ2
t]] + Var[a′(1− E[ξ2

t])Et−1] (76)

= Var[ξ2
t]E[(1− a′Et−1)2] + (a′)2(1− E[ξ2

t])2Var[Et−1] (77)

= Var[ξ2
t](E[(1− a′Et−1)]2 + Var[1− a′Et−1]) + (a′)2(1− E[ξ2

t])2Var[Et−1] (78)

= Var[ξ2
t](E[(1− a′Et−1)]2 + (a′)2Var[Et−1]) + (a′)2(1− E[ξ2

t])2Var[Et−1] (79)

= (a′)2(Var[ξ2
t] + (1− E[ξ2

t])2)Var[Et−1] + Var[ξ2
t]E[(1− a′Et−1)]2 (80)

≤ (a′)2(Var[ξ2
t] + (1− E[ξ2

t])2)Var[Et−1] + Var[ξ2
t] (81)

≤ (a′)2

(
2q

(d− 1)2
+

(
1− q

d− 1

)2
)

Var[Et−1] +
2q

(d− 1)2
. (82)

If d ≥ 4, then 2q
(d−1)2 + (1 − q

d−1)2 = 1 − q
(d−1)2 (2(d − 1) − q − 2) ≤ 1 − q

(d−1)2 (d − q) ≤ 1.
Therefore we have

Var[Et] ≤ (a′)2Var[Et−1] +
2q

(d− 1)2
. (83)

Letting a := (a′)2, b := 2q
(d−1)2 , then Var[Et] ≤ aVar[Et−1] + b and 0 ≤ a < 1. We have

Var[Et]− b
1−a ≤ a(Var[Et−1]− b

1−a) ≤ a2(Var[Et−2]− b
1−a) ≤ . . . ≤ at(Var[E0]− b

1−a), hence
Var[Et] ≤ b

1−a − a
t(b

1−a −Var[E0]) = (1− at) b
1−a ≤

b
1−a = 1

1−(a′)2
2q

(d−1)2 .

Finally, since Var[Et[Et]] = Var[E[Et|Et−1]] ≤ Var[Et], the proof is completed.

The detailed proof of Lemma 9 is as follows.

Proof. Similar to the proof of Proposition 9, letting a := a′(1− q
d−1) and b := q

d−1 , then E[Et] =

(1− at) b
1−a , and 1−a′

1−a ≥
2
3 . Meanwhile, since q

d−1 ≤
L
L̂

, a ≤ (1− q
d−1)3. Therefore, if t ≥ d−1

q ,
we have

at ≤ (1− q

d− 1
)3 d−1

q ≤ exp(− q

d− 1
)3 d−1

q = e−3. (84)

Since 1−a′
1−a ≥

2
3 and at ≤ e−3, we have

E[Et] = (1− at) b

1− a
≥ 2

3
(1− e−3)

1

1− a′
q

d− 1
≥ 1

2

1

1− a′
q

d− 1
. (85)

The detailed proof of Lemma 10 is as follows.

Proof. By Chebyshev’s Inequality, we have

Pr(X <
1

2
E[X]) ≤ Var[X]

(1
2E[X])2

≤ 4σ2

µ2
. (86)

Hence

E
[

1

X

]
≤ 1

B
Pr

(
X <

1

2
E[X]

)
+

1
1
2E[X]

≤ 1

B

(
4σ2

µ2
+

2

µ

)
=

1

µB

(
4σ2

µ
+ 2

)
. (87)

23

B.5.3 Proof of Theorem 4

As in Section B.5.1, similar to Eq. (47), we define {Et}T−1
t=0 as follows: E0 = 0, and

Et = a′Et−1 + (1− a′Et−1)ζ2
t , (88)

where ζ2
t :=

∑q
i=1 ζ

2
ti, ζ

2
ti := min{ξ2

ti,
1
d−1} and ξti is defined in Proposition 5. Here we use ζ2

t

instead of ξ2
t in Eq. (88) to obtain a tighter bound when using McDiarmid’s inequality in the proof of

Lemma 12.

Here we first give Lemma 12 for the proof of Theorem 4.

Lemma 12 (Proof in Section B.5.4). Pr
(

1
T

∑T−1
t=0 Et[Et] < 0.1 qd

1
1−a′

)
≤ exp(−0.02T).

Then, we provide the proof of Theorem 4 in the following.
Theorem 4 (History-PRGF, smooth and strongly convex). Under the same conditions as in Theorem 2
(f is τ -strongly convex), when using the History-PRGF estimator, assuming d ≥ 4, q

d−1 ≤
L
L̂
≤ 1,

q
d ≤ 0.2Lτ , and T ≥ 5dq , we have

E[δT] ≤ 2 exp(−0.1
q

d

τ

L
T)δ0. (89)

Proof. Since E0 = 0 ≤ C0, and if Et−1 ≤ Ct−1, then

Et = a′Et−1 + (1− a′Et−1)

q∑
i=1

ζ2
ti (90)

≤ a′Et−1 + (1− a′Et−1)

q∑
i=1

ξ2
ti (91)

= a′Et−1 + (1− a′Et−1)ξ2
t (92)

≤ a′Ct−1 + (1− a′Ct−1)ξ2
t (93)

≤ Ct, (94)

in which the second inequality is due to that ξ2
t ≤ 1 and the third inequality is due to Eq. (47).

Therefore by mathematical induction we have that ∀t, Et ≤ Ct.

Then, since ∀t, Et ≤ Ct, we have 1
T

∑T−1
t=0 Et[Et] ≤ 1

T

∑T−1
t=0 Et[Ct]. Therefore, by Lemma 12

we have Pr
(

1
T

∑T−1
t=0 Et[Ct] < 0.1 qd

1
1−a′

)
≤ exp(−0.02T). Let kT = exp

(
τ
L′

∑T−1
t=0 Et[Ct]

)
.

Since 1
1−a′ = L′

L ,

Pr
(
kT < exp

(
0.1

q

d

τ

L
T
))
≤ exp(−0.02T). (95)

Meanwhile, let δt := f(xt)− f(x∗), Theorem 2 tells us that

E[δT kT] ≤ δ0. (96)

Noting that δ0 ≥ δT , we have

δ0 ≥ E[δT kT] (97)
≥ E[δT kT 1kT≥exp(0.1 qd

τ
LT)] (98)

≥ exp
(

0.1
q

d

τ

L
T
)
E[δT 1kT≥exp(0.1 qd

τ
LT)] (99)

= exp
(

0.1
q

d

τ

L
T
)

(E[δT]− E[δT 1kT<exp(0.1 qd
τ
LT)]) (100)

≥ exp
(

0.1
q

d

τ

L
T
)

(E[δT]− δ0E[1kT<exp(0.1 qd
τ
LT)]) (101)

= exp
(

0.1
q

d

τ

L
T
)(

E[δT]− δ0 Pr
(
kT < exp

(
0.1

q

d

τ

L
T
)))

(102)

≥ exp
(

0.1
q

d

τ

L
T
)

(E[δT]− δ0 exp(−0.02T)), (103)

24

in which 1B denotes the indicator function of the event B (1B = 1 when B happens and 1B = 0
when B does not happen). By rearranging we have

E[δT] ≤ exp
(
−0.1

q

d

τ

L
T
)
δ0 + exp(−0.02T)δ0. (104)

When q
d ≤ 0.2Lτ , 0.1 qd

τ
LT ≤ 0.02T , and hence exp

(
−0.1 qd

τ
LT
)
≥ exp(−0.02T). Therefore,

E[δT] ≤ 2 exp
(
−0.1 qd

τ
LT
)
δ0. The proof of the theorem is completed.

B.5.4 Proof of Lemma 12

In this section, we first give two lemmas for the proof of Lemma 12.
Lemma 13. If d ≥ 4, then E[ζ2

t] ≥ 0.3 q
d−1 .

Proof. We note that the distribution of ui is the uniform distribution from the unit sphere in the
(d− 1)-dimensional subspace A. Since ξti := ∇f(xt)A

>
ui, ξti is indeed the inner product between

one fixed unit vector and one uniformly random sampled unit vector. Therefore, its distribution is the
same as z1, where (z1, z2, . . . , zd−1) are uniformly sampled from Sd−2, i.e. the unit sphere in Rd−1.
Now it suffices to prove that E[min{z2

1 ,
1
d−1}] ≥

0.3
d−1 .

Let p(·) denote the probability density function of z1. For convenience let D := d − 1. We have

p(0) = SD−2

SD−1
, where SD−1 denotes the surface area of SD−1. Since SD−1 = 2π

D
2

Γ(D2)
where Γ(·) is

the Gamma function, and by [11] we have Γ(D2)

Γ(D−1
2)
≤
√

D−1
2 , we have p(0) ≤

√
D−1
2π ≤

√
d−1
2π .

Meanwhile, we have p(x) = p(0) · (
√

1−x2)D−2

√
1−x2

= p(0) · (
√

1− x2)D−3. If d ≥ 4, then D ≥ 3, and
we have ∀x ∈ [−1, 1], p(0) ≥ p(x). Therefore,

Pr

(
z2

1 ≥
1

d− 1

)
= 1− Pr

(
|z1| <

1√
d− 1

)
≥ 1− 2√

d− 1
p(0) = 1−

√
2

π
≥ 0.2. (105)

Similarly we have

Pr

(
z2

1 ≥
0.25

d− 1

)
= 1− Pr

(
|z1| <

0.5√
d− 1

)
≥ 1− 1√

d− 1
p(0) = 1−

√
1

2π
≥ 0.6. (106)

Let z′1
2

:= min{z2
1 ,

1
d−1}. Then Pr

(
z′1

2 ≥ 1
d−1

)
≥ 0.2 and Pr

(
z′1

2 ≥ 0.25
d−1

)
≥ 0.6. Then

E[z′1
2
] ≥ 1

d− 1
Pr

(
z′1

2 ≥ 1

d− 1

)
+

0.25

d− 1
Pr

(
1

d− 1
≥ z′1

2 ≥ 0.25

d− 1

)
(107)

=
0.75

d− 1
Pr

(
z′1

2 ≥ 1

d− 1

)
+

0.25

d− 1
Pr

(
z′1

2 ≥ 0.25

d− 1

)
(108)

≥ 0.3

d− 1
. (109)

Hence E[ζ2
ti] ≥ 0.3

d−1 . By the definition of ζ2
t the lemma is proved.

Lemma 14. If q
d−1 ≤

L
L̂

, T ≥ 5dq , then 1
T

∑T−1
t=0 E[Et] ≥ 0.2

q
d−1

1−a′ .

Proof. By Eq. (88) and Lemma 13, we have Et[Et] ≥
(

1− 0.3 q
d−1

)
a′Et−1 + 0.3 q

d−1 . Taking
expectation to both sides, we have

E[Et] ≥
(

1− 0.3
q

d− 1

)
a′E[Et−1] + 0.3

q

d− 1
. (110)

Let a :=
(

1− 0.3 q
d−1

)
a′, b := 0.3 q

d−1 , then E[Et] ≥ aE[Et−1] + b and 0 ≤ a < 1. We have

E[Et] − b
1−a ≥ a(E[Et−1] − b

1−a) ≥ a2(E[Et−2] − b
1−a) ≥ . . . ≥ at(E[E0] − b

1−a), hence

25

E[Et] ≥ b
1−a − a

t(b
1−a − E[E0]) = (1− at) b

1−a . Hence we have

1

T

T−1∑
t=0

E[Et] ≥
b

1− a

(
1− 1− aT

(1− a)T

)
≥ b

1− a

(
1− 1

(1− a)T

)
. (111)

Since 1− a = 1− (1− 0.3 q
d−1)(1− L

L̂
)2 ≤ 1− (1− 0.3L

L̂
)(1− L

L̂
)2, noting that

1− (1− L
L̂

)2

1− (1− 0.3L
L̂

)(1− L
L̂

)2
=

L
L̂

+ L
L̂

(1− L
L̂

)
L
L̂

+ L
L̂

(1− L
L̂

) + 0.3L
L̂

(1− L
L̂

)2
≥ 2

2.3
, (112)

we have 1−a′
1−a ≥

2
2.3 . Letting T ≥ 5dq , then T ≥ 5 1

q
d
≥ 5 1

L
L̂

≥ 5 1
1−
√
a′
≥ 5 1

1−a . By Eq. (111) we

have

1

T

T−1∑
t=0

E[Et] ≥
2

2.3

b

1− a′
4

5
=

2.4

11.5

q
d−1

1− a′
≥ 0.2

q
d−1

1− a′
. (113)

Finally, the detailed proof of Lemma 12 is as follows.

Proof. Let E := 1
T

∑T−1
t=0 Et[Et]. We note that {ζ2

1 , ζ
2
2 , . . . , ζ

2
T−1} are independent, and E is

a function of them. Now suppose that the value of ζ2
t is changed by ∆ζ2

t , while the value of
{ζ2

1 , . . . , ζ
2
t−1, ζ

2
t+1, . . . , ζ

2
T−1} are unchanged. Then

∆Es = 0, 0 ≤ s ≤ t− 1; (114)

∆Es = (1− a′Et−1)∆ζ2
t ≤ ∆ζ2

t , s = t; (115)

∆Es = (1− ζ2
s)a′∆Es−1 ≤ a′∆Es−1, s ≥ t+ 1. (116)

Therefore, for s ≥ t, ∆Es ≤ (a′)s−t∆Et ≤ (a′)s−t∆ζ2
t ; for s < t, ∆Es = 0. By Eq. (88),

Es[Es] = a′(1− E[ζ2
s])Es−1 + E[ζ2

s], so ∆Es[Es] ≤ a′∆Es−1 ≤ ∆Es−1. Hence

∆E =
1

T

T−1∑
s=0

∆Es[Es] ≤
1

T

T−1∑
s=t+1

(a′)s−1−t∆ζ2
t ≤

1

T

1

1− a′
∆ζ2

t . (117)

Since ζ2
ti := min{ξ2

ti,
1
d−1}, 0 ≤ ζ2

t ≤
q
d−1 . Therefore ∆E ≤ 1

T
1

1−a′
q
d−1 . Therefore, by McDi-

armid’s inequality, we have

Pr(E < E[E]− ε) ≤ exp

− 2ε2

T
(

1
T

1
1−a′

q
d−1

)2

 ≤ exp

(
−2T

(
ε(1− a′)d− 1

q

)2
)
. (118)

Let ε = 0.1
q
d−1

1−a′ , we have Pr(E < E[E] − 0.1
q
d−1

1−a′) ≤ exp(−0.02T). By Lemma 14, E[E] ≥
0.2

q
d−1

1−a′ . Noting that qd ≤
q
d−1 , the proof is completed.

C Supplemental materials for Section 4

C.1 Proof of Theorem 5

Theorem 5. In Algorithm 2, if θt is Ft−1-measurable, we have

E

(f(xT)− f(x∗))

(
1 +

√
γ0

2

T−1∑
t=0

√
θt

)2
 ≤ f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2. (119)

To help understand the design of Algorithm 2, we present the proof sketch below, where the part
which is the same as the original proof in [12] is omitted.

26

Sketch of the proof. Since xt+1 = yt − 1
L̂
g1(yt) and g1(yt) = ∇f(yt)

>vt · vt, by Lemma 1,

Et[f(xt+1)] ≤ f(yt)−
Et
[(
∇f(yt)

>vt
)2]

2L′
≤ f(yt)−

Et
[(
∇f(yt)

>vt
)2]

2L̂
. (120)

Define ρt := γt
2 ‖mt − x∗‖2 + f(xt)− f(x∗). The same as in original proof, we have

ρt+1 =
γt+1

2
‖mt − x∗‖2 − αtg2(yt)

>(mt − x∗) +
θt
2
‖g2(yt)‖2 + f(xt+1)− f(x∗). (121)

Then we derive Et[ρt+1]. We mentioned in Remark 2 that the notation Et[·] means the conditional
expectation E[·|Ft−1], where Ft−1 is a sub σ-algebra modelling the historical information, and
we require that Ft−1 includes all the randomness before iteration t. Therefore, γt and mt are
Ft−1-measurable. The assumption in Theorem 5 requires that θt is Ft−1-measurable. Since αt is
determined by γt and θt (through a Borel function), αt is also Ft−1-measurable. We have

Et[ρt+1]

=
γt+1

2
‖mt − x∗‖2 − αtEt[g2(yt)]

>(mt − x∗) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x∗)

(122)

=
γt+1

2
‖mt − x∗‖2 − αt∇f(yt)

>(mt − x∗) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x∗) (123)

≤ γt+1

2
‖mt − x∗‖2 − αt∇f(yt)

>(mt − x∗) +
Et
[(
∇f(yt)

>vt
)2]

2L̂
+ Et[f(xt+1)]− f(x∗)

(124)

≤ γt+1

2
‖mt − x∗‖2 − αt∇f(yt)

>(mt − x∗) + f(yt)− f(x∗) (125)

≤ (1− αt)ρt, (126)

where the first equality is because mt, αt and θt are Ft−1-measurable, the second equality is

because Et[g2(yt)] = ∇f(yt), the first inequality is because θt ≤
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
, the second

inequality is because of Eq. (120), and the last inequality is the same as in original proof. By the
similar reasoning to the proof of Theorem 2, we have E

[
ρT∏T−1

t=0 (1−αt)

]
≤ ρ0. By the original proof,∏T−1

t=0 (1− αt) ≤ 1(
1+
√
γ0
2

∑T−1
t=0

√
θt
)2 , completing the proof.

From the proof sketch, we see that

• The requirement that Et[g2(yt)] = ∇f(yt) is to ensure that Eq. (123) holds.

• The constraint on θt in Line 3 of Algorithm 2 is to ensure that Eq. (124) holds.

• The choice of g1(yt) (g1(yt) = ∇f(yt)
>vt · vt) and update of xt (xt+1 = yt − 1

L̂
g1(yt))

is the same as in Algorithm 1, i.e. the greedy descent framework. This is since Eq. (125)
requires that Et[f(xt+1)] decreases as much as possible from f(yt).

• From Eq. (121) to Eq. (122), we require Et[αtg2(yt)
>(mt− x)] = αtEt[g2(yt)]

>(mt− x)
and Et[θt‖g2(yt)‖2] = θtEt[‖g2(yt)‖2]. Therefore, to make the two above identities hold,
by the property of “pulling out known factors” in taking conditional expectation, we require
that mt, αt and θt are Ft−1-measurable. Since we make sure in Remark 2 that Ft−1 always
includes all the randomness before iteration t, and αt is determined by γt and θt, it suffices to
let θt beFt−1-measurable. We note that “beingFt−1-measurable” means “being determined
by the history, i.e. fixed given the history”.

Now we present the complete proof of Theorem 5.

27

Proof. Since xt+1 = yt − 1
L̂
g1(yt) and g1(yt) = ∇f(yt)

>vt · vt, by Lemma 1,

Et[f(xt+1)] ≤ f(yt)−
Et
[(
∇f(yt)

>vt
)2]

2L′
(127)

≤ f(yt)−
Et
[(
∇f(yt)

>vt
)2]

2L̂
. (128)

For an arbitrary fixed x, define ρt(x) := γt
2 ‖mt − x‖2 + f(xt)− f(x). Then

ρt+1(x) =
γt+1

2
‖mt+1 − x‖2 + f(xt+1)− f(x) (129)

=
γt+1

2
‖mt − x‖2 −

γt+1θt
αt

g2(yt)
>(mt − x) +

γt+1θ
2
t

2α2
t

‖g2(yt)‖2 + f(xt+1)− f(x)

(130)

=
γt+1

2
‖mt − x‖2 − αtg2(yt)

>(mt − x) +
θt
2
‖g2(yt)‖2 + f(xt+1)− f(x). (131)

We make sure in Remark 2 that Ft−1 always includes all the randomness before iteration t. Therefore,
γt and mt are Ft−1-measurable. The assumption in Theorem 5 requires that θt is Ft−1-measurable.
Since αt is determined by γt and θt (through a Borel function), αt is also Ft−1-measurable. Since
mt, αt and θt are Ft−1-measurable, we have Et[αtg2(yt)

>(mt−x)] = αtEt[g2(yt)]
>(mt−x) and

Et[θt‖g2(yt)‖2] = θtEt[‖g2(yt)‖2]. Hence

Et[ρt+1(x)] =
γt+1

2
‖mt − x∗‖2 − αtEt[g2(yt)]

>(mt − x∗) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x∗)

(132)

=
γt+1

2
‖mt − x‖2 − αt∇f(yt)

>(mt − x) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x)

(133)

≤ γt+1

2
‖mt − x‖2 − αt∇f(yt)

>(mt − x) +
Et
[(
∇f(yt)

>vt
)2]

2L̂
+ Et[f(xt+1)]− f(x)

(134)

≤ γt+1

2
‖mt − x‖2 − αt∇f(yt)

>(mt − x) + f(yt)− f(x) (135)

=
γt+1

2
‖mt − x‖2 −∇f(yt)

>(αtmt − αtx) + f(yt)− f(x) (136)

=
γt+1

2
‖mt − x‖2 +∇f(yt)

>(−yt + (1− αt)xt + αtx) + f(yt)− f(x) (137)

≤ γt+1

2
‖mt − x‖2 + f ((1− αt)xt + αtx)− f(x) (138)

≤ γt+1

2
‖mt − x‖2 + (1− αt)f(xt)− (1− αt)f(x) (139)

= (1− αt)
(γt

2
‖mt − x‖2 + f(xt)− f(x)

)
(140)

= (1− αt)ρt(x). (141)

Therefore,

ρ0(x) = E[ρ0(x)] ≥ E
[
E0[ρ1(x)]

1− α0

]
= E

[
E0

[
ρ1(x)

1− α0

]]
= E

[
ρ1(x)

1− α0

]
≥ E

[
E1[ρ2(x)]

(1− α0)(1− α1)

]
= E

[
E1

[
ρ2(x)

(1− α0)(1− α1)

]]
= E

[
ρ2(x)

(1− α0)(1− α1)

]
≥ . . .

≥ E

[
ρT (x)∏T−1

t=0 (1− αt)

]
.

28

We have ρT (x) ≥ f(xT) − f(x). To prove the theorem, let x = x∗. The remaining is to give an
upper bound of

∏T−1
t=0 (1− αt). Let ψk :=

∏k−1
t=0 (1− αt) and ak := 1√

ψk
, we have

ak+1 − ak =
1√
ψk+1

− 1√
ψk

=

√
ψk −

√
ψk+1√

ψkψk+1

=
ψk − ψk+1√

ψkψk+1(
√
ψk +

√
ψk+1)

(142)

≥ ψk − ψk+1√
ψkψk+1(2

√
ψk)

(143)

=
ψk − (1− αk)ψk

2ψk
√
ψk+1

=
αk

2
√
ψk+1

=

√
γk+1θk

2
√
ψk+1

=

√
θk
2

√
γk+1

ψk+1
(144)

=

√
γ0θk
2

. (145)

Since ψ0 = 1, a0 = 1. Hence aT ≥ 1 +
√
γ0
2

∑T−1
t=0

√
θt. Therefore, ψT ≤ 1(

1+
√
γ0
2

∑T−1
t=0

√
θt
)2 .

The proof is completed.

C.2 Construction of g2(yt)

We first note that in PARS, the specification of Ft−1 is similar to that in Example 2. That is,
we suppose that pt is determined before sampling {u1, u2, . . . , uq}, but it could depend on extra
randomness in iteration t. We let Ft−1 also includes the extra randomness of pt in iteration t (not
including the randomness of {u1, u2, . . . , uq}) besides the randomness before iteration t. Meanwhile,
we note that the assumption in Theorem 5 requires that θt is Ft−1-measurable, and this is satisfied
if the algorithm to find θt in Algorithm 2 is deterministic given randomness in Ft−1 (does not
use {u1, u2, . . . , uq} in iteration t). Since Ft−1 includes randomness before iteration t, if θt is
Ft−1-measurable, we can show that yt is Ft−1-measurable.

We also note that in Section 4 and Appendix C, we let Dt :=
(
∇f(yt)

>
pt

)2

, which is different

from the previous definition Dt :=
(
∇f(xt)

>
pt

)2

in Section 3 and Appendix B. This is because in
ARS-based algorithms, we care about gradient estimation at yt instead of that at xt.

In Algorithm 2, we need to construct g2(yt) as an unbiased estimator of ∇f(yt) satisfying
Et[g2(yt)] = ∇f(yt). Since Theorem 5 tells us that a larger θt could potentially accelerate con-
vergence, by Line 3 of Algorithm 2, we want to make Et[‖g2(yt)‖2] as small as possible. To save
queries, we hope that we can reuse the queries∇f(yt)

>pt and {∇f(yt)
>ui}qi=1 used in the process

of constructing g1(yt).

Here we adopt the construction process in Section B.3.3, and leave the discussion of alternative ways
in Section C.2.1. We note that if we let H be the (d− 1)-dimensional subspace perpendicular to pt,
then

∇f(yt) = ∇f(yt)
>pt · pt + (I− ptp>t)∇f(yt) = ∇f(yt)

>pt · pt +∇f(yt)H . (146)
Therefore, we need to obtain an unbiased estimator of ∇f(yt)H . This is straightforward since we
can utilize {ui}qi=1 which is uniformly sampled from the (d− 1)-dimensional space H .

Proposition 10. For any 1 ≤ i ≤ q, Et[∇f(yt)
>ui · ui] = 1

d−1∇f(yt)H .

Proof. We have Et[uiu>i] =
I−ptp>t
d−1 (See Section A.2 in [4] for the proof.). Therefore,

Et[∇f(yt)
>ui · ui] =

I− ptp>t
d− 1

∇f(yt) =
1

d− 1
∇f(yt)H . (147)

Therefore,

g2(yt) = ∇f(yt)
>pt · pt +

d− 1

q

q∑
i=1

∇f(yt)
>ui · ui (148)

29

satisfies that Et[g2(yt)] = ∇f(yt). Then

Et[‖g2(yt)‖2] = ‖∇f(yt)‖2Et

∥∥∥∥∥∇f(yt)
>
pt · pt +

d− 1

q

q∑
i=1

∇f(yt)
>
ui · ui

∥∥∥∥∥
2
 (149)

= ‖∇f(yt)‖2
((
∇f(yt)

>
pt

)2

+
(d− 1)2

q2

q∑
i=1

Et
[(
∇f(yt)

>
ui

)2
])

(150)

= ‖∇f(yt)‖2
(
Dt +

d− 1

q
(1−Dt)

)
, (151)

where the last equality is due to the fact that Et[uiu>i] =
I−ptp>t
d−1 (hence Et

[(
∇f(yt)

>
ui

)2
]

=

1−Dt
d−1). Meanwhile, if we adopt an RGF estimator as g2(yt), then Et[‖g2(yt)‖2] = d

q ‖∇f(yt)‖2.
Noting thatDt+

d−1
q (1−Dt) <

d
q , our proposed unbiased estimator results in a smaller Et[‖g2(yt)‖2]

especially when Dt is closed to 1, since it utilizes the prior information.

Finally, using g2(yt) in Eq. (148), when calculating the following expression which appears in Line 3
of Algorithm 2, the term ‖∇f(yt)‖2 would be cancelled:

Et
[(
∇f(yt)

>vt
)2]

L̂ · Et[‖g2(yt)‖2]
=

Et
[(
∇f(yt)

>
vt

)2
]

L̂
(
Dt + d−1

q (1−Dt)
) =

Dt + q
d−1 (1−Dt)

L̂
(
Dt + d−1

q (1−Dt)
) , (152)

where the last equality is due to Lemma 2.

C.2.1 Alternative way to construct g2(yt)

Instead of using the orthogonalization process in Section B.3.3, when constructing g1(yt) as the
PRGF estimator, we can also first sample q orthonormal vectors {ui}qi=1 uniformly from Sd−1, and
then let pt be orthogonal to them with {ui}qi=1 unchanged. Then we can construct g2(yt) using this
set of {∇f(yt)

>ui}qi=1 and∇f(yt)
>pt.

Example 3 (RGF). Since {ui}qi=1 are uniformly sampled from Sd−1, we can directly use them to
construct an unbiased estimator of ∇f(yt). We let g2(yt) = d

q

∑q
i=1∇f(yt)

>ui · ui. We show that
it is an unbiased estimator of∇f(yt), and Et[‖g2(yt)‖2] = d

q ‖∇f(yt)‖2.

Proof. In Section B.3.2 we show that E[uiu
>
i] = I

d . Therefore

Et[g2(yt)] =
d

q

q∑
i=1

Et[uiu>i]∇f(yt) =
d

q

q∑
i=1

1

d
∇f(yt) = ∇f(yt).

Et[‖g2(yt)‖2] =
d2

q2

q∑
i=1

Et[(∇f(yt)
>ui)

2] =
d2

q2

q∑
i=1

∇f(yt)
>Et[uiu>i]∇f(yt)

=
d2

q2

q∑
i=1

1

d
‖∇f(yt)‖2 =

d

q
‖∇f(yt)‖2.

We see that Et[‖g2(yt)‖2] here is larger than Eq. (151).
Example 4 (Variance reduced RGF). To reduce the variance of RGF estimator, we could use pt to
construct a control variate. Here we use pt to refer to the original porit before orthogonalization
so that it is fixed w.r.t. randomness of {u1, . . . , uq} (then it requires one additional query to obtain
∇f(yt)

>porit). Specifically, we can let g2(yt) = d
q

∑q
i=1(∇f(yt)

>ui·ui−(∇f(yt)
>pt·pt)>ui·ui)+

∇f(yt)
>pt · pt. We show that it is unbiased, and Et[‖g2(yt)‖2] = ‖∇f(yt)‖2

(
Dt + d

q (1−Dt)
)

.

30

Proof.

Et[(∇f(yt)
>pt · pt)>ui · ui] = Et[uiu>i]∇f(yt)

>pt · pt =
1

d
∇f(yt)

>pt · pt.

Therefore,

Et[g2(yt)] = Et

[
d

q

q∑
i=1

∇f(yt)
>ui · ui

]
= ∇f(yt).

Let ∇f(yt)H := ∇f(yt) − ∇f(yt)
>pt · pt. We define that Var[x] for a stochastic vector x is

such that Var[x] =
∑
i Var[xi]. Then for any stochastic vector x, E[‖x‖2] = ‖E[x]‖2 + Var[x].

We have Vart[g2(yt)] = Vart

[
d
q

∑q
i=1∇f(yt)

>
Hui · ui

]
. Let g′2(yt) := d

q

∑q
i=1∇f(yt)

>
Hui ·

ui. Then Et[g′2(yt)] = ∇f(yt)H , Et[‖g′2(yt)‖2] = d
q ‖∇f(yt)H‖2. Therefore, Vart[g2(yt)] =

Et[‖g′2(yt)‖2]− ‖Et[g′2(yt)‖2] =
(
d
q − 1

)
‖∇f(yt)H‖2 = (1−Dt)

(
d
q − 1

)
‖∇f(yt)‖2. Hence,

Et[‖g2(yt)‖2] = ‖Et[g2(yt)]‖2 + Vart[g2(yt)] =

(
1 + (1−Dt)

(
d

q
− 1

))
‖∇f(yt)‖2

=

(
Dt +

d

q
(1−Dt)

)
‖∇f(yt)‖2.

We see that Et[‖g2(yt)‖2] here is comparable but slightly worse (slightly larger) than Eq. (151).

In summary, we still favor Eq. (148) as the construction of g2(yt) due to its simplicity and smallest
value of Et[‖g2(yt)‖2] among the ones we propose.

C.3 Estimation of Dt and proof of convergence of PARS using this estimator

In zeroth-order optimization, Dt is not accessible since Dt =
(
∇f(yt)

>pt
‖∇f(yt)‖

)2

. For the term inside
the square, while the numerator can be obtained from the oracle, we do not have access to the
denominator. Therefore, our task is to estimate ‖∇f(yt)‖2.

To save queries, it is ideal to reuse the oracle query results used to obtain vt and g2(yt): ∇f(yt)
>pt

and {∇f(yt)
>ui}i∈{1,2,...,q}. Again, we suppose pt, u1, · · · , uq are obtained from the process in

Section B.3.3. By Eq. (146), we have

‖∇f(yt)‖2 = (∇f(yt)
>pt)

2 + ‖∇f(yt)H‖2. (153)

Since {ui}qi=1 is uniformly sampled from the (d− 1)-dimensional space H ,

Proposition 11. For any 1 ≤ i ≤ q, Et[(∇f(yt)
>ui)

2] = 1
d−1‖∇f(yt)H‖2.

Proof. By Proposition 10, Et[∇f(yt)
>ui · ui] = 1

d−1∇f(yt)H . Therefore,

Et[(∇f(yt)
>ui)

2] = ∇f(yt)
>Et[∇f(yt)

>ui · ui] =
1

d− 1
∇f(yt)

>∇f(yt)H (154)

=
1

d− 1
‖∇f(yt)H‖2. (155)

Thus, we adopt the following unbiased estimate:

‖∇f(yt)H‖2 ≈
d− 1

q

q∑
i=1

(
∇f(yt)

>ui
)2

(156)

31

By Johnson-Lindenstrauss Lemma (see Lemma 5.3.2 in [15]), this approximation is rather accurate
given a moderate value of q. Therefore, we have

‖∇f(yt)‖2 ≈
(
∇f(yt)

>pt
)2

+
d− 1

q

q∑
i=1

(
∇f(yt)

>ui
)2

(157)

and

Dt =
(∇f(yt)

>pt)
2

‖∇f(yt)‖2
≈

(
∇f(yt)

>pt
)2

(∇f(yt)>pt)
2

+ d−1
q

∑q
i=1 (∇f(yt)>ui)

2 . (158)

C.3.1 PARS-Est algorithm with theoretical guarantee

In fact, the estimator of Dt concentrates well around the true value of Dt given a moderate value of
q. To reach an algorithm with theoretical guarantee, we could adopt a conservative estimate of Dt,
such that the constraint of θt in Line 3 of Algorithm 2 is satisfied with high probability. We show the
prior-guided implementation of Algorithm 2 with estimation of Dt in Algorithm 3, call it PARS-Est,
and show that it admits a theoretical guarantee.

Algorithm 3 Prior-guided ARS with a conservative estimator of Dt (PARS-Est)

Input: L-smooth convex function f ; initialization x0; L̂ ≥ L; Query count per iteration q; iteration number T ;
γ0 > 0.

Output: xT as the approximate minimizer of f .
1: m0 ← x0;
2: for t = 0 to T − 1 do
3: Obtain the prior pt;
4: Find a θt such that θt ≤ θ′t in which θ′t is defined in the following steps:
5: Step 1: yt ← (1− αt)xt + αtmt, where αt ≥ 0 is a positive root of the equation α2

t = θt(1− αt)γt;
γt+1 ← (1− αt)γt;

6: Step 2: Sample an orthonormal set of {ui}qi=1 in the subspace perpendicular to pt uniformly, as in
Section B.3.3;

7: Step 3: D̂t ← (∇f(yt)>pt)
2

(∇f(yt)>pt)
2
+

2(d−1)
q

∑q
i=1(∇f(yt)>ui)

2 ; θ′t ←
D̂t+

q
d−1

(1−D̂t)

L̂
(
D̂t+

d−1
q

(1−D̂t)
) ;

8: Resample {ui}qi=1 and calculate vt as in Section B.3.3;
9: g1(yt)← ∇f(yt)>vt · vt =

∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>pt · pt;
10: g2(yt)← d−1

q

∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>pt · pt;
11: xt+1 ← yt − 1

L̂
g1(yt), mt+1 ← mt − θt

αt
g2(yt);

12: end for
13: return xT .

Theorem 6. Let

p = Pr

(
q∑
i=1

x2
i <

q

2(d− 1)

)
(159)

where (x1, x2, ..., xd−1)> ∼ U(Sd−2), i.e. follows a uniform distribution over the unit (d − 1)-
dimensional sphere. Then, in Algorithm 3, for any δ ∈ (0, 1), choosing a q such that p ≤ δ

T , there
exists an event M such that Pr(M) ≥ 1− δ, and

E

(f(xT)− f(x∗))

(
1 +

√
γ0

2

T−1∑
t=0

√
θt

)2
∣∣∣∣∣∣M
 ≤ f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2. (160)

Proof. We first explain the definition of Ft−1 in the proof (recall that Et[·] is E[·|Ft−1]). Since in
Theorem 5 we require θt to be Ft−1-measurable, we let Ft−1 also includes the randomness in Line 6
of Algorithm 3 in iteration t, besides randomness before iteration t and randomness of pt. We note
that Ft−1 does not include the randomness in Line 8.

32

Let M be the event that: For each t ∈ {0, 1, ..., T − 1}, d−1
q

∑q
i=1

(
∇f(yt)

>ui
)2 ≥ 1

2‖∇f(yt)H‖2.
When M is true, we have that ∀t,

D̂t =

(
∇f(yt)

>pt
)2

(∇f(yt)>pt)
2

+ 2(d−1)
q

∑q
i=1 (∇f(yt)>ui)

2
(161)

≤
(
∇f(yt)

>pt
)2

(∇f(yt)>pt)
2

+ ‖∇f(yt)H‖2
(162)

=

(
∇f(yt)

>pt
)2

‖∇f(yt)‖2
= Dt. (163)

Therefore,

θt ≤ θ′t =
D̂t + q

d−1 (1− D̂t)

L̂
(
D̂t + d−1

q (1− D̂t)
) ≤ Dt + q

d−1 (1−Dt)

L̂
(
Dt + d−1

q (1−Dt)
) =

Et
[(
∇f(yt)

>vt
)2]

L̂ · Et[‖g2(yt)‖2]
. (164)

Since Ft−1 includes the randomness in Line 6 of Algorithm 3 in iteration t, Et[·] refer to only taking
expectation w.r.t. the randomness of vt and g2(yt) in iteration t, i.e. w.r.t. {u1, . . . , uq} in Line 8
of Algorithm 3. Since {u1, . . . , uq} in Line 8 is independent of {u1, . . . , uq} in Line 6, adding
{u1, . . . , uq} in Line 6 to the history does not change the distribution of {u1, . . . , uq} in Line 8 given
the history. Therefore according to the analysis in Section C.2, the last equality of Eq. (164) holds,
and Et[g2(yt)] = ∇f(yt). By Theorem 5, Eq. (160) is proved.

Next we give a lower bound of Pr(M). Let us fix t. Then

Pr

(
d− 1

q

q∑
i=1

(
∇f(yt)

>ui
)2
<

1

2
‖∇f(yt)H‖2

)
= p.

Since for different t the events inside the brackets are independent, by union bound we have Pr(M) ≥
1− pT . Since p ≤ δ

T , the proof is completed.

Remark 13. To save queries, one may think that when constructing vt and g2(yt), we could omit
the procedure of resampling {ui}qi=1 in Line 8, and reuse {ui}qi=1 sampled in Line 6 to utilize the
queries of relevant directional derivatives in Line 7. Our theoretical analysis does not support this
yet, as explained below.

If we reuse {ui}qi=1 sampled in Line 6 to construct vt and g2(yt), then both θt and {g2(yt), vt}
depend on the same set of {ui}qi=1. Since Theorem 5 requires θt to be Ft−1-measurable, we have
to make Ft−1 include randomness of this set of {ui}qi=1. Then both g2(yt) and vt are fixed given
the history Ft−1, which is not desired (e.g. Et[g2(yt)] = ∇f(yt) generally does not hold since
Et[g2(yt)] = g2(yt) now, making the proof of Theorem 5 fail).

Remark 14. For given d and q, p can be calculated in closed form with the aid of softwares such as
Mathematica. When d = 2000, if q = 50, then p ≈ 7.5 × 10−4. If q = 100, then p ≈ 3.5 × 10−6.
Hence p is rather small so that a moderate value of q is enough to let p ≤ δ

T .

In fact, p can be bounded by O(exp(−cq)) by Johnson-Lindenstrauss Lemma where c is an absolute
constant (see Lemma 5.3.2 in [15]). Note that the bound is exponentially decayed w.r.t. q and
independent of d.

33

Remark 15. We give an analysis of the influence of the additional factor 2 in Line 7 of Algorithm 3.
Let

D̂t2 =

(
∇f(yt)

>pt
)2

(∇f(yt)>pt)
2

+ 2(d−1)
q

∑q
i=1 (∇f(yt)>ui)

2
,

D̂t1 =

(
∇f(yt)

>pt
)2

(∇f(yt)>pt)
2

+ d−1
q

∑q
i=1 (∇f(yt)>ui)

2 ,

θt2 =
D̂t2 + q

d−1 (1− D̂t2)

L̂
(
D̂t2 + d−1

q (1− D̂t2)
) ,

θt1 =
D̂t1 + q

d−1 (1− D̂t1)

L̂
(
D̂t1 + d−1

q (1− D̂t1)
) .

Then D̂t1 ≥ D̂t2 and 1− D̂t1 ≤ 1− D̂t2. We have

θt2
θt1

=
D̂t2 + q

d−1 (1− D̂t2)

D̂t1 + q
d−1 (1− D̂t1)

·
D̂t1 + d−1

q (1− D̂t1)

D̂t2 + d−1
q (1− D̂t2)

(165)

≥ D̂t2

D̂t1

· 1− D̂t1

1− D̂t2

(166)

=

D̂t2
1−D̂t2
D̂t1

1−D̂t1

(167)

=

(∇f(yt)
>pt)

2

2(d−1)
q

∑q
i=1(∇f(yt)>ui)

2

(∇f(yt)>pt)
2

d−1
q

∑q
i=1(∇f(yt)>ui)

2

(168)

=
1

2
. (169)

Therefore, we have θt2 ≥ 1
2θt1.

Meanwhile, since D̂t2 ≥ 0, we have θt2 ≥ q2

L̂(d−1)2
. Hence θt2 ≥ max

{
1
2θt1,

q2

L̂(d−1)2

}
.

C.4 Approximate solution of θt and implementation of PARS in practice (PARS-Impl)

We note that in Line 3 of Algorithm 2, it is not straightforward to obtain an ideal solution of θt, since

yt depends on θt. Theoretically speaking, θt > 0 satisfying the inequality θt ≤
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]

always exists, since by Eq. (152),
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
≥ q2

L̂(d−1)2
:= θ always holds, so we can always

let θt = θ. However, such estimate of θt is too conservative and does not benefit from a good prior
(when Dt is large). Therefore, one can guess a value of Dt, and then compute the value of θt by

Eq. (152), and then estimate the value of Dt and verify that θt ≤
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
holds. If it does

not hold, we need to try a smaller θt until the inequality is satisfied. For example, in Algorithm 3, if
we implement its Line 4 to Line 7 with a guessing procedure,15 we could obtain an runnable algorithm
with convergence guarantee. However, in practice such procedure could require multiple runs from
Line 5 to Line 7 in Algorithm 3, which requires many additional queries; on the other hand, due to
the additional factor 2 in Line 7 of Algorithm 3, we would always find a conservative estimate of θt.

15For example, (1) compute θ′t with θt ← 0 by running Line 5 to Line 7; (2) we guess θt ← κθ′t to compute
a new θ′t by rerunning Line 5 to Line 7, where 0 < κ < 1 is a discount factor to obtain a more conservative
estimate of θt; (3) if θt ≤ θ′t, then we have found θt as required; else, we go to step (2).

34

In this section, we introduce the algorithm we use to find an approximate solution to find θt in Line 3
of Algorithm 2, which does not have theoretical guarantee but empirically performs well. The full
algorithm PARS-Impl is shown in Algorithm 4. It stills follow the PARS framework (Algorithm 2),
and our procedure to find θt is shown in Line 5 to Line 7.16 Next we explain the procedure to find θt
in detail.

Algorithm 4 Prior-Guided Accelerated Random Search in implementation (PARS-Impl)

Input: L-smooth convex function f ; initialization x0; L̂ ≥ L; Query count per iteration q (cannot be too small);
iteration number T ; γ0 > 0.

Output: xT as the approximate minimizer of f .
1: m0 ← x0;
2: ‖∇̂f−1‖2 ← +∞;
3: for t = 0 to T − 1 do
4: Obtain the prior pt;

5: y
(0)
t ← xt; D̂t ← (∇f(y(0)t)>pt)

2

‖∇̂ft−1‖2
; θt ←

D̂t+
q
d−1

(1−D̂t)

L̂
(
D̂t+

d−1
q

(1−D̂t)
) ;

6: y
(1)
t ← (1− αt)xt + αtmt, where αt ≥ 0 is a positive root of the equation α2

t = θt(1− αt)γt;
7: D̂t ← (∇f(y(1)t)>pt)

2

‖∇̂ft−1‖2
; θt ←

D̂t+
q
d−1

(1−D̂t)

L̂
(
D̂t+

d−1
q

(1−D̂t)
) ;

8: yt ← (1 − αt)xt + αtmt, where αt ≥ 0 is a positive root of the equation α2
t = θt(1 − αt)γt;

γt+1 ← (1− αt)γt;
9: Sample an orthonormal set of {ui}qi=1 in the subspace perpendicular to pt uniformly, as in Section B.3.3;

10: g1(yt)←
∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>pt · pt;
11: g2(yt)← d−1

q

∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>pt · pt;
12: ‖∇̂ft‖2 ←

(
∇f(yt)>pt

)2
+ d−1

q

∑q
i=1

(
∇f(yt)>ui

)2
;

13: xt+1 ← yt − 1

L̂
g1(yt), mt+1 ← mt − θt

αt
g2(yt);

14: end for
15: return xT .

Specifically, we try to find an approximated solution of θt satisfying the equation θt =
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
to find a θt as large as possible and approximately satisfies the inequality

θt ≤
Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
. Since

Et
[
(∇f(yt)

>vt)
2
]

L̂·Et[‖g2(yt)‖2]
=

Dt+
q
d−1 (1−Dt)

L̂(Dt+ d−1
q (1−Dt))

, we try to solve the equa-

tion

θt = g(θt) :=
Dt + q

d−1 (1−Dt)

L̂
(
Dt + d−1

q (1−Dt)
) , (170)

where Dt = (∇f(yt)
>
pt)

2 and yt depends on θt. This corresponds to finding the fixed-point of g,
so we apply the fixed-point iteration method. Specifically, we first let θt = 0, then yt = xt, and let
θt ← g(θt) (the above corresponding to Line 5 of Algorithm 4); then we calculate yt again using the
new value of θt (corresponding to Line 6), and let θt ← g(θt) (corresponding to Line 7). We find that
two iterations are able to lead to satisfactory performance. Note that then two additional queries to
the directional derivative oracle are required to obtain∇f(y

(0)
t)>pt and∇f(y

(1)
t)>pt used in Line 5

and Line 7.

Since Dt = (∇f(yt)
>
pt)

2 = (∇f(yt)
>pt)

2

‖∇f(yt)‖2 , we need to estimate ‖∇f(yt)‖2 as introduced in

Section C.3. However, y(0)
t and y(1)

t in Algorithm 4 are different from both yt and yt−1, so to
estimate ‖∇f(y

(0)
t)‖2 and ‖∇f(y

(1)
t)‖2 as in Section C.3, many additional queries are required

(since the query results of the directional derivative at yt−1 or yt cannot be reused). Therefore, we
introduce one additional approximation: we use the estimate of ‖∇f(yt−1)‖2 as the approximation
of ‖∇f(y

(0)
t)‖2 and ‖∇f(y

(1)
t)‖2. Since the gradient norm itself is relatively large (compared with

16Line 5 and Line 7 require the query of ∇f(y(0)t)>pt and ∇f(y(1)t)>pt respectively, so each iteration of
Algorithm 4 requires 2 additional queries to the directional derivative oracle, or requires 4 additional queries to
the function value oracle using finite difference approximation of the directional derivative.

35

e.g. directional derivatives) and in zeroth-order optimization, the single-step update is relatively small,
we expect that ‖∇f(y

(0)
t)‖2 and ‖∇f(y

(1)
t)‖2 are closed to ‖∇f(yt−1)‖2. In Algorithm 4, Line 12

estimates ‖∇f(yt)‖2 by Eq. (157), and the estimator is denoted ‖∇̂ft‖2. Given this, ‖∇f(y
(0)
t)‖2

and ‖∇f(y
(1)
t)‖2 are approximated by ‖∇̂ft−1‖2 for calculations of D̂t in Line 5 and Line 7 as

approximations of
(
∇f(y

(0)
t)
>
pt
)2

and
(
∇f(y

(1)
t)
>
pt
)2

.

Finally we note that in the experiments, we find that when using Algorithm 4, the error brought by
approximation of ‖∇f(y

(0)
t)‖2 and ‖∇f(y

(1)
t)‖2 sometimes makes the performance of the algorithm

not robust, especially when q is small (e.g. q = 10), which could lead the algorithm to divergence.
Therefore, we propose two tricks to suppress the influence of approximation error (we note that in
practice, the second trick is more important, while the first trick is often not necessary given the
application of the second trick):

• To reduce the variance of ‖∇̂ft‖ when q is small, we let

‖∇̂favg
t ‖2 =

1

k

t∑
s=t−k+1

‖∇̂fs‖2, (171)

and use ‖∇̂favg
t−1‖2 to replace ‖∇̂ft−1‖2 in Line 5 and Line 7. In our experiments we

choose k = 10. Compared with ‖∇̂ft−1‖2, using ‖∇̂favg
t−1‖2 to estimate ‖∇f(y

(0)
t)‖2 and

‖∇f(y
(1)
t)‖2 could reduce the variance at the cost of increased bias. We note that the

increased bias sometimes brings problems, so one should be careful when applying this
trick.

• Although Dt ≤ 1, It is possible that D̂t in Line 5 and Line 7 is larger than 1, which could
lead to a negative θt. Therefore, a clipping of D̂t is required. In our experiments, we
observe that a D̂t which is less than but very close to 1 (when caused by the accidental large
approximation error) could also lead to instability of optimization, perhaps because that it
leads to a too large value of θt used to determine yt and to update mt. Therefore, we let
D̂t ← min{D̂t, Bub} in Line 5 and Line 7 before calculating θt, where 0 < Bub ≤ 1 is
fixed. In our experiments we set Bub to 0.6.

We leave a more systematic study of the approximation error as future work.

C.5 Implementation of History-PARS in practice (History-PARS-Impl)

In PARS, when using a specific prior instead of the prior from a general source, we can utilize some
properties of the prior. When using the historical prior (pt = vt−1), we find that Dt is usually similar
to Dt−1, and intuitively it happens when the smoothness of the objective function does not change
quickly along the optimization trajectory. Therefore, the best value of θt should also be similar to the
best value of θt−1. Based on this observation, we can directly use θt−1 as the value of θt in iteration
t, and the value of θt−1 is obtained with yt−1 in iteration t− 1. Following this thread, we present our
implementation of History-PARS, i.e. History-PARS-Impl, in Algorithm 5.

C.6 Full version of Algorithm 2 considering the strong convexity parameter and its
convergence theorem

In fact, the ARS algorithm proposed in [12] requires knowledge of the strong convexity parameter
τ of the objective function, and the original algorithm depends on τ . The ARS algorithm has a
convergence rate for general smooth convex functions, and also have another potentially better
convergence rate if τ > 0. In previous sections, for simplicity, we suppose τ = 0 and illustrate the
corresponding extension in Algorithm 2. In fact, for the general case τ ≥ 0, the original ARS can also
be extended to allow for incorporation of prior information. We present the extension to ARS with
τ ≥ 0 in Algorithm 6. Note that our modification is similar to that in Algorithm 2. For Algorithm 6,
we can also provide its convergence guarantee as shown in Theorem 7. Note that after considering
the strong convexity parameter in the algorithm, we have an additional convergence guarantee, i.e.
Eq. (173). In the corresponding PARS algorithm, we have θt ≥ q2

L̂d2
, so the convergence rate of

PARS is not worse than that of ARS and admits improvement given a good prior.

36

Algorithm 5 History-PARS in implementation (History-PARS-Impl)

Input: L-smooth convex function f ; initialization x0; L̂ ≥ L; Query count per iteration q (cannot be too small);
iteration number T ; γ0 > 0.

Output: xT as the approximate minimizer of f .
1: m0 ← x0;
2: θ−1 ← a very small positive number close to 0;
3: v−1 ∼ U(Sd−1);
4: for t = 0 to T − 1 do
5: yt ← (1 − αt)xt + αtmt, where αt ≥ 0 is a positive root of the equation α2

t = θt−1(1 − αt)γt;
γt+1 ← (1− αt)γt;

6: Sample an orthonormal set {ui}qi=1 in the subspace perpendicular to vt−1, as in Section B.3.3 with
pt = vt−1;

7: g1(yt)←
∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>vt−1 · vt−1; vt ← g1(yt);
8: g2(yt)← d−1

q

∑q
i=1∇f(yt)

>ui · ui +∇f(yt)>vt−1 · vt−1;

9: θt ←
Dt+

q
d−1

(1−Dt)

L̂
(
Dt+

d−1
q

(1−Dt)
) , where Dt is estimated using Eq. (158) with pt = vt−1;

10: xt+1 ← yt − 1

L̂
g1(yt), mt+1 ← mt − θt−1

αt
g2(yt);

11: end for
12: return xT .

Algorithm 6 Extended accelerated random search framework for τ ≥ 0

Input: L-smooth and τ -strongly convex function f ; initialization x0; L̂ ≥ L; τ̂ such that 0 ≤ τ̂ ≤ τ ; iteration
number T ; a positive γ0 ≥ τ̂ .

Output: xT as the approximate minimizer of f .
1: m0 ← x0;
2: for t = 0 to T − 1 do

3: Find a θt > 0 such that θt ≤
Et
[
(∇f(yt)>vt)

2
]

L̂·Et[‖g2(yt)‖2]
where θt, yt and g2(yt) are defined in following steps:

4: Step 1: yt ← (1 − βt)xt + βtmt, where βt := αtγt
γt+αtτ̂

, αt is a positive root of the equation
α2
t = θt((1− αt)γt + αtτ̂); γt+1 ← (1− αt)γt + αtτ̂ ;

5: Step 2: Let vt be a random vector s.t. ‖vt‖ = 1; g1(yt)← ∇f(yt)>vt · vt;
6: Step 3: Let g2(yt) be an unbiased estimator of∇f(yt), i.e. Et[g2(yt)] = ∇f(yt);
7: λt ← αt

γt+1
τ̂ ;

8: xt+1 ← yt − 1

L̂
g1(yt), mt+1 ← (1− λt)mt + λtyt − θt

αt
g2(yt);

9: end for
10: return xT .

Theorem 7. In Algorithm 6, if θt is Ft−1-measurable, we have

E

(f(xT)− f(x∗))

(
1 +

√
γ0

2

T−1∑
t=0

√
θt

)2
 ≤ f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2. (172)

and

E

[
(f(xT)− f(x∗)) exp

(
√
τ̂

T−1∑
t=0

√
θt

)]
≤ f(x0)− f(x∗) +

γ0

2
‖x0 − x∗‖2. (173)

Proof. Let Le := L̂
2L̂−L · L̂. We still have Eq. (18), so

Et[f(xt+1)] ≤ f(yt)−
Et
[(
∇f(yt)

>vt
)2]

2Le
(174)

≤ f(yt)−
Et
[(
∇f(yt)

>vt
)2]

2L̂
. (175)

For an arbitrary fixed x, define ρt(x) := γt
2 ‖mt−x‖2 + f(xt)− f(x). Let rt := (1−λt)mt +λtyt.

We first prove a lemma.

37

Since (1− βt)xt + βtmt = yt = (1− βt)yt + βtyt, we have mt − yt = 1−βt
βt

(yt − xt). So

rt = (1− λt)mt + λtyt = yt + (1− λt)(mt − yt) = yt + (1− λt)
1− βt
βt

(yt − xt). (176)

By βt = αtγt
γt+αtτ̂

, γt+1 = (1− αt)γt + αtτ̂ and λt = αt
γt+1

τ̂ , after eliminating γt and γt+1, we have

(1− λt) 1−βt
βt

= 1−αt
αt

. Hence rt = yt + 1−αt
αt

(yt − xt), which means

yt = (1− αt)xt + αtrt. (177)

Now we start the main proof.

ρt+1(x) =
γt+1

2
‖mt+1 − x‖2 + f(xt+1)− f(x) (178)

=
γt+1

2
‖rt − x‖2 −

γt+1θt
αt

g2(yt)
>(rt − x) +

γt+1θ
2
t

2α2
t

‖g2(yt)‖2 + f(xt+1)− f(x)

(179)

=
γt+1

2
‖rt − x‖2 − αtg2(yt)

>(rt − x) +
θt
2
‖g2(yt)‖2 + f(xt+1)− f(x). (180)

We make sure in Remark 2 that Ft−1 always includes all the randomness before iteration t. There-
fore, γt, mt and xt are Ft−1-measurable. The assumption in Theorem 5 requires that θt is
Ft−1-measurable. Since αt, βt, yt and rt are determined by γt, xt, mt and θt (through Borel
functions), they are also Ft−1-measurable. Since θt, αt and rt are Ft−1-measurable, we have
Et[αtg2(yt)

>(rt − x)] = αtEt[g2(yt)]
>(rt − x) and Et[θt‖g2(yt)‖2] = θtEt[‖g2(yt)‖2]. Hence

Et[ρt+1(x)] =
γt+1

2
‖rt − x‖2 − αtEt[g2(yt)]

>(rt − x) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x)

(181)

=
γt+1

2
‖rt − x‖2 − αt∇f(yt)

>(rt − x) +
θt
2
Et[‖g2(yt)‖2] + Et[f(xt+1)]− f(x)

(182)

≤ γt+1

2
‖rt − x‖2 − αt∇f(yt)

>(rt − x) +
Et
[(
∇f(yt)

>vt
)2]

2L̂
+ Et[f(xt+1)]− f(x)

(183)

≤ γt+1

2
‖rt − x‖2 − αt∇f(yt)

>(rt − x) + f(yt)− f(x) (184)

=
γt+1

2
‖rt − x‖2 −∇f(yt)

>(αtrt − αtx) + f(yt)− f(x) (185)

=
γt+1

2
‖rt − x‖2 +∇f(yt)

>(−yt + (1− αt)xt + αtx) + f(yt)− f(x) (186)

=
γt+1

2
‖rt − x‖2 + αt

(
f(yt) +∇f(yt)

>(x− yt)
)

(187)

+ (1− αt)
(
f(yt) +∇f(yt)

>(xt − yt)
)
− f(x) (188)

≤ γt+1

2
‖rt − x‖2 + (1− αt)f(xt)− (1− αt)f(x)− αtτ

2
‖x− yt‖2. (189)

We also have
γt+1

2
‖rt − x‖2 =

γt+1

2
‖(1− λt)mt + λtyt − x‖2 (190)

=
γt+1

2
‖(1− λt)(mt − x) + λt(yt − x)‖2 (191)

≤ γt+1(1− λt)
2

‖mt − x‖2 +
γt+1λt

2
‖yt − x‖2 (192)

=
γt+1(1− λt)

2
‖mt − x‖2 +

αtτ̂

2
‖yt − x‖2 (193)

= (1− αt)
γt
2
‖mt − x‖2 +

αtτ̂

2
‖x− yt‖2, (194)

38

where the inequality is due to Jensen’s inequality applied to the convex function ‖ · ‖2, and the
third equality is obtained after substituting λtγt+1 = αtτ̂ by the definition of λt. Since γt+1 =
(1− αt)γt + αtτ̂ = (1− αt)γt + λtγt+1, we have γt+1(1− λt) = (1− αt)γt, which leads to the
last equality.

Hence

Et[ρt+1(x)] ≤ γt+1

2
‖rt − x‖2 + (1− αt)f(xt)− (1− αt)f(x)− αtτ

2
‖x− yt‖2 (195)

= (1− αt)ρt(x) +
αt(τ̂ − τ)

2
‖x− yt‖2 (196)

≤ (1− αt)ρt(x). (197)

Therefore,

ρ0(x) = E[ρ0(x)] ≥ E
[
E0[ρ1(x)]

1− α0

]
= E

[
E0

[
ρ1(x)

1− α0

]]
= E

[
ρ1(x)

1− α0

]
≥ E

[
E1[ρ2(x)]

(1− α0)(1− α1)

]
= E

[
E1

[
ρ2(x)

(1− α0)(1− α1)

]]
= E

[
ρ2(x)

(1− α0)(1− α1)

]
≥ . . .

≥ E

[
ρT (x)∏T−1

t=0 (1− αt)

]
.

We have ρT (x) ≥ f(xT) − f(x). To prove the theorem, let x = x∗. The remaining is to give an
upper bound of

∏T−1
t=0 (1− αt). Let ψk :=

∏k−1
t=0 (1− αt) and ak := 1√

ψk
, we have

ak+1 − ak =
1√
ψk+1

− 1√
ψk

=

√
ψk −

√
ψk+1√

ψkψk+1

=
ψk − ψk+1√

ψkψk+1(
√
ψk +

√
ψk+1)

(198)

≥ ψk − ψk+1√
ψkψk+1(

√
ψk)

(199)

=
ψk − (1− αk)ψk

2ψk
√
ψk+1

=
αk

2
√
ψk+1

=

√
γk+1θk

2
√
ψk+1

=

√
θk
2

√
γk+1

ψk+1
(200)

≥
√
γ0θk
2

. (201)

The last step is because γt+1 ≥ (1 − αt)γt, so γk+1

γ0
≥
∏k
t=0(1 − αt) = ψk+1. Since ψ0 = 1,

a0 = 1. Hence aT ≥ 1 +
√
γ0
2

∑T−1
t=0

√
θt. Therefore,

ψT ≤
1(

1 +
√
γ0
2

∑T−1
t=0

√
θt

)2 . (202)

Meanwhile, since γ0 ≥ τ̂ and γt+1 = (1 − αt)γt + αtτ̂ , we have that ∀t, γt ≥ τ̂ . Then α2
t =

θt((1− αt)γt + αtτ̂) ≥ θtτ̂ , then we have that αt ≥
√
τ̂ θt. Therefore,

ψT ≤
T−1∏
t=0

(
1−

√
τ̂ θt

)
≤ exp

(
−
√
τ̂

T−1∑
t=0

√
θt

)
. (203)

The proof is completed.

D Supplemental materials for Section 5

D.1 More experimental settings in Section 5.1

In experiments in this section, we set the step size µ used in finite differences (Eq. (1)) to 10−6, and
the parameter γ0 in ARS-based methods to L̂.

39

D.1.1 Experimental settings for Fig. 1

Prior We adopt the setting in Section 4.1 of [9] to mimic the case that the prior is a biased version
of the true gradient. Specifically, we let pt = ∇f(xt) + (b+ nt), where b is a fixed vector and nt is
a random vector uniformly sampled each iteration, ‖b‖ = 1 and ‖nt‖ = 1.5.

Test functions Our test functions are as follows. We choose f1 as the “worst-case smooth convex
function” used to construct the lower bound complexity of first-order optimization, as used in [12]:

f1(x) =
1

2
(x(1))2 +

1

2

d−1∑
i=1

(x(i+1) − x(i))2 +
1

2
(x(d))2 − x(1), where x0 = 0. (204)

We choose f2 as a simple smooth and strongly convex function with a worst-case initialization:

f2(x) =

d∑
i=1

(
i

d
· (x(i))2

)
, where x(1)

0 = d, x
(i)
0 = 0 for i ≥ 2. (205)

We choose f3 as the Rosenbrock function (f8 in [5]) which is a well-known non-convex function
used to test the performance of optimization problems:

f3(x) =

d−1∑
i=1

(
100

(
(x(i))2 − x(i+1)

)2

+ (x(i) − 1)2

)
, where x0 = 0. (206)

We note that ARS, PARS-Naive and PARS could depend on a strong convexity parameter (see
Section C.6) when applied to a strongly convex function. Therefore, for f2 we set this parameter to
the ground truth value. For f1 and f3 we set it to zero, i.e. we use Algorithm 2.

D.1.2 Experimental settings for Fig. 2

In this part we set d = 500 and set q such that each iteration of each algorithm costs 11 queries. Since
when using the historical prior, we aim to build algorithms agnostic to parameters of the objective
function, we set the strong convexity parameter in ARS-based methods to 0 even though we know
that e.g. f2 is strongly convex. Correspondingly, we adopt adaptive restart of function scheme [13]
to reach the ideal performance. We introduce our implementation here. In each iteration (suppose
that currently it is iteration t) of Algorithm 5, we check whether f(yt) ≤ f(yt−1). If not, we set
mt+1 ← xt+1 and γt+1 ← γ0 as the restart.

D.2 More experimental settings in Section 5.2

We perform targeted attacks under the `2 norm with the perturbation bound set to 3.514 (= 32/255×√
784) if each pixel value has the range [0, 1]. The objective function to maximize for attacking

image x is the C&W loss [3], i.e. f(x) = Z(x)t − maxi 6=t Z(x)i, where t is the target class
and Z(x) is the logits given the input x. The network architecture is from the PyTorch example
(https://github.com/pytorch/examples/tree/master/mnist).

We set the step size µ used in finite differences (Eq. (1)) to 10−4, and the parameter γ0 in ARS-based
methods to L̂. To deal with the constraints in optimization, in each iteration we perform projection
after the update to ensure that the constraints are satisfied. In historical-prior-guided methods, to
prevent the prior from pointing to the infeasible region (where the constraints are not satisfied), we
let the prior pt be xt − xt−1 for History-PRGF and xt − yt−1 for History-PARS. In unconstrained
optimization, this is equivalent to the original choice of pt (pt = gt−1 for History-PRGF and
pt = g1(yt−1) for History-PARS) up to sign. But in constrained optimization, since xt is further
projected to the feasible region after the update from xt−1 or yt−1, they are not equivalent.

We note that the number of queries for each image does not count queries (one query per iteration) to
check whether the attack has succeeded.

E Potential negative societal impacts

As a theoretical work, we think this paper can provide valuable insights on understanding existing
algorithms and may inspire new algorithms for zeroth-order optimization, while having no significant

40

https://github.com/pytorch/examples/tree/master/mnist

potential negative societal impacts. One may pay attention to its application to query-based black-box
adversarial attacks.

References
[1] Nikhil Bansal and Anupam Gupta. Potential-function proofs for gradient methods. Theory of Computing,

15(1):1–32, 2019.

[2] Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv preprint arXiv:1405.4980,
2014.

[3] Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017 ieee
symposium on security and privacy (sp), pages 39–57. IEEE, 2017.

[4] Shuyu Cheng, Yinpeng Dong, Tianyu Pang, Hang Su, and Jun Zhu. Improving black-box adversarial
attacks with a transfer-based prior. arXiv preprint arXiv:1906.06919, 2019.

[5] Nikolaus Hansen, Steffen Finck, Raymond Ros, and Anne Auger. Real-parameter black-box optimization
benchmarking 2009: Noiseless functions definitions. PhD thesis, INRIA, 2009.

[6] Risto Heijmans. When does the expectation of a ratio equal the ratio of expectations? Statistical Papers,
40(1):107–115, 1999.

[7] Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-gradient
methods under the polyak-łojasiewicz condition. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 795–811. Springer, 2016.

[8] Stanislaw Lojasiewicz. A topological property of real analytic subsets. Coll. du CNRS, Les équations aux
dérivées partielles, 117:87–89, 1963.

[9] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein. Guided
evolutionary strategies: Augmenting random search with surrogate gradients. In International Conference
on Machine Learning, pages 4264–4273. PMLR, 2019.

[10] Florian Meier, Asier Mujika, Marcelo Matheus Gauy, and Angelika Steger. Improving gradient estimation
in evolutionary strategies with past descent directions. arXiv preprint arXiv:1910.05268, 2019.

[11] Cristinel Mortici. New approximation formulas for evaluating the ratio of gamma functions. Mathematical
and Computer Modelling, 52(1-2):425–433, 2010.

[12] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions. Founda-
tions of Computational Mathematics, 17(2):527–566, 2017.

[13] Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient schemes. Founda-
tions of computational mathematics, 15(3):715–732, 2015.

[14] Boris Teodorovich Polyak. Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matem-
atiki i Matematicheskoi Fiziki, 3(4):643–653, 1963.

[15] Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 6.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Appendix E.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]

41

(b) Did you include complete proofs of all theoretical results? [Yes]
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] See
https://github.com/csy530216/pg-zoo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 5 and Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Section 5.1.

(d) Did you include the total amount of compute and the type of resources used (e.g.,
type of GPUs, internal cluster, or cloud provider)? [N/A] Our experiments include
optimization of closed-form test functions and adversarial attacks on a small subset of
MNIST, which do not involve intensive computation and could be run on an ordinary
device (e.g. a PC using CPU).

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

42

https://github.com/csy530216/pg-zoo

