
A Standard Maximum Likelihood Estimation and Links to I-MLE

In the standard MLE setting [see, e.g., Murphy, 2012, Ch. 9] we are interested in learning the
parameters of a probability distribution, here assumed to be from the (constrained) exponential family
(see Eq. (3)), given a set of example states. More specifically, given training data D = {ẑj}Nj=1, with
ẑj ∈ C ⊆ {0, 1}m, maximum-likelihood learning aims to minimize the empirical risk

L(θ, qD) = Eẑ∼qD [− log p(ẑ;θ)] =
1

N

N∑
j=1

− log p(ẑj ;θ) =
1

N

N∑
j=1

(A(θ)− 〈ẑj ,θ〉) (15)

with respect to θ, where qD(z) =
∑
j δẑj (z)/N is the empirical data distribution and δẑ is the Dirac

delta centered in ẑ. In Eq. (15), the point-wise loss ` is the negative log likelihood − log p(ẑ,θ), and
qD may be seen as a (data/empirical) target distribution. Note that in the main paper, as we assumed
q to be from the exponential family with parameters θ′, we used the notation L(θ,θ′) to indicate the
MLE objective rather than L(θ, q). These two definitions are, however, essentially equivalent.

Eq. (15) is a smooth objective that can be optimized with a (stochastic) gradient descent procedure.
For a data point ẑ, the gradient of the point-wise loss is given by ∇θ` = µ(θ)− ẑ, since ∇θA = µ.
For the entire dataset one has

∇θL(θ, qD) = µ(θ)− 1

N

N∑
j=1

ẑj = µ(θ)− Eẑ∼qD [ẑj] (16)

which is (cf. Eq. (7)) the difference between the marginals of p(z;θ) (the mean of Z) and the
empirical mean of D, µ(qD) = Eẑ∼D[ẑ]. As mentioned in the main paper, the main computational
challenge when evaluating Eq. (16) is to compute the marginals (of p(z;θ)). There are many
approximate schemes, one of which is the so-called perceptron rule, which approximate Eq. (16) as

∇̂θL(θ, qD) = MAP(θ)− 1

N

N∑
j=1

ẑj

and it is frequently employed in a stochastic manner by sampling one or more points form D, rather
than computing the full dataset mean.

We may interpret the standard MLE setting described in this section from the perspective of the
problem setting we presented in Section 2. The first indeed amounts to the special case of the latter
where there are no inputs (X = ∅), the (target) output space coincides with the state space of the
distribution (Y = Z), f is the identity mapping, ` is the negative log-likelihood and the model’s
parameter coincide with the distribution parameters, that is ω = θ.

B Proofs of Section 3.2 and Section 4

This section contains the proofs of the results relative to the perturb and map section (Section 3.2) and
the section on optimal target distributions for typical loss functions when backpropagating through
combinatorial optimization problems (section 4). We repeat the statements here, for the convenience
of the reader.

Proposition 1. Let p(z;θ) be a discrete exponential family distribution with constraints C and
temperature τ , and let 〈θ, z〉 be the unnormalized weight of each z with z ∈ C. Moreover, let θ̃ be
such that, for all z ∈ C,

〈z, θ̃〉 = 〈z,θ〉+ ε(z)

with each ε(z) i.i.d. samples from Gumbel(0, τ). Then,

Pr
(
MAP(θ̃) = z

)
= p(z;θ).

14

Proof. Let εi ∼ Gumbel(0, τ) i.i.d. and θ̃i = θi + εi. Following a derivation similar to one made in
Papandreou and Yuille [2011], we have:

Pr{arg max(θ̃1, . . . , θ̃m) = n} =

= Pr{θ̃n ≥ max
j 6=n
{θ̃j}}

=

∫ +∞

−∞
g(t; θn)

∏
j 6=n

G(t; θj) dt

=

∫ +∞

−∞

1

τ
exp

(
θn − t
τ
− e θn−tτ

)∏
j 6=n

exp
(
−e

θj−t
τ

)
dt

=

∫ +∞

−∞

1

τ
e
θn−t
τ exp

(
−e θn−tτ

)∏
j 6=n

exp
(
−e

θj−t
τ

)
dt

=

∫ 1

0

∏
j 6=n

z
exp

(
θj−θn
τ

)
dz with z , exp

(
−e θn−tτ

)
=

1

1 +
∑
j 6=n e

θj−θn
τ

=
e
θn
τ∑m

j=1 e
θj
τ ,

where g and G are respectively the Gumbel probability density function and the Gumbel cumulative
density function. The proposition now follows from arguments made in Papandreou and Yuille [2011]
using the maximal equivalent re-parameterization of p(z;θ) where we specify a parameter 〈θ, z〉 for
each z with C(z) and perturb these parameters.

Lemma 1. Let X ∼ Gumbel(0, τ) and let κ ∈ N \ {0}. Then we can write

X ∼
κ∑
j=1

τ

κ

[
lim
s→∞

s∑
i=1

{Gamma(1/κ, κ/i)} − log(s)

]
,

where Gamma(α, β) is the gamma distribution with shape α and scale β.

Proof. Let κ ∈ N \ {0} and let X ∼ Gumbel(0, τ). Its moment generating function has the form

E[exp(tX)] = Γ(1− τt). (17)

As mentioned in Johnson and Balakrishnan [p. 443, 1998] we know that we can write the Gamma
function as

Γ(1− τt) = eγτt
∞∏
i=1

(
1− τt

i

)−1
e
−τt
i (18)

where γ is the Euler-Mascheroni constant. We have that(
1− τt

i

)−1
=

i

i− τt =
i
τ

i−τt
τ

=
i
τ

i
τ − τt

τ

=
i
τ

i
τ − t

.

The last term is the moment generating function of an exponential distribution with scale τ
i . We can

now take the logarithm on both sides of Eq. (18) and obtain

tX = γτt+ lim
s→∞

s∑
i=1

(
tExp(τ/i)− τt

i

)
,

15

where Exp(α) is the exponential distribution with scale α. Hence,

X ∼ lim
s→∞

s∑
i=1

(
Exp(τ/i)− τ

i

)
+ γτ

= lim
s→∞

s∑
i=1

(
Exp(τ/i)− τ

i

)
+ τ lim

s→∞

s∑
i=1

1

i
− log(s)

= lim
s→∞

s∑
i=1

(
Exp(τ/i)− τ

i
+
τ

i

)
− τ log(s)

= lim
s→∞

s∑
i=1

Exp(τ/i)− τ log(s)

Since Exp(α) ∼ Gamma(1, α), and due to the scaling and summation properties of the Gamma
distribution (with shape-scale parameterization), we can write for all r > 1:

Exp(α) ∼
r∑
j=1

Gamma(1/r, αr)/r.

Hence, picking r = κ from the hypothesis, we have

X ∼ lim
s→∞

s∑
i=1

κ∑
j=1

Gamma(1/κ, τκ/i)/κ

− τ log(s)

= lim
s→∞

κ∑
j=1

τ

k

s∑
i=1

Gamma(1/κ, κ/i)

−
κ∑
j=1

τ

κ
log(s)

= lim
s→∞

κ∑
j=1

τ

κ

{[
s∑
i=1

Gamma(1/κ, κ/i)

]
− log(s)

}

=

κ∑
j=1

τ

κ

{
lim
s→∞

[
s∑
i=1

Gamma(1/κ, κ/i)

]
− log(s)

}
This concludes the proof. Parts of the proof are inspired by a post on stackexchange Xi’an [2016].

Theorem 1. Let p(z;θ) be a discrete exponential family distribution with constraints C and temper-
ature τ , and let k ∈ N \ {0}. Let us assume that if C(z) then 〈z,1〉 = k. Let θ̃ be the perturbation
obtained by θ̃i = θi + εi with

εi ∼
τ

k

[
lim
s→∞

s∑
i=1

{Gamma(1/k, k/i)} − log(s)

]
, (19)

where Gamma(α, β) is the gamma distribution with shape α and scale β. Then, for every z we have
that 〈z, θ̃〉 = 〈z,θ〉+ ε(z) with ε(z) ∼ Gumbel(0, τ).

Proof. Since we perturb each θi by εi we have, by assumption, that 〈θ,1〉 = k, for every z with
C(z), that

〈z, θ̃〉 = 〈z,θ〉+

k∑
j=1

εj . (20)

Since by Lemma 1 we know that
∑k
j=1 εi ∼ Gumbel(0, τ), the statement of the theorem follows.

The following theorem shows that the infinite series from Lemma 1 can be well approximated by a
finite sum using convergence results for the Euler-Mascheroni series.

16

Theorem 2. LetX ∼ Gumbel(0, τ) and X̃(m) ∼∑κ
j=1

τ
κ [
∑m
i=1{Gamma(1/κ, κ/i)} − log(m)].

Then
τ

2(m+ 1)
< E[X̃(m)]− E[X] <

τ

2m
.

Proof. We have that

E[X̃(m)] =

= E

 κ∑
j=1

τ

κ

[
m∑
i=1

{Gamma(1/κ, κ/i)} − log(m)

]
=

m∑
i=1

E [Gamma(1/κ, τκ/i)]− τ log(m)

=

[
m∑
i=1

1

κ

τκ

i
− τ log(m)

]

= τ

[
m∑
i=1

1

i
− log(m)

]
.

If X ∼ Gumbel(0, τ), we know that E [X] = τγ. Hence,

E[X̃(m)]− E[X] = τ

[
m∑
i=1

1

i
− log(m)

]
− τγ

= τ

[
m∑
i=1

1

i
− log(m)− γ

]
.

The theorem now follows from convergence results of the Euler-Mascheroni series Mortici [2010].

Fact 1. If one uses `H , then I-MLE with the target distribution of Eq. (14) and ρ(ε) = δ0(ε) is
equivalent to the perceptron-rule estimator of the MLE objective between p(z;hv(x̂j)) and ŷj .

Proof. Rewriting the definition of the Hamming loss gives us

`H(z,y) =
1

m

m∑
i=1

(zi + yi − 2ziyi) .

Hence, we have that

∇zi`H =
1

m
(1− 2yi) .

Therefore,∇zi`H = − 1
m if yi = 1 and∇ziH = 1

m if yi = 0. Since, by definition y ∈ C, we have
that

MAP (−∇z`H) = y.

Now, when using I-MLE with S = 1 and ρ(ε) = δ0(ε) we approximate the gradients as

∇̂θL(θ,θ′) = MAP(θ)− MAP(θ′) = MAP(θ)− MAP (−∇z`H) = MAP(θ)− y.
This concludes the proof.

Fact 2. If one uses `R then I-MLE with the target distribution of Eq. (14) is equivalent to the
perturb-and-MAP estimator of the MLE objective between p(z;hv(x̂j)) and p(z;−ĉj).

Proof. We have that∇zi`R = ci for all i. Now, when using I-MLE with target distribution q̂(z;θ′)
of Eq. (14) (and without loss of generality, for S = 1) we have that q̂(z;θ′) = p(z;−c), and we
approximate the gradients as

∇̂θL(θ,θ′) = MAP(θ + εi)− MAP(θ′ + εi) = MAP(θ + εi)− MAP(−c+ εi), where εi ∼ ρ(ε).

Hence, I-MLE approximates the gradients of the maximum likelihood estimation problem between
p(z;hv(x̂j)) and p(z;−ĉj) using perturb-and-MAP. This concludes the proof.

17

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE PaM SoG

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE PaM Gumbel

0.25

0.50

0.75

1.00

1.25

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE SoG - Gum. (means)

1.0
0.8
0.6
0.4
0.2

0.0

0.2

Figure 5: Average (over 100 runs) values of L(θ) after 50 steps of stochastic gradient descent (with
momentum) using single-sample I-MLE with SoG(1, 5, 10) noise (left) and Gumbel(0, 1) noise
(center) varying the perturbation intensity λ (see Eq. (10)) and learning rate. The rightmost heat-map
depicts the (point-wise) difference between the two methods (blue = better SoG).

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE PaM SoG - std

0.2

0.4

0.6

0.8

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE PaM Gumbel - std

0.25

0.50

0.75

1.00

1.25

1.50

0.5 1.0 1.5 2.0 2.5 3.0
Lambda

0.5

0.625

0.75

0.875

1.0

Le
ar

ni
ng

 ra
te

I-MLE SoG - Gum. (std)

1.0

0.8

0.6

0.4

0.2

0.0

Figure 6: Same as above, but reporting standard deviations.

C Experiments: Details and Additional Results

C.1 Synthetic Experiments

In this series of experiments we analyzed the behaviour of various discrete gradient estimators,
comparing our proposed I-MLE with standard straight-trhough (STE) and score-function (SFE)
estimators. We also study of the effect of using Sum-of-Gamma perturbations rather than stan-
dard Gumbel noise. In order to be able to compute exactly (up to numerical precision) all the
quantities involved, we chose a tractable 5-subset distribution (see Example 2) of size m = 10.

10 15 20
Size (m)

0.0

0.2

0.4

0.6

Se
co

nd
s

Expect.
Sample
P&M

Figure 7: Runtime (mean and standard
deviation) for computing L and samples
of it, as the dimensionality of the k-subset
distribution increases (with k = m/2).

We set the loss to L(θ) = Eẑ∼p(z;θ)[‖ẑ − b‖2], where b
is a fixed vector sampled (only once) from N (0, I). This
amounts to an unconditional setup where there are no input
features (as in the standard MLE setting of Appendix A),
but where the point-wise loss `(z) is the Euclidean distance
between the distribution output and a fixed vector b. In Fig. 7
we plot the runtime (mean and standard deviation over 10
evaluations) of the full objective L (Expect., in the plot), of a
(faithful) sample of ` and of a perturb-and-MAP sample with
Sum-of-Gamma noise distribution (P&M) for increasing
size m, with k = m/2. As it is evident from the plot, the
runtime for both expectation and faithful samples, which
require computing all the states in C, increases exponentially,
while perturb and MAP remains almost constant.

Within this setting, the one-sample I-MLE estimator is

∇̂I-MLEL(θ) = MAP(θ + ε)− MAP(θ′ + ε), with ε ∼ SoG(1, 5, 10)

where θ′ = θ − λ[2(ẑ − b)], where ẑ = MAP(θ + ε) is a (perturb-and-MAP) sample, while the
one-sample straight through estimator is

∇̂STEL(θ) = 2(ẑ − b), with ẑ = MAP(θ + ε), ε ∼ Gumbel(0, 1).

For the score function estimator, we have used an expansive faithful sample/full marginal implemen-
tation given by

∇̂SFEL(θ) = ‖ẑ − b‖2∇θ log p(ẑ;θ) = ‖ẑ − b‖2 [ẑ − µ(θ)], with ẑ ∼ p(z;θ)

18

0.0010
0.0018
0.0032
0.0058
0.0105
0.0190
0.0342
0.0616
0.1110
0.2000

Le
ar

ni
ng

 ra
te

STE PaM SoG

1.5

2.0

2.5

3.0

3.5 0.0010
0.0018
0.0032
0.0058
0.0105
0.0190
0.0342
0.0616
0.1110
0.2000

Le
ar

ni
ng

 ra
te

STE PaM Gumbel

1

2

3 0.0010
0.0018
0.0032
0.0058
0.0105
0.0190
0.0342
0.0616
0.1110
0.2000

Le
ar

ni
ng

 ra
te

STE SoG - Gum. (means)

0.0

0.1

0.2

0.3

0.4

0.0001
0.0002
0.0005
0.0010
0.0022
0.0046
0.0100
0.0215
0.0464
0.1000

Le
ar

ni
ng

 ra
te

SFE SM mean

1

2

3

0.0001
0.0002
0.0005
0.0010
0.0022
0.0046
0.0100
0.0215
0.0464
0.1000

Le
ar

ni
ng

 ra
te

SFE SM std

0.5

1.0

1.5

Figure 8: First three plots, from left to right: average (over 100 runs) final values of L(θ) after 50
steps of optimization using the straight-through estimator with SoG noise, varying the learning rate;
same but using Gumbel noise; difference of averages between the first and the second heat-maps.
Last two plots, from left to right: average (over 20 runs) final values of L(θ) after 500 steps of
optimization using the score function estimator (with faithful samples and exact marginals), varying
the learning rate; standard deviation for the same setting.

Method Appearance Palate Taste

Test MSE Subset precision Test MSE Subset precision Test MSE Subset precision

L2X (t = 0.1) 10.70 ± 4.82 30.02 ± 15.82 6.70 ± 0.63 50.39 ± 13.58 6.92 ± 1.61 32.23 ± 4.92
SoftSub (t = 0.5) 2.48 ± 0.10 52.86 ± 7.08 2.94 ± 0.08 39.17 ± 3.17 2.18 ± 0.10 41.98 ± 1.42
I-MLE (τ = 30) 2.51 ± 0.05 65.47 ± 4.95 2.96 ± 0.04 40.73 ± 3.15 2.38 ± 0.04 41.38 ± 1.55

Table 3: Experimental results (mean ± std. dev.) for the learning to explain experiments for k = 10
and various aspects.

since, in preliminary experiments, we did not manage to obtain meaningful results with SFE using
perturb-and-MAP for sampling and/or marginals approximation. These equations give the formulae
for the estimators which we used for the results plotted in Fig. 3 (top) in the main paper.

In Fig. 5 we plot the heat-maps for the sensitivity results comparing between I-MLE with SoG and
I-MLE with Gumbel perturbations. The two leftmost heat-maps depict the average value (over 100
runs) of L(θ) after 50 steps of stochastic gradient descent, for various choices of λ and learning rates
(momentum factor was fixed at 0.9 for all experiments). The rightmost plot of Fig. 5 is the same as
the one in the main paper, and represents the difference between the first and the second heat-maps.
Fig. 6 refers to the same setting, but this time showing standard deviations. The rightmost plot of
Fig. 6 suggests that using SoG perturbations results also in reduced variance (of the final loss) for
most of the tried hyperparameter combinations. Finally, in Fig. 8 we show sensitivity plots for STE
(both with SoG and Gumbel perturbations) and SFE, where we vary the learning rate.

C.2 Learning to Explain

Experiments were run on a server with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz, 4 GeForce
GTX 1080 Ti, and 128 GB RAM.

The pre-trained word embeddings and data set can be found here: http://people.csail.mit.
edu/taolei/beer/. Figure 10 depicts the neural network architecture used for the experiments. As
in prior work, we use a batch size of 40. The maximum review length is 350 tokens. We use the
standard neural network architecture from prior work Chen et al. [2018], Paulus et al. [2020]. The
dimensions of the token embeddings (of the embedding layers) are 200. All 1D convolutional layers
have 250 filters with a kernel size of 3. All dense layers have a dimension of 100. The dropout layer
has a dropout rate of 0.2. The layer Multiply perform the multiplication between the token mask
(output of I-MLE) and the embedding matrix. The Lambda layer computes the mean of the selected
embedding vectors. The last dense layer has a sigmoid activation. IMLESubsetkLayer is the layer
implementing I-MLE. We train for 20 epochs using the standard Adam settings in Tensorflow 2.4.1
(learning rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-07, amsgrad=False), and no learning rate
schedule. The training time (for the 20 epochs) for I-MLE, with sum-of-Gamma perturbations, is
380 seconds, for SoftSub 360 seconds, and for L2X 340 seconds. We always evaluate the model with
the best validation MSE among the 20 epochs.

19

http://people.csail.mit.edu/taolei/beer/
http://people.csail.mit.edu/taolei/beer/

Table 4: Sample of Warcraft maps, and corresponding shortest paths from the upper left to the lower
right corner of the map.

Implementations of I-MLE and all experiments will soon be made available. Table 3 lists the results
for L2X, SoftSub, and I-MLE for three additional aromas and k = 10.

C.3 Discrete Variational Auto-Encoder

Experiments were run on a server with Intel(R) Xeon(R) CPU E5-2637 v4 @ 3.50GHz, 4 GeForce
GTX 1080 Ti, and 128 GB RAM.

The data set can be loaded in Tensorflow 2.x with tf.keras.datasets.mnist.load_data(). As in prior
work, we use a batch size of 100 and train for 100 epochs, plotting the test loss after each epoch. We
use the standard Adam settings in Tensorflow 2.4.1 (learning rate=0.001, beta1=0.9, beta2=0.999,
epsilon=1e-07, amsgrad=False), and no learning rate schedule. The MNIST dataset consists in
black-and-white 28× 28 pixels images of hand-written digits. The encoder network consists of an
input layer with dimension 784 (we flatten the images), a dense layer with dimension 512 and ReLu
activation, a dense layer with dimension 256 and ReLu activation, and a dense layer with dimension
400 (20× 20) which outputs the θ and no non-linearity. The IMLESubsetkLayer takes θ as input
and outputs a discrete latent code of size 20× 20. The decoder network, which takes this discrete
latent code as input, consists of a dense layer with dimension 256 and ReLu activation, a dense layer
with dimension 512 and ReLu activation, and finally a dense layer with dimension 784 returning
the logits for the output pixels. Sigmoids are applied to these logits and the binary cross-entropy

20

Figure 9: Original MNIST digits from the test set and their reconstructions using the discrete
10-subset VAE trained with Sum-of-Gamma perturbations for λ = 1 (center) and λ = 10 (right).

Table 5: Results for the Warcraft shortest path task using I-MLE with two target distributions, namely
Eq. (10) and Eq. (14). Reported is the accuracy, i.e. percentage of paths with the optimal costs.
Standard deviations are over five runs.

K µ-µ, Eq. (14) M-M, Eq. (14) λ = 20, Eq. (10) λ = 20, τ = 0.01, Eq. (10)

12 97.2± 0.5 95.2± 0.3 95.2± 0.7 95.1± 0.4
18 95.8± 0.7 94.4± 0.5 94.7± 0.4 94.4± 0.4
24 94.3± 1.0 93.2± 0.2 93.8± 0.3 93.7± 0.4
30 93.6± 0.4 93.7± 0.6 93.6± 0.5 93.8± 0.3

loss is computed. The training time (for the 100 epochs) was 21 minutes with the sum-of-Gamma
perturbations and 18 minutes for the standard Gumbel perturbations.

C.4 Differentiating through Combinatorial Solvers

The experiments were run on a server with Intel(R) Xeon(R) Silver 4208 CPU @ 2.10GHz CPUs, 4
NVIDIA Titan RTX GPUs, and 256 GB main memory.

Table 4 shows a set of 30×30 Warcraft maps, and the corresponding shortest paths from the upper left
to the lower right corner of the map. In these experiments, we follow the same experimental protocol
of Pogančić et al. [2019]: optimisation was carried out via the Adam optimiser, with scheduled
learning rate drops dividing the learning rate by 10 at epochs 30 and 40. The initial learning rate was
5 × 10−4, and the models were trained for 50 epochs using 70 as the batch size. As in [Pogančić
et al., 2019], the K ×K weights matrix is produced by a subset of ResNet18 [He et al., 2016], whose
weights are trained on the task. For training BB, in all experimental results in Section 6 and Table 4,
the hyperparameter λ was set to λ = 20.

Fig. 11 shows the training dynamics of different models, including the method proposed by Pogančić
et al. [2019] (BB) with different choices of the λ hyperparameter, the ResNet18 baseline proposed by
Pogančić et al. [2019], and I-MLE.

Furthermore, we experimented with two different target distributions, namely Eq. (10) and Eq. (14),
where noise samples were drawn from a sum-of-Gamma distribution. Results are summarised in
Table 5. In our experiments, the two target distributions yield very similar results for τ = 0.01, and
results tend to degrade for larger values of τ . This is to be expected, since the target distribution
in Eq. (14) is meaningful in the context described in Section 4, where there are forms of explicit
supervision over the discrete states. Code and data for all the experiments described in this paper are
available online, at https://github.com/nec-research/tf-imle.

21

https://github.com/nec-research/tf-imle

input_3: InputLayer
input:

output:

[(?, 350)]

[(?, 350)]

emb_gumbel: Embedding
input:

output:

(?, 350)

(?, 350, 200)

embedding_2: Embedding
input:

output:

(?, 350)

(?, 350, 200)
conv1_gumbel: Conv1D

input:

output:

(?, 350, 200)

(?, 350, 100)

new_global_max_pooling1d_1: GlobalMaxPooling1D
input:

output:

(?, 350, 100)

(?, 100)
conv2_gumbel: Conv1D

input:

output:

(?, 350, 100)

(?, 350, 100)

new_dense_1: Dense
input:

output:

(?, 100)

(?, 100)
conv3_gumbel: Conv1D

input:

output:

(?, 350, 100)

(?, 350, 100)

concatenate_2: Concatenate
input:

output:

[(?, 100), (?, 350, 100)]

(?, 350, 200)

new_dropout_2: Dropout
input:

output:

(?, 350, 200)

(?, 350, 200)

conv_last_gumbel: Conv1D
input:

output:

(?, 350, 200)

(?, 350, 100)

conv4_gumbel: Conv1D
input:

output:

(?, 350, 100)

(?, 350, 1)

imle_subsetk_layer_1: IMLESubsetkLayer
input:

output:

(?, 350, 1)

(?, 350, 1)

multiply_2: Multiply
input:

output:

[(?, 350, 200), (?, 350, 1)]

(?, 350, 200)

lambda_1: Lambda
input:

output:

(?, 350, 200)

(?, 200)

dense_2: Dense
input:

output:

(?, 200)

(?, 250)

new_dense: Dense
input:

output:

(?, 250)

(?, 1)

Figure 10: The neural network architecture for the learning to explain experiments. (Please zoom
into the vector graphic for more details.) We use the standard architecture and settings from prior
work Chen et al. [2018]. The maximum review length is 350 tokens. The dimensions of the token
embeddings (of the embedding layers) are 200. All 1D convolutional layers have 250 filters with
a kernel size of 3. All dense layers have a dimension of 100. The dropout layer has a dropout rate
of 0.2. The layer Multiply perform the multiplication between the token mask (output of I-MLE)
and the embedding matrix. The Lambda layer computes the mean of the selected embedding vectors
The last dense layer has a sigmoid activation. IMLESubsetkLayer is the layer implementing I-MLE.
Code is available in the submission system.

22

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

WarCraft - Accuracy on 12 × 12 Maps

I-MLE (MAP MAP)
I-MLE ()
BB (= 20)
DPO (= 0.01)
ResNet18 (Vlastelica et al. 2019)

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

WarCraft - Accuracy on 18 × 18 Maps

I-MLE (MAP MAP)
I-MLE ()
BB (= 20)
DPO (= 0.01)
ResNet18 (Vlastelica et al. 2019)

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

WarCraft - Accuracy on 24 × 24 Maps

I-MLE (MAP MAP)
I-MLE ()
BB (= 20)
DPO (= 0.01)
ResNet18 (Vlastelica et al. 2019)

0 10 20 30 40 50
Epoch

0

20

40

60

80

100

A
cc

ur
ac

y

WarCraft - Accuracy on 30 × 30 Maps

I-MLE (MAP MAP)
I-MLE ()
BB (= 20)
DPO (= 0.01)
ResNet18 (Vlastelica et al. 2019)

Figure 11: Training dynamics for different models on K ×K shortest path tasks on Warcraft maps,
with K ∈ {12, 18, 24, 30}.

23

