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Abstract

Motivated by applications to resource-limited and safety-critical domains, we
study selective classification in the online learning model, wherein a predictor may
abstain from classifying an instance. For example, this may model an adaptive
decision to invoke more resources on this instance. Two salient aspects of the
setting we consider are that the data may be non-realisable, due to which abstention
may be a valid long-term action, and that feedback is only received when the
learner abstains, which models the fact that reliable labels are only available when
the resource intensive processing is invoked.
Within this framework, we explore strategies that make few mistakes, while not
abstaining too many times more than the best-in-hindsight error-free classifier
from a given class. That is, the one that makes no mistakes, while abstaining
the fewest number of times. We construct simple versioning-based schemes for
any µ ∈ (0, 1], that make most Tµ mistakes while incurring Õ(T 1−µ) excess
abstention against adaptive adversaries. We further show that this dependence on
T is tight, and provide illustrative experiments on realistic datasets.

1 Introduction

Consider a low-power or battery-limited edge device, such as a sensor or a smart-speaker that receives
a stream of classification requests. Due to the resource limitations, such a device cannot implement
modern models that are needed for accurate decisions. Instead the device has access (e.g. via an
internet connection) to an accurate but resource-intensive model implemented on a cloud server, and
may send queries to the cloud server in order to retain accuracy. Of course, this incurs costs such as
latency and battery drain due to communication. The ideal operation of such a device should thus be
to learn a rule that classifies ‘easy’ instances locally, while sending harder ones to the cloud, thus
maintaining accuracy whilst minimising the net resource consumption [Xu+14; NS17].

Selective classification [Cho57; Cho70] is a classical paradigm of relevance to such settings. The
setup allows a predictor to abstain from classifying some instances (without incurring a mistake). This
abstention models adaptive decisions to invoke more resource-intensive methods on subtle cases, like
in the above example. The solution concept is relevant widely - for instance, it is relevant to adaptively
recommending further (and costly) tests rather than offering a diagnosis in a medical scenario, or to
recommending a human review instead of an alarm-or-not decision in security contexts. Two aspects
of such settings are of particular interest to us. Firstly, the cheaper methods are typically not sufficient
to realise the true labels, due to which abstention may be a long-term necessity. Secondly, a-priori
reliable labels can only be obtained by invoking the resource intensive option, and thus feedback on
whether a non-abstaining decision was correct is unavailable.
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We propose online selective classification, with an emphasis on ensuring very few mistakes, to
account for the need for very accurate decisions. Concretely, an adversary sequentially produces
contexts and labels (Xt, Yt), and the learner uses the Xts to produce a decision Ŷt that may either be
one of K classes, or an abstention, which we represent as ⊥. Feedback in the form of Yt is provided
if and only if Ŷt = ⊥, and the learner incurs a mistake if Ŷt was non-abstaining and did not equal Yt.

With the emphasis on controlling the total number of mistakes, we study regrets achievable when
compared to the behaviour of the best-in-hindsight error-free selective classifier from a given class -
that is, one that makes no mistakes, while abstaining the fewest number of times. Notice that our
situation is non-realisable, and therefore this competitor may abstain in the long-run. The two metrics
of importance here are the number of mistakes the learner makes, and its excess abstention over this
competitor. An effective learner must control both abstention and mistakes, and it is not enough to
make one small, e.g. a learner that makes a lot of mistakes but incurs a very negative excess abstention
is no good. This simultaneous control of two regrets raises particular challenges.

We construct a simple scheme that, when competing against finite classes, simultaneously guarantees
O(Tµ) mistakes and O(T 1−µ) excess abstentions against adaptive adversaries (for any µ ∈ [0, 1]),
and show that these rates are Pareto-tight [OR94]. We further show that against stochastic adversaries,
the same rates can be attained with improved dependence of the regret bounds on the size of the class,
and we also describe schemes that enjoy similar improvements against adaptive adversaries, but at the
cost of the T -dependence of the regret bounds. The main schemes randomly abstain at a given rate
in order to gain information, and otherwise play Ŷt consistent with the ‘version space’ of classifiers
that have not been observed to make mistakes. For the adversarial case, the analysis of the scheme
relies on a new ‘adversarial uniform law of large numbers’(ALLN) to argue that such methods cannot
incur too many mistakes. This ALLN uses a self-normalised martingale concentration bound, and
further yields an adaptive continuous approximation guarantee for the Bernoulli-sampling sketch in
the sense of Ben-Eliezer & Yogev [BY20; Alo+21]. The theoretical exploration is complemented by
illustrative experiments that implement our scheme on two benchmark datasets.

1.1 Related Work

Selective classification has been well studied in the batch setting, and many theoretical and method-
ological results have appeared [e.g. HW06; BW08; EW10; WE11; KKM12; CDM16; Lei14; GE19;
GKS21]. These batch results do not have strong implications for the online setting.

Cortes et al. have studied selective classification in the online setting [Cor+18], but with two differ-
ences from our setting. Firstly, rather than individually controlling mistakes and abstentions, the
regret is defined according to the Chow loss, which adds up the number of mistakes and c times
the number of abstentions, where c is a fixed cost parameter. Secondly (and more importantly) it is
assumed that feedback is provided only when the learner does not abstain, rather than only when it
does. This difference arises from the underlying situations being modelled - Cortes et al. view the
abstention as a decision given to a user in which case no feedback is forthcoming, while we view it as
a decision to invoke further processing. Both of the scenarios are reasonable, and so both of these
explorations are valid, however it is unclear what implications one set of results have for the other.

A similar decision and feedback model as ours was proposed by Li et al. in the ‘knows what it knows’
(KWIK) framework [LLWS11]. The KWIK model, however, fundamentally views abstentions as a
short term action, typically arguing that only a finite number of these are made. This is viable since
Li et al. study this model in an essentially realisable setting, wherein the optimal labels are known to
be essentially realised by a given class - notice that in such a case, a single abstention at an instance
x determines what value should be played there in the long run. Our interest however lies in the
situation where this data cannot be represented in such a way, and such strategies are not viable since
the labels may be noisy. Our work thus generalises the KWIK setting to non-realisable data, and to
situations wherein abstention is a valid long-term action, as motivated in the introduction, by studying
behaviour against competitors that may abstain.1

While Szita and Szepesvári have extended the KWIK formulation to the agnostic case in a regression
setting [SS11], this work also focuses of limiting the number of abstentions to be finite rather than

1The KWIK model also bears other significant differences. It posits an input parameter ε, and requires that
the learner either abstains, or produces an ε-accurate response. A notion of competitor is not invoked, and rather
than studying regret, the number of abstentions needed to achieve this ε-accuracy is studied.
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long-run abstentions. Concretely it is assumed that Yt = g(Xt) + noise, for some function g, and
the learner knows a class H, and a bound ∆ such some h ∈ H is ∆-close to g (in an appropriate
norm). Using the knowledge of ∆, they describe schemes that have limited abstention, but at the
cost of mistakes, by producing responses Ŷt that are up to (2 + o(1))∆ separated from Yt. In
contrast, in our formulation, contexts Xt for which no function inH can represent the ground truth
g well would always be abstained upon. In addition to this work, trade-offs between mistakes and
abstentions in a relaxed version of the KWIK framework have been considered [ZC16; SZB10;
DZ13], and in particular the agnostic case has been explored by Zhang and Chaudhuri [ZC16], but
unlike our situation this relaxed KWIK model requires full-feedback to be available whether or
not the learner abstains. Neu and Zhivotovskiy [NZ20] also work in this relaxed model, and show
that when comparing the standard loss of a non-abstaining classifier against the Chow loss of an
abstaining learner, regrets independent of time can be obtained.

Due to the limited feedback, our setting is related to partial-monitoring [LS20, Ch. 37]. Viewing
actions as choices over functions, our setting has feedback graphs [MS11] that connect abstaining
actions to every other action and themselves. The novelty with respect to partial-monitoring arises
from the fact that we individually control two notions of losses, rather than a single one. It’s unclear
how to apply the generic partial-monitoring setup to this situation - indeed, naïvely, our game is
only weakly observable in the sense of Alon et al.[ACDK15], and one would expect Ω(T 2/3) regrets,
while we can control both mistakes and excess abstention to Õ(

√
T ). A limited feedback setting

where two ‘losses’ are individually controlled is label-efficient prediction [CLS05], where a learner
must query in order to get feedback. However, in our setting, abstentions are both a way to gather
feedback, and also necessary to prevent mistakes. That is, our competitor may abstain regularly, but
makes few mistakes, while in this prior work the competitor does not abstain, but may make many
mistakes. The resulting scenario is both qualitatively and quantitatively distinct, e.g. in label-efficient
prediction, the smallest symmetric rate of number of queries and excess mistakes is again Θ(T 2/3).

2 Setting, and Problem Formulation

Setup Let X be a feature space, Y a finite set of labels, and F a finite class of selective classifiers,
which are Y ∪{⊥} valued. For simplicity, we assume that F contains the all abstaining classifier (i.e.
the function f⊥ such that ∀x, f⊥(x) = ⊥). We will denote |F| = N . The setting may be described
as a game between a learner and an adversary (or more prosaically, a data generating mechanism)
proceeding in T rounds. Also for simplicity, we will assume that T is known to both the learner and
the adversary in advance. The objects in this game are the context process, Xt ∈ X , the label process
Yt ∈ Y , the action process Ŷt ∈ Y ∪ {⊥} and the feedback process Zt ∈ Y ∪ {∗}, where ∗ 6∈ Y is a
trivial symbol. The information sets of the adversary and learner up to the tth round are respectively
H A
t−1 := {(Xs, Ys, Ŷs) : s < t}, and H L

t−1 := {(Xs, Ŷs, Zs) : s < t}.
The Game For each round t ∈ [1 : T ], the adversary produces a context and a label (Xt, Yt) on the ba-
sis its history H A

t−1. The learner observes only the context, Xt, and on the basis of this and its history
H L
t−1, produces an action Ŷt. We will say that this action is an abstention if Ŷt = ⊥, and that it is a

prediction otherwise. If the action was an abstention, set Zt = Yt, and otherwise to ∗. The learner
then observes Zt, and the round concludes. Notice that since Zt is a deterministic function of Yt
and Ŷt, and since the adversary observes both, H L

t−1 can be determinstically generated from H A
t−1.

Due to the same reason, Ŷt and Yt are conditionally independent given (Xt,H A
t−1).

Adversaries are characterised by a sequence of conditional laws on (Xt, Yt) given H A
t−1 (and T,F ).

In the following we will explicitly consider two classes of such laws:
• Stochastic Adversary: (Xt, Yt) are drawn according to a fixed law, P, unknown to the learner,
independently of H A

t−1.
• Adaptive Adversary: (Xt, Yt) are arbitrary random variables with H A

t−1-measurable laws.
We will denote a generic class of adversaries as C .

Performance Metrics The two principal quantities of interest are the number of mistakes made by
the learner, and the number of times it has abstained. We will denote these as

MT :=
∑
t≤T

1{Ŷt 6∈ {⊥, Yt}}, and AT :=
∑
t≤T

1{Ŷt = ⊥}.
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As previously discussed, the performance of a learner is measured in terms of regret with respect to
the best-in-hindsight abstaining classifier from F that makes no mistakes, that is

f∗ ∈ arg min
f∈F

∑
t≤T

1{f(Xt) = ⊥} s.t.
∑
t≤T

1{f(Xt) 6∈ {⊥, Yt}} = 0.

Note that such an f∗ is always realised, since the class is finite, and since it contains the all abstaining
classifier. Let A∗T :=

∑
t≤T 1{f∗(Xt) = ⊥} denote the value of the minimum above. The principal

metrics of interest to us are the abstention regret AT −A∗T , and the total mistakes MT .
Solution Concept The two performance metrics naturally involve a tradeoff - for instance, making
some mistakes may allow a learner to drastically reduce its abstention regret to the point that it is
negative. We pursue the trade-off between the worst possible behaviour of either regret.
Definition (Regret Achievability) For functions ϕ,ψ : N2 → R, we say that expected regret bounds
of (ϕ,ψ) are achievable against a class of adversaries C if there exists a learner such that for every
adversary in C , E[AT −A∗T ] ≤ ϕ(T,N) and E[MT ] ≤ ψ(T,N).

As is common, we are interested in the growth rates of achievable bounds with T . We thus define
Definition (Achievable rates) we say that asymptotic expected-regret rates of (α, µ) ∈ [0, 1]2 are
achievable against a class of adversaries C if an expected regret bound of (ϕ,ψ) can be achieved
against it for functions ϕ,ψ, said to be witnesses for the rate, such that

lim sup
T→∞

logϕ(T,N)

log T
≤ α and lim sup

T→∞

logψ(T,N)

log T
≤ µ.

Notice that if (α, µ) is an achievable rate, so is (α′, δ′) for α′ ≥ α, δ′ ≥ δ. As a result, the lower
boundary of the set of achievable rates is well defined, and we will refer to this as the Pareto
frontier of achievable rates. This is equivalently characterised by the function α(µ) := inf{α :
(α, µ) is an achievable rate}. This is well defined since ∀µ, (1, µ) is achievable by always abstaining.

3 The Adversarial Case

We begin with the adversarial case. The scheme, called the ‘versioned uniform explorer’
(VUE) is described below, and we discuss both the motivation of the scheme, and its analysis.

Algorithm 1 VUE

1: Inputs: F , Exploration rate p.
2: Initialise: V1 ← F .
3: for t ∈ [1 : T ] do
4: Ŷt ← {f(Xt) : f ∈ Vt} .
5: if |Ŷt| = 1 then
6: Ŷt ← f(Xt) for any f ∈ Vt.
7: Vt+1 ← Vt.
8: else
9: Sample Ct ∼ Bern(p).

10: if Ct = 1 then
11: Set Ŷt = ⊥, observe Yt.
12: Ut ← {f : f(Xt) ∈ {⊥, Yt}}
13: Vt+1 = Vt ∩ Ut.
14: else
15: Pick Ŷt ∈ Ŷt \ {⊥}.
16: Vt+1 ← Vt.

The main idea underlying VUE is that any function f
that is observed to make a mistake on an instanceXt

(due to the learner abstaining on this instance) can
be removed from future consideration, since we are
only trying to match the behaviour of the competitor
f∗, and clearly f 6= f∗ as it has made a mistake.
This motivates setting up a ‘version space,’

Vt :=

{
f :
∑
s<t

1{Zs 6= ∗, f(Xs) 6∈ {⊥, Ys}} = 0

}
,

the set of functions that are consistent with the ob-
servations made up to time t. Notice that f∗ ∈ Vt
for all t. Given Vt, we can restrict to playing an
action in the set Ŷt := {f(Xt) : f ∈ Vt} - f∗(Xt)
lies in this set, and thus any action outside of it can
be eliminated. Of course, if Ŷt is a singleton, then
it contains f∗(Xt), and we can just play it.

Next, since we are incentivised to minimise the total
number of abstentions, it behooves us to play non-abstaining actions whenever possible. However,
this puts us in a bind, since feedback is produced only when we play an abstaining action. Taking
inspiration from [CLS05], we abstain at a rate p by tossing a biased ‘exploratory coin’, Ct, abstaining
when Ct = 1, and otherwise playing any non-abstaining action in Ŷt. Clearly, such a strategy
can incur at most pT excess abstention regret in expectation. Mistakes made by this strategy are
controlled via the following ‘adversarial law of large numbers’ (ALLN).
Lemma 1. Let {Ft}∞t=1 be any filtration, and {Ut}∞t=1, {Bt}∞t=1 be {Ft}-adapted binary processes,
such that Bt ∼ Bern(p), p < 1/2 is jointly independent of Ft−1, Ut for each t. Let Wt =

∑
s≤t Us,
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and W̃t =
∑
s≤t UsBs. For any δ ∈ (0, 1/

√
e),

P
(
∃t : W̃t ≤ 1,Wt >

8 log(1/δ)

p

)
≤ δ.

The above is argued in §A using a self-normalised martingale tail inequality [HRMS20]. We note
that this self-normalisation is critical, and without this techniques such as Freedman’s inequality
yield an extraneous

√
T factor in the bounds that is untenable for our purposes. The same argument,

along with the shaping technique of Howard et al. [HRMS18] yields a Bernstein-type law of iterated
logarithms that controls |Wt − W̃t/p| at a level Õ(1/p+

√
Wt/p log log t), which should be useful

more broadly. This full version (presented in §A) further shows that the ‘Bernoulli-sampler’ [BY20;
Alo+21] offers a continuous approximation in the sense of Ben-Eliezer & Yogev [BY20], but with
the error for sets of low incidence flattened as expected due to Bernstein’s inequality.

For our purposes, the point of Lemma 1 is to allow us to argue that no matter what the adversary
does, if we uniformly abstain at a rate p, then we will ‘catch’ any mistake-prone function before it
makes O(1/p) mistakes. Exploiting a union bound, this in turn means that with high probability, any
such function will fall out of the version space Vt before it has incurred much more than logN/p
mistakes. Since the label produced by Algorithm 1 must equal f(Xt) for some f in the version
space, we can infer that the number of mistakes the learner makes is at most the number of times any
function in the version space is wrong. Using the Lemma yields a bound of Õ(1/p) on the number
of mistakes that any functions in the version space can have ever made, and since there are only N
possible functions, in total the number of mistakes the learner can make is bounded as Õ(N/p). More
formally, the argument, presented in §B, argues this for a single function f ∈ F by instantiating the
lemma with Ft = σ(Ft = σ(H A

t ), Bt = Ct, and Uft := 1{f(Xt) 6∈ {⊥, Yt}}. The resulting W̃ f
t

is the number of mistakes f is observed to have made, and f ∈ Vt if and only if W̃ f
t = 02. Along

with a use of Bernstein’s inequality to control AT this yields the result below.

Theorem 2. Algorithm 1 instantiated with p < 1/2, and run against an adaptive adversary, attains
the following with probability at least 1− δ over the randomness of the learner and the adversary:

MT ≤
9N log(2N/δ)

p

AT −A∗T ≤ pT +
√

2p(1− p)T log(2/δ) + 2 log(2/δ).

In particular, taking p =
√
N/T yields the symmetric regret bound

max(MT , AT −A∗T ) .
√
NT log(N/δ).

We conclude with a few remarks.
Achievable rates: Taking δ = 1/T , and varying p in (log T/T , 1] gives the rates attainable by VUE

Corollary 3. All rates (α, µ) such that α > 0, α+µ > 1 are achievable against adaptive adversaries.

These rates are tight - as expressed in Corollary 6, rates such that α+ µ < 1 are not achievable even
against stochastic adversaries. The Pareto frontier is therefore the line α+ µ = 1.

Dependence on N : It should be noted that the dependence on the number of functions, N , in
Thm. 2 is polynomial, as opposed to the more typical logarithmic dependence on the same in online
classification. The problem of characterising this dependence appears to be subtle, and we do not
resolve the same. In the following section, we explore schemes that improve this aspect, but at a cost
- §4 yields logarithmic dependence against stochastic adversaries, while §5 gives a scheme that has a
logarithmic dependence against adaptive adversaries, but worse dependence with T .

It is worth stating that the analysis above is tight for Algorithm 1 - consider the domain X = [1 : N ],
and the class F = {ft : t ∈ [0 : N ]} such that ft(x) = ⊥ if x ≤ t and = 1 if x > t. Now consider
an adversary that chooses a t∗ in advance, and presents the contexts 1 T/N times, 2 T/N times and
so on, labelling contexts smaller than t∗ as 0, and contexts larger than t∗ as 1. Notice that in each case,
there is exactly one function in Vt that does not abstain. The scheme above incurs Ω(pT (1− t∗/N))
excess abstention, and Ω(t∗/p) mistakes, and linearly large t∗ form a tight example. Of course, this is
not a lower bound on this problem, and the question of the optimal dependence on N remains open.

2This argument only needs control for the case W̃t = 0. The ≤ 1 in Lemma 1 is exploited in §5.2.
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Hedge-Type Schemes The natural approach of proceeding by weighing the cost of abstention versus
a mistake, and running a hedge-type scheme on an importance-estimate of the resulting loss does
not lead to tight rates - the scheme MIXED-LOSS-PROD of §5 pursues precisely this strategy, and the
worse case symmetric regret bounds that standard analyses lead to scale as T 2/3 instead of as T 1/2

as for VUE (Cor. 8). This may be due to the fact certain-error prone classifiers in F may have very
low abstention rates, and thus overall large weight, and it is unclear how to eliminate this behaviour.

4 The Stochastic Case

This section argues that the regret bounds of Thm. 2 can be improved to behave logarithmically in N
in the stochastic setting. There are a couple of issues with Algorithm 1 that impede a better analysis
in the stochastic case. The first, and obvious, one is that how Ŷt is chosen is not specified. More
subtly, the fact that the scheme insists on playing non-abstaining actions whenever possible makes it
difficult to control the number of mistakes without a polynomial dependence on N .

We sidestep these issues in Algorithm 2 by maintaining a law πt on functions in Vt that only depends
on H L

t−1, and predicting by setting Ŷt = f(Xt) for ft ∼ πt. Notice that playing this way it is
possible that we abstain on Xt even if the exploratory coin comes up tails. We control mistakes
by arguing that very error-prone functions are all quickly eliminated (due to the stochasticity), and
using the property that πt does not depend on Xt to limit the mistakes incurred up to such a time.
Abstention control follows by choosing π according to a strategy that favours fs with small overall
abstention rate over the history. In Algorithm 2, we use a version of the PROD scheme of [CMS07] to
set weights, analysed with shrinking decision sets. The following is shown along these lines in §C.
Theorem 4. Algorithm 2, run against stochastic adversaries with η = p, attains the regret bounds

E[MT ] ≤ 8
log T log(NT )

p
, and E[AT −A∗T ] ≤ pT +

logN

p
.

Algorithm 2 VUE-PROD

1: Inputs: F , p, Learning rate η.
2: Initialise: V1 ← F ,∀f, wf1 ← 1.
3: for t ∈ [1 : T ] do
4: Sample ft ∼ πt =

wft 1{f∈Vt}∑
f∈Vt

wft
.

5: Toss Ct ∼ Bern(p).

6: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

7: Vt+1 ← Vt.
8: if Ct = 1 then
9: Ut ← {f : f(Xt) ∈ {⊥, Yt}}

10: Vt+1 = Vt ∩ Ut.
11: for f ∈ Vt+1 do
12: aft ← 1{f(Xt) = ⊥}
13: wft+1 ← wft · (1− ηa

f
t ).

We note that VUE-PROD also enjoys favourable bounds
in the adversarial case - mistakes are bounded as
Õ(N/p), and abstention regret as in the above result.
This is in contrast to simpler follow-the-versioned-leader
type schemes that also satisfy similar bounds as Thm. 4
in the stochastic case. Also note that the above cannot
attain rates such that α ≤ 1/2, an inefficiency introduced
due to the conditional independence of πt and Xt.

Finally, we show a lower bound. The statement equates
stochastic adversaries with their laws.
Theorem 5. IfF contains two functions f1, f2 such that
there exists a point x for which f1(x) = ⊥ 6= f2(x),
then for every γ ∈ [0, 1/2], there exists a pair of laws
P γ1 , P

γ
2 such that any learner that attains EPγ1 [AT −

A∗T ] = K must incur EPγ2 [MT ] ≥ γ(e−2γKT −K).

Thus, if a (ϕ,ψ) regret bound with sup ϕ
T < 1

2e2 is
achievable, then ϕ ·ψ = Ω(T ). Indeed, using the above with γ = 1/ϕ(T,N), gives EP1 [AT −A∗T ] =

K ≤ ϕ(T,N), and so ψ(T,N) ≥ EP2 [MT ] ≥ T
ϕ(T,N)e

−2K/ϕ(T,N) − 1. This proves the following.

Corollary 6. If (α, µ) ∈ [0, 1]2 is such that α+ µ < 1, then an (α, µ) regret rate is not achievable
against stochastic adversaries, and, a fortiori, against adaptive adversaries.

5 Reducing the dependence of regret bounds on N in the adversarial case

This section concentrates on improving the N -dependence of regret bounds in the adversarial case
via two avenues. The first improves this dependence to log(N) by running PROD with a weighted
loss, but at the cost of increasing T dependence. This holds greatest relevance when T is bounded as
a polynomial of N , which is of interest because N can be quite large even in reasonable settings -
e.g., a discretisation of d-dimensional hyperplanes induces N = exp (Cd). The second approach
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considers the case when the set of possible contexts, i.e. X is not too large. While in this case, N can
be as large as (|Y|+ 1)|X |, we show bounds depending only linearly on |X |.

5.1 Weighted PROD
Algorithm 3 MIXED-LOSS-PROD

1: Inputs: F , Exploration rate p, Learn-
ing rate η.

2: Initialise: ∀f ∈ F , wf1 ← 1.
3: for t ∈ [1 : T ] do
4: Sample ft ∼ πt = wft/

∑
wft .

5: Toss Ct ∼ Bern(p).
6: if Ct = 1 then
7: Ŷt ← ⊥
8: else
9: Ŷt ← ft(Xt)

10: ∀f ∈ F , evaluate `ft
11: wft+1 ← wft (1− η`ft ).

We continue the uniform exploration, but play according
to the PROD method, with the loss

`ft := Ct1{f(Xt) 6∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥},
where λ both trades-off the relative costs of mistakes
and abstentions, in the vein of the fixed cost Chow loss,
and accounts for the sub-sampling of the mistake loss.

The analysis of this scheme, presented in §D exploits
the quadratic bound of PROD due to [CMS07] to control
the sum E[pMT + λ(AT − pT )] by ming logN/η +∑
η(`gt )

2, where the expectation is only over the coins
Ct, and the −pT term is due to the extra abstentions
due to the exploratory coin. The key observation is that
since f∗ makes no mistakes,

∑
(`f
∗

t )2 = λ2A∗T , and so taking g = f∗, and exploiting the weight
allows us to separately control the regrets in terms of A∗T .
Theorem 7. Algorithm 3, when run against adaptive adversaries with η = 1/2, λ ≤ p, attains

E[MT ] ≤ 2 logN

p
+

2λ

p
E[A∗T ], and E[AT −A∗T ] ≤ pT +

2 logN

λ
.

5.1.1 Rates

Theorems 4 and 7 show regret bounds with logarithmic dependence in N . The following concept
separates rates attainable with this advantageous property from those with worse N -dependence.
Definition (Logarithmically Achievable Rates) We say that rates (α, µ) are logarithmically achiev-
able against adversaries from a class C if there exists a learner that attains a (ψ,ϕ)-regret
against such adversaries for ψ,ϕ that witness the rate (α, µ), and satisfy that for every fixed
T, max(ϕ(T,N), ψ(T,N)) = O(polylog(N)) as N →∞.

Since A∗T ≤ T, choosing p = T−u, λ = T−(u+v) in MIXED-LOSS-PROD for any (u, v) ∈ [0, 1]2, u+
v ≤ 1 allows us to attain rates of the form (α, µ) = (max(1− u, u+ v), 1− v). Notice that for any
fixed v, the smallest α so attainable is 1+v/2. This shows
Corollary 8. Any rate (α, µ) such that α+ µ/2 > 1 is logarithmically achievable against adaptive
adversaries.

The following figure illustrates the worst case achievable rate regions in the three cases considered.
1

1

Impossible

Achievable

α

µ

Impossible

Achievable

UnknownUnknown
1

1
α α

1

1

Impossible

Achievable

µµ

1

2

1

2

1

2

Figure 1: Left shows rates achievable against adaptive adversaries. Middle and right show logarithmi-
cally achievable rates against stochastic and adaptive adversaries respectively.

Adaptive Rates Observe that if A∗T � Tα
∗

for some α∗ < 1, then nominally, the achievable rates
can be improved. Indeed, with the parametrisation p = T−u, λ = T−u+v , we may attain rates of the
form (α, µ) = (max(1− u, u+ v),max(u, α∗− v)). Further, a given mistake rate µ can be attained
by setting u = µ, and α∗ − v ≤ µ. With these constraints, the smallest abstention rate attainable is

α̃(µ;α∗) = max (1− µ, (1 + (α∗ − µ)+)/2) ,
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achieved by setting v = (α∗ − µ)+, u = min(1 − (α∗ − µ)+, 2µ)/2. Such rates can in fact be
attained adaptively, without prior knowledge of α∗. The main bottleneck here is that the quantity
A∗T is not observable. However, every function g that is never observed to make a mistake satisfies∑

(`gt )
2 = λ2

∑
1{g(Xt) = ⊥}, and such functions are identifiable given H L

t . Let

B∗t := min
∑
s≤t

1{g(Xs) = ⊥} s.t.
∑
s≤t

Cs1{g(Xs) 6∈ {⊥, Yt} = 0.

Note that B∗t grows monotonically, and is always smaller than A∗t =
∑
s≤t 1{f∗(Xt) = ⊥}. We

show the following in §D.1 via a scheme that adaptively sets p, λ according to B∗t .
Theorem 9. For any α∗, µ, ε ∈ (0, 1], Algorithm 4 attains, without prior knowledge of α∗, any rate
of the form (α̃(µ, α∗) + ε, µ+ ε) against adaptive adversaries that induce A∗T ≤ Tα

∗
almost surely.

The rates α̃ essentially interpolate between the second and third panels of Fig. 1. Concretely the region
achieved consists of the intersection of the regions {α > 1/2}, {α+µ > 1} and {2α+µ > 1+α∗},
with the last set being active only when α∗ ≥ 1/2.

5.2 A |X |-dependent analysis of VUE

We give an alternate mistake analyse for VUE over finite domains. The analysis is slightly stronger:
let y ∈ ([1 : K] ∪ {⊥})|F| be indexed by elements of F , with the ‘f th’ entry yf reprsents a value
that f might take. Consider the resulting partition of {Xy}y∈([1:K]∪{⊥})F , where each part Xy ⊂ X
contains points that have the same pattern of function values, that is Xy = {x : ∀f ∈ F , f(x) = yf}.
The following argument can be run unchanged by replacing single xs in the following by all xs in
one Xy. That is, we may replace |X | in the following Theorem 10 with |{Xy}|. For simplicity, we
present the argument for |X | only.

Denote Ŷxt := {f(x) : f ∈ Vt}. Notice that after the first time t such that Xt = x, Ŷt = ⊥, we will
remove from the version space all classifiers that did not abstain or output the correct classification at
time t. Thus if we define yx ∈ [1 : K] to be Yt, then for all subsequent times, Ŷxt ⊂ {⊥, yx}. As
a result, if we observe two mistakes at any given x, then we cannot make any more mistakes at a
subsequent time t′ with Xt′ = x, because the only remaining decision in Ŷxt′ must be ⊥.

We may now proceed in much the same way as §3 - instantiate Uxt = 1{Xt = x, Ŷt 6∈ {⊥, Yt}},
Bt = Ct, and union bound over the xs. Then |Ŷxt | ≥ 2 if and only if W̃ x

t ≤ 1, and, invoking Lemma
1, up to such a time at most W x

t = O(log |X |/p) mistakes may be made on instances such that Xt = x.
But then totting up, we make at most O(|X | log |X |/p) mistakes, as encapsulated below
Theorem 10. Algorithm 1 instantiated with p ≤ 1/2 and run against an adaptive adversary, attains
the following with probability at least 1− δ over the randomness of the learner and the adversary:

MT ≤
9|X | log(2|X |/δ)

p

AT −A∗T ≤ pT +
√

2p(1− p)T log(2/δ) + 2 log(2/δ).

Along with the bound itself, the above result makes a couple of points regarding the characterisation
of N -dependence of the regrets in online selective classification. Firstly, it suggests that efficient
analyses, and possibly schemes, must incorporate the structure of X ; and secondly it shows that
constructions that attempt to show superlogarithmic in N lower bounds must have both N and |X |
large, and thus typical strategies placing a very rich class on a small domain will not be effective.

6 Experiments

We evaluate the performance of Algorithm 2 on two tasks - CIFAR 10 [KH09], and GAS [Ver+12] -
see §E for details of implementation, and here for the relevant code. The former represents a setting
where an expert can be adaptively invoked, which we treat by providing the true labels of the classes
upon abstention. The second case is more explicitly an adaptive feature selection task - the GAS
dataset has features from 16 sensors, and we train one model, g, on all of this data, while the selective
classification task operates on data from the first 8 sensors only, and receives the output of g when
abstaining. The standard accuracies of the model classes we implement are ∼ 90% on CIFAR-10,
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and ∼ 77% on GAS. In both cases, a training set is used to learn a parameterized family of selective
classifiers, fµ,t. The hyperparameters (µ, t) provide control over various levels of accuracy and
abstention. For training, we leverage a recent method [GKS21] that yields such a parameterisation,
which is discretised to get N = 600 of these functions to form our class F . We then sequentially
classify the test datasets of each of the tasks.

One subtlety with the setting is that none of the selective classifiers in F actually make no mistakes.
To avoid the trivialities emerging from this, we relax the versioning condition to only drop classifiers
that are seen to make mistakes on at least εNt +

√
2εNt mistakes at time t, where Nt is the number

of times feedback was received up to time t, and the second term handles noise. Additionally, if it
turns out that all functions in Vt are wrong on a particular observed instance, we ignore this feedback
(since such an error is unavoidable). Such variations of ‘relaxed versioning’ are natural ideas when
extending the present problem to the one where the competitor may be allowed to make non-zero
mistakes, although its analysis is beyond the scope of this paper. The scheme’s viablility in this
extended setting with only simple modifications indicates the practicality of such strategies.

Below, we take the competitor to be the function that makes the fewest mistakes, denoted as M∗T . If
there is more than one such function, we take the one that makes the fewest abstention to get A∗T . We
measure excess mistakes MT −M∗T and excess abstentions AT −A∗T with respect to this competitor.

Behaviour of regrets with the length of the game Fig. 2 presents the excess mistakes as a fraction
of T for the two datasets, i.e. MT−M∗T/T , as T , is varied. The learners are all instantiated with the
exploration rate p = 1/

√
T . We observe that the excess abstentions are negative (or near-zero) over

this range (see Fig. 4 in §E). Therefore we do not plot these below (the orange line is MMEA, see
below). We note that the relative mistakes stay below

√
2 logN/T , bearing out the theory.

Achievable Operating Points of Mistakes and Abstentions Fig. 3 shows the mistake and abstention
rates attainable by varying p and ε, while holding T fixed at 500 (which is large enough to show long-
run structure, but small enough allow fast experimentation). Concretely, we vary these linearly for
20 values of p ∈ [0.015, 0.285], and 10 values of ε ∈ [0.001, 0.046]. The resulting values represent
operating points that can be attained by a choice of p, ε. The same plot includes lines that represent
the operating points when the scheme is run with ε = 0.001, the smallest value we take. Note that in
practice, the best choices of ε, p may be data dependent, and choosing them in an online way is an
interesting open problem (also see §E.6).

The Price of Being Online We characterise this in two ways beyond the excess mistakes.
• In Fig. 2, we also plot the ‘mistake-matched excess abstention’ (MMEA). This is defined as follows
- if the scheme concludes with having made MT mistakes, we find, in hindsight, the classifier that
minimises the number of abstentions, subject to making at most MT mistakes. The MMEA is the
excess abstention of the learner over those of this relaxed competitor, and represents how many fewer
abstentions a batch learner would make if allowed to make as many mistakes as the online learner.
Notice that this MMEA remains well controlled in Fig. 2, and appears to scale as O(

√
T ).

• In Fig. 3, we also plot the post-hoc operating points of the classifiers in F as black triangles. This
amounts to plotting the optimal abstentions amongst classifiers that make at mostmmistakes, varying
m.3 We note that the red operating points of the scheme get close to the black frontier, illustrating that
the inefficiency due to being online is limited. As the time-behaviour of MMEA in Fig.2 illustrates,
the inefficiency is expected to grow sublinearly with T , and to thus vanish under amortisation.

7 Discussion

Online selective classification offers a primitive that has relevance to both safety-critical and resource-
limited settings. In the paper, we highlighted the role of long-term abstentions in such situations,
and studied this problem under the feedback limitation that labels are only provided when the
system abstains, which is the only time high-complexity evaluation would be invoked in a selective
classification system. When working with a finite class of model, we identified a simple scheme that
provides a tight (in terms of T ) trade-off between mistakes and excess abstentions against adaptive
adversaries. We further discussed two schemes that improve upon the dependence of the same
on the size of the model class - tightly against stochastic adversaries, and at the cost of some rate

3Observe that the MMEA corresponds to the horizontal distance between a red-point with m mistakes, and
the left-most black point with y-coordinate under m.
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Figure 2: MT −M∗
T , and MMEA as fractions of T , as the number of rounds T is varied for CIFAR-10 (left)

and GAS (right). The plots are averaged over 100 runs, and one-standard-deviation error regions are drawn.

Figure 3: Operating points for our scheme as ε and p are varied are represented as red dots (for CIFAR-10 in
the left, and GAS in the right). The black triangles represent operating points obtained by batch learning with
the benefit of full feedback. The blue lines interpolate points obtained by varying p for ε = 0.001 Points are
averaged over 200 runs. Note that the values are raw mistakes and abstentions, and not regrets.

performance against adaptive adversaries. Together, these schemes and analyses provide some basic
foundations for the problem when competing against no-mistake models. Additionally, we carried
out empirical studies that validate the scheme in the stochastic case, and demonstrate that with minor
modifications, the scheme is resilient to the situation where no selective classifier in the model class
is mistake-free. A number of interesting questions remain open, and we discuss a few of these below.

Perhaps the most basic question left open by the above study is how the minimax regrets against
adaptive adversaries depend on N . Along with being a basic scientific question, this issue has
implications for whether the results can be extended to infinite classes. Indeed, under assumptions of
bounded combinatorial dimensions, the VUE-PROD and MIXED-LOSS-PROD schemes can be extended
to infinite model classes, but the basic technique to do so yields trivial bounds for VUE due to the
linear dependence on N . If this dependence could be improved to logarithmic, the extension to model
classes with finite (multiclass versions of) Littlestone dimension would be immediate.

A practically relevant and theoretically interesting direction is online SC but where the competitor
can make non-zero mistakes. This can be set up in at least two ways - either an error parameter ε is
given to the learner, which must ensure that both notions of regret are small against competitors that
make at most εT mistakes; or, no explicit error parameter is specified, and the learner is required to
compete against the least mistake-prone model in a given set (similarly to §6). Both settings raise
new challenges, since one must relax the notion of versioning used in the above work for related
schema to be viable. The latter setting raises a further issue of how one can adapt to the mistake rate
of the competitor. Also of practical relevance is the case where abstentions are not equally penalised,
but have some variable cost. Here too, one can study variants of signalling regarding whether the cost
of abstention is available before or only after an abstaining decision is made.

Finally, we observe that while tight, the random exploration technique is somewhat unsatisfying,
and practically a context-adapted abstention strategy is likely to offer meaningful advantages over
it. In analogy with the exploration in label-efficient prediction, one direction towards exploring
context-aware methods is to study more concrete structured situations, such as linear models with
noisy feedback that are popular in the investigation of online selective sampling.
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A An Adversarial Anytime Uniform Law of Large Numbers For Probing
Binary Sequences

A.1 Proofs of Lemma1

We begin with a simple lemma that underlies the remaining argument. Below, κ is chosen so that
κ′′(0) = 1.

Lemma 11. Let Ft, Ut, Bt,Wt, W̃t be as in Lemma 1. Let p = 1 − p. Then for any η ∈ R, the
process

ξηt := exp
(
η(Wt − W̃t/p)− κ(η)Vt

)
is a non-negative, Ft-adapted martingale, where

Vt =
p

p
Wt,

κ(η) =
p

p
log
(
pe−ηp/p + peη

)
.

Proof. The nonnegativity of ξηt is trivial, and it is Ft-adapted since it is a deterministic function of
the adapted processes Wt, W̃t. We need to argue that ξ is a martingale. To this end, observe that
since Wt =

∑
s<t Us, W̃t =

∑
s<t UsBs,

ξηt = ξηt−1 · exp (ηUt(1−Bt/p− pκ(η)/p)) .

Due to the independence of Bt from σ(Ut,Ft−1), we have

E[exp (ηUt(1−Bt/p)) |Ft−1, Ut]

=
(
pe−ηUtp/p + peηUt

)
∗
=
(
pe−ηp/p) + peη

)Ut
= exp

(
p

p
Utκ(η)

)
,

where the equality marked ∗ exploits the fact that Ut is {0, 1}-valued. Rearranging, we have

E
[
exp

(
ηUt(1−Bt/p)−

p

p
Utκ(η)

)∣∣∣∣Ft−1, Ut

]
= 1,

and exploiting the tower rule, we conclude that

E[ξηt |Ft−1] = ξηt−1E
[
E
[
exp

(
ηUt(1−Bt/p)−

p

p
Utκ(η)

)∣∣∣∣Ft−1, Ut

]∣∣∣∣Ft−1

]
= ξηt−1.

The following argument heavily exploits the techniques of Howard et al. [HRMS20], and assumes
familiarity with the same. It also exploits the property that only the upper tail of ∆t is being controlled,
although this is extended in the following section.

Proof of Lemma 1. We define the deviation of Wt from W̃t as

∆t := Wt −
W̃t

p
.

Notice that ∆0 = 1. As a result of the above lemma, ∆t is a 1-sub-κ process with the associated
variance process Vt, in the sense of Definition 1 of Howard et al. [HRMS20]. In particular, since
κ is the (normalised) cumulant generating function of a centred Bernoulli random variable taking
values {−p/p, 1}, the process is sub-binary. Further, since p < 1/2, p/p > 1, and thus the process is
sub-gamma, with the scale parameter c = 0. [HRMS20, §3.1, and Prop.2].

We can thus invoke the line-crossing inequality of Corollary 1, part c) of Howard et al., instantiated
with c = 0 to find that for any x,m > 0

P (∃t : ∆t ≥ x+ s(x/m)(Vt −m)) ≤ exp

(
− x2

2m

)
,
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where [HRMS20, Table 2]
s(x/m) =

x

2m
.

Plugging these in, we observe that

P
(
∃t : ∆t ≥

x

2
+

x

2m
Vt

)
≤ exp

(
− x2

2m

)
.

Now notice that if Vt ≥ m, then x/2 + (x/2m)Vt ≤ (x/m)Vt. Therefore, we can conclude that

P
(
∃t : ∆t ≥

x

m
Vt, Vt ≥ m

)
≤ exp

(
− x2

2m

)
,

and substituting Vt = p
pWt,∆t = Wt − W̃t/p,

P

(
∃t :

W̃t

p
≤ mp− xp

pm
Wt,Wt ≥

pm

p

)
≤ exp

(
− x2

2m

)
.

Now, if we choose m = p
p (x+ 1/p) it follows that

∀Wt ≥
p

p
m,

pm− xp
mp

Wt ≥
1

p
,

and thus

P

(
∃t :

W̃t

p
≤ 1

p
,Wt ≥

1

p
+ x

)
≤ exp

(
− px2

2(1/p + x)p

)
,

and choosing x ≥ 1/p further ensures that

P
(
∃t : W̃t ≤ 1,Wt ≥ 2x

)
≤ exp

(
−px

4p

)
.

Now, setting x = max
(

1
p ,

4p
p log(1/δ)

)
leaves us with

P
(
∃t : W̃t ≤ 1,Wt ≥ max

(
2

p
,

8p

p
log(1/δ)

))
≤ δ.

The conclusion follows on observing since p < 1/2, 8p ≥ 4, and thus, for log(1/δ) ≥ 1/2, 2
p ≤

8pp log(1/δ).

A.2 An improved ALLN via a Self-Normalised Law of Iterated Logarithms

The line-crossing inequalities we utilised in the previous subsection can be stitched together, by
picking an exponentially increasing set of xs, and optimising the ms at each, to yield a curve crossing
inequality, which in effect determines a curve that the deviations are unlikely to cross. We use the
results of Howard et al. [HRMS18] that produce non-asymptotic constructions.

For our purposes, note that the processes ∆t and −∆t are both sub-Gamma with variance process Vt,
with the scale parameters c+ = 0 and c− = 1

3 ·
1−2p
p respectively. The former property is useful for

controlling the upper deviations of ∆t, and the latter for the lower deviations. Note that since the
scale parameter c+ is 0, the upper tails in the following can be improved, but for ease of presentation
we will just set c = |c+| = c− in the following.

Using Theorem 1 of Howard et al. [HRMS18] twice - for ∆t and −∆t, and instantiating it with
η = e, h(k) = π2k2

6 yields that for the sub-gamma process ∆t with scale parameter≤ c, and variance
process Vt, and any constant m > 0, and for the functions

Sm,δ(v) = 2
√
v`m,δ(v) + c`m,δ(v),

`m,δ(v) = log
π2

6
+ 2 log log

v

m
+ log

2

δ
,
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the following bound holds true

P(∃t : |∆t| ≥ Sm,δ(max(Vt,m)) ≤ δ.

The curve S(max(Vt,m)) can be simplified upon observing that

{∃t : Vt ≥ m, |∆t| ≥ Sm,δ(Vt)} ⊂ {∃t : |∆t| ≥ Sm,δ(max(Vt,m))}.
With the above in hand, set m = p/p, so that Wt ≥ 1 ⇐⇒ Vt ≥ m, and observe that log(π2/6) <

1. The following bound is immediate upon recalling that Vt = p
pWt,∆ = Wt − W̃t/p.

Theorem 12. In the setting of Lemma 1,

P

(
∃t : Wt ≥ 1, |Wt − W̃t/p| ≥ 2

√
pWt

p

(
log

2e

δ
+ 2 log logWt

)
+

log 2e/δ + 2 log logWt

3p

)
≤ δ.

Technically, the log logWt is not always defined in the above. This should be read as
log(max(1, logWt)) to handle edge cases - alternately, it can be handled by replacing Wt ≥ 1
by Wt ≥ 3 > e in the above.4

Notice that the bound above has the correct form when taking into account the behaviour of binomial
tails, which W̃t behaves like. Indeed, if W is some natural number valued random variable, and
W̃ |W ∼ Bin(W,p), then Bernstein’s inequality [BLM13, Ch. 2] states that

P

(
|W − W̃/p| ≥ C

√
p
W

p
log(2/δ) + C log(2/δ)

)
≤ δ,

which entirely parallels the form of the above theorem, barring the log logWt blowup due to the
uniformity over time.

The above analysis was inspired by studying the recent work of Ben-Eliezer and Yogev [BY20], on
adversarial sketching - their goal was to maintain an estimate of the incidence of a process within
a given set (and more generally, within sets in a given system) while using limited memory, and
they analysed a similar sampling approach, showing via an application of Freedman’s inequality that
[BY20, Lemma 4.1]

P

(
|WT − W̃T /p| ≥ C

√
T

p
log(2/δ) + C

log(2/δ)

p

)
≤ δ.

This essentially amounts to using the crude bound WT ≤ T . The same paper, in Theorem 1.4 and
associated lemmata argues that the Reservoir Sampler [BY20, §2] of size ∼ pT controls deviations

uniformly over time at scale
√

T
p log log T

δ , and it was asserted that the Bernoulli Sampler cannot
attain such a ‘continuous robustness’[BY20, §1]. The above result improves upon this in a few ways
- firstly, the result applies to the simpler Bernoulli sampler, and improves the deviation control to
O(
√
Wt) instead of O(

√
T ). This has the further advantage that if one is concerned with the number

of samples queried along with the memory, the Bernoulli sampler only queries ∼ pT times with high
probability, while the reservoir sampler queries about pT log T times. Secondly, it shows that the
Bernoulli sampler does offer continuous robustness, but up to a flattening of the deviation control
for sets of small incidence (small Wt). Ben-Eliezer & Yogev show a number of applications of such
bounds to sketching, and Alon et al. have recently applied this to tightly characterise the regret in
online classification [Alo+21], using techniques of Rakhlin et al. [RST15a; RST15b]. We believe
that self-normalised bounds as above can contribute to showing adaptive versions of these results.

B Analysis of VUE Against Adaptive Adversaries

This section serves to show Theorems 2 and 10. We will analyse the excess abstention, and the
mistakes separately. Both deviations are controlled with probability 1− δ/2, and so a union bound
completes the argument. The excess abstention control is common to both, and exploits Bernstein’s
inequality.

4In a similar vein of edge-cases, if Wt < 1 =⇒ Wt = 0, then 0 ≤ W̃t ≤ Wt = 0, and thus the bound
extends to all possible values of Wt.
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Proof of excess abstention bound. Notice that the procedure only abstains if Ct = 1 or if Ŷt = {⊥}.
In the latter case, the competitor also abstains, and thus no excess abstention is incurred. Therefore,
the net excess abstention is bounded asAT −A∗T ≤

∑
Ct. Now,

∑
Ct is a Binomial random variable

with parameters T, p. By Bernstein’s inequality [BLM13, Ch. 2],

P
(∑

Ct ≥ pT + 2
√
p(1− p)T log(2/δ) + 2 log(2/δ)

)
≤ δ

2
.

We move on to bounding mistakes in a N -dependent way.

Proof of mistake bound from Theorem 2. As in the main text, consider the filtration {Ft} =

{σ(H A
t )}, Uft := 1{f(Xt) 6∈ {⊥, Yt}}, and consider the processes W f

t =
∑
s<t U

f
t , Bt =

Ct, W̃
f
t = Uft Ct. Note that since N ≥ 2, δ

2N ≤
1
4 ≤

1√
e
.

Note that for every f , Uft and Ct satisfy the requirements of Lemma 1, since Ct is tossed indepen-
dently of H A

t−1. Therefore, we may invoke Lemma 1 to find that

P
(
∃t : W̃ f

t = 0,W f
t ≥

8

p
log(2N/δ)

)
≤ δ

2N
,

and applying a union bound over f ∈ F , we conclude that

P
(
∃t, f : W̃ f

t = 0,W f
t ≥

8

p
log(2N/δ)

)
≤ δ

2
,

Notice that if W̃ f
t−1 is non-zero, then f 6∈ Vt since we’ve seen it make a mistake prior to the time t.

Now define the stopping times τf := max{t : f ∈ Vt} = max{t : W̃ f
t−1 = 0}. We observe that

MT =
∑
t

1{Ŷt 6∈ {⊥, Yt}} ≤
∑
t

1{∃f ∈ Vt : f(Xt) 6∈ {⊥, Yt}}

≤
∑
f

∑
t

1{f ∈ Vt, f(Xt) 6∈ {⊥, Yt}}

=
∑
f

∑
t

1{t ≤ τf}Uft .

Next, define the event

E :=
{
∃t, f : f ∈ Vt,W f

t−1 ≥ 8 log(2N/δ)/p
}
.

Since f ∈ Vt ⇐⇒ W̃ f
t−1 = 0 ⇐⇒ t ≤ τf . Also recall that W f

t−1 =
∑
s<t 1{f(Xs) 6∈ {⊥, Ys}.

Therefore, given Ec, ∑
t

1{t ≤ τf , f(Xt) 6∈ {⊥, Yt}} ≤ 8
log(2N/δ)

p
+ 1,

since on Ec, t ≤ τf =⇒ W̃ f
t−1 = 0 =⇒

∑
s<t U

f
t ≤

8 log(2N/δ)
p , and the additional 1 arises since

Ec does not control behaviour at τf . We conclude that given Ec, we have

MT ≤
∑
f

9
log(2N/δ)

p
= 9

N log(2N/δ)

p
.

But E occurs with probability at most δ/2, and we have shown that

P
(
MT >

9N log(2N/δ)

p

)
≤ δ

2
.

As discussed in §5, the X -dependent argument proceeds similarly.
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Proof of mistake bound from Theorem 10. Again, consider the filtration {Ft} = {σ(H A
t )}. Define

Ŷxt = {f(x) : f ∈ Vt}, and the process Uxt := 1{Xt = x, Ŷt 6∈ {⊥, Yt}}, and consider the
processes W x

t =
∑
s<t U

x
t , Bt = Ct, W̃

x
t = Uxt Ct. Again, since |X | ≥ 2, δ

2|X | ≤
1
4 ≤

1√
e
.

Invoking Lemma 1, since Ct is tossed independently of H A
t−1, we find that

P
(
∃t : W̃ x

t ≤ 1,W x
t ≥

8

p
log(2|X |/δ)

)
≤ δ

2|X |
,

and applying a union bound over x ∈ X , we conclude that

P
(
∃t, x : W̃ x

t ≤ 1,W x
t ≥

8

p
log(2|X |/δ)

)
≤ δ

2
,

Now, from the argument in the main text, Uxt ≥ 0 =⇒ |Ŷxt | ≥ 2 ⇐⇒ W x
t−1 ≤ 1. So, define the

stopping times
τx := max{t : |Ŷxt | ≥ 2} = max{t : W x

t−1 ≤ 1}.

We have that

MT =
∑
t

1{Ŷt 6∈ {⊥, Yt}}

=
∑
x

∑
t

1{|Ŷxt | ≥ 2}Uxt

=
∑
x

∑
t

1{t ≤ τx}Uxt .

Defining the event
E :=

{
∃t, x : t ≤ τx,W x

t−1 ≥ 8 log(2|X |/p)
}
,

we again observe that given Ec,∑
t

1{t ≤ τx}Uxt ≤ 1 + 8
log(2N/δ)

p
,

since on Ec, t ≤ τx ⇐⇒ W̃ x
t−1 ≤ 1 =⇒

∑
s≤t−1 U

x
s ≤

8 log(2|X|/δ
p . We thus conclude that

MT ≤
∑
x

9
log(2|X |/δ)

p
=

9|X | log(2|X |/δ)
p

.

But E occurs with probability at most δ/2, and we have shown that

P
(
MT >

9|X | log(2|X |/δ)

p

)
≤ δ

2
.

C Stochastic Adversaries

This section contains proofs omitted from §4, and further provides a sample-and-commit based
scheme that also attains tight performance in the stochastic case.

C.1 Performance of VUE-PROD

This section consitutes a proof of Theorem 4. We begin by controlling the excess abstentions.

Proof of excess abstention bound. We begin by analysing the PROD algorithm for the setting where
decision sets may shrink with time. For succinctness, denote aft = 1{f(Xt) = ⊥}, Aft :=

∑
s≤t a

f
t .

Lemma 13. Let πft be as in Algorithm 2. If η ≤ 1/2, then for any g ∈ VT , it holds that∑
t,f

πft a
f
t ≤

logN

η
+AgT + η

∑
t≤T

(agt )
2.
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Proof. We follow the standard analysis of PROD, updated slightly to account for versioning. Consider
the potential Wt :=

∑
f∈Vt w

f
t , where recall that wft =

∏
s<t(1 − ηafs ). Since the weights are

always non-negative, for any g ∈ VT , we have that

WT+1 ≥
∏
t≤T

(1− ηagt ).

Therefore, we have the lower bound

log
WT+1

W1
≥ − logN +

∑
log(1− ηagt ) ≥ − logN −

∑
ηagt −

∑
(ηagt )

2,

which exploits the fact that for z ≤ 1/2, log(1− z) ≥ −z − z2.
To upper bound the same quantity, notice that for any t,

Wt+1 =
∑

f∈Vt+1

wft+1 ≤
∑
f∈Vt

wft (1− ηaft ) = Wt

1− η
∑
f

πft a
f
t

 ,

which again exploits that weights are non-negative, and that Vt is a non-increasing sequence of sets.
Taking ratios and bounding log(1− z) by −z, and finally summing over t = 1 : T, we have

log
WT+1

W1
=
∑
t

log
Wt+1

Wt
≤ −η

∑
t

∑
f

πft a
f
t .

Rearranging the inequality obtained by sandwiching log WT+1

W1
yields the bound.

Note that the above lemma holds generically, for any loss `ft ≤ 1, and any sequence of shrinking
decision sets. We will exploit this fact later.

For our purposes, observe that since aft is an indicator, (aft )2 = aft . Thus, using Lemma 13 for
g = f∗ ∈ VT , ∑

t,f

πft a
f
t ≤

logN

η
+A∗T + ηA∗T .

Now, the total abstention incurred by the learner is

AT =
∑

1{Ct = 1}+ 1{Ct = 0, ft(Xt) = ⊥}.

Exploiting the independence of the exploratory coin, we find that

E[AT ] = pT + (1− p)E[
∑
t,f

πft a
f
t ].

Invoking the above bound on
∑
t,f π

f
t a

f
t and rearranging then yields that

E[AT ] ≤ pT +
(1− p) logN

η
+ (1− p)E[A∗T ] + η(1− p)E[A∗T ].

Now, if η = p, then η(1− p)− p = −p2 < 0, and then exploiting that A∗T ≥ 0 yields the bound

E[AT −A∗T ] ≤ pT +
logN

p
.

This leaves the mistake control. The argument we present critically relies on the law πft being chosen
independently of Xt, given H L

t−1. This is ultimately a source of inefficiency - for instance, if πft
were allowed to depend also on Xt, then we could enforce that non-abstaining actions are not played
when Ct = 0, and drop the second log(N)/p term from the excess abstention bound. However, we
were unable to show mistake control with only logarithmic dependence on N in this situation.
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Proof of mistake bound. The mistake control proceeds by partitioning the class F according to the
mistake rates of individual Fs and arguing that whole groups of these are simultaneously, and quickly,
eliminated from the version space without incurring too many mistakes. This fundamentally exploits
the stochasticity of the setting.

To this end, define

Fζ := {f ∈ F : 2−ζ ≤ P (f(Xt) 6∈ {?, Yt}) ≤ 21−ζ

Fζ := {f ∈ F : P (f(Xt) 6∈ {?, Yt}) ≤ 2−ζ}.

In the following, ζ0 is a parameter for the purposes of analysis, that will be chosen later. Notice that
F =

⋃
ζ≤ζ0 Fζ ∪ Fζ0 .

We’ll argue that all f ∈ Fζ are eliminated quickly (for small ζ). For this, it is useful to define the
stopping times

τζ := max{t : ∃f ∈ Fζ ∩ Vt}.
Notice that for any f ∈ Fζ ,

P (Ct = 1, f(Xt) 6∈ {⊥, Yt}) ≥ 2−ζp.

As a consequence of this and the union bound, we have the following tail inequality.

Lemma 14. For any δ ∈ (0, 1),

P (∃ζ ≤ ζ0 : τζ > σδ,ζ0(ζ)) ≤ δ,
where

σδ,ζ0(ζ) :=
2ζ

p
log(ζ0N/δ).

With this in hand, notice that

MT =
∑
t

∑
f

1{ft = f}1{f(Xt) 6∈ {⊥, Yt}

=
∑
t

∑
ζ≤ζ0

∑
f∈Fζ

1{ft = f}1{f(Xt) 6∈ {⊥, Yt}}+
∑
t

∑
f∈Fζ0

1{ft = f}1{f(Xt) 6∈ {⊥, Yt}}.

Next, we observe that

E

∑
f∈Fζ

1{ft = f}1{f(Xt) 6∈ {⊥, Yt}

∣∣∣∣∣∣H L
t−1

 =
∑
f∈Fζ

πft P (f(Xt) 6∈ {⊥, Yt})

≤ 21−ζπt(ft ∈ Fζ)
≤ 21−ζ1{t ≤ τζ},

where the first equality is because πft is predictable given H L
t−1, the second uses the definition of Fζ ,

and the final inequality is because πt is a distribution that is supported on Vt, and thus has total mass
at most 1, and mass 0 when Fζ ∩ Vt = ∅. In much the same way, also notice that

E

 ∑
f∈Fζ0

1{ft = f, f(Xt) 6∈ {⊥, Yt}}

∣∣∣∣∣∣H L
t−1

 ≤ 2−ζ0 .

Exploiting both the linearity of expectations and the tower rule,

E[MT ] ≤
∑
t

∑
ζ≤ζ0

21−ζP (τζ ≥ t) + 2−ζ0T

≤
∑
ζ≤ζ0

21−ζ
∑

t≤σδ,ζ0 (ζ)

1 +
∑

t>σδ,ζ0 (ζ)

δ

+ 2−ζ0T

≤ 2ζ0
log(ζ0N/δ)

p
+ 2δT + 2−ζ0T.
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Now set ζ0 = blog T c, δ = 1/T . Since ζ0N/δ ≤ N2T 2, we find that

E[MT ] ≤ 4
log T log(NT )

p
+ 4,

and finally since p ≤ 1, 4
p ≥ 4, leading to the claimed bound (for T ≥ 3).

C.2 Lower Bound

Proof of Theorem 5. Without loss of generality, assume f2(x) = 1. Recall that f1(x) = ⊥. We
describe the two adversaries -

• P γ1 is supported on {(x, 1)}, so that for each time Xt = x, and the label Yt = 1.

• P γ2 is supported on {(x, 1), (x, 2)} such that for each time Xt = x, while the label is drawn

iid from the law Yt =

{
1 w.p. 1− γ
2 w.p. γ

.

Notice that against P γ1 , the competitor is f2, which attains A(Pγ1 )
T = 0, while against P γ2 , the

competitor is f1, which attainsA(Pγ2 )
T = T . Observe further that since γ < 1/2, if any learner does not

play ⊥, it is advantageous for it to play 1 and never play 2.5 We thus lose no generality in assuming
that the learner’s actions lie in {⊥, 1}. Now, run two coupled versions of the learner, so that if these
observe the same Zts, they produce identical actions. Feed the first of these data generated from P γ1 ,
and the second of these data generated from P γ2 .

Let η1 be the (random) number of abstentions that the first version of the learner makes - this means
that it must have played 1 T − η1 times. Denote the number of mistakes that the second version of
the learner makes as η2. Given η1, the second version gets exactly the same sequence as the first with
probability (1− γ)η1 - indeed, due to the coupling, they first abstain together, and then receive the
same label with probability 1− γ. Conditioned on this, they again abstain together, and then receive
the same label with probability 1− γ and so on, η1 times. This means that, given η1, and the event
that they get the same sequence, the second version of the learner plays T − η1 ‘1’ actions. Since
each of these is wrong with probability γ, independently and identically,

E[η2|η1] ≥ (1− γ)η1γ(T − η1).

Notice that (1 − γ)η1 is a convex function of η1. Thus, E[(1 − γ)η1 ] ≥ (1 − γ)E[η1] = (1 − γ)K .
Further, E[−(1− γ)η1η1] ≥ E[−η1] = −K, and finally, for γ ≤ 1/2, (1− γ) ≥ e−2γ . It follows that

E[η2] ≥ (1− γ)KγT − γK = γ(e−2γKT −K).

While here, let us also comment that the proof of Corollary 6 is mildly incomplete, since the argument
requires that ϕ ≥ 2. If instead ϕ < 2, then notice that setting γ = 1/2 in the above, and using that
E[η2] ≥ γ((1− γ)KT −K), we have ψ ≥ 2−ϕ T2 −

2
2 ≥

T
8 − 1, which grows linearly with T .

D Analysis of MIXED-LOSS-PROD Against Adaptive Adversaries

This section provides a proof of Theorem 7, and describes an adaptive variant of the same scheme,
based on a doubling trick, that serves to show Theorem 9.

Proof of Theorem 7. Recall that the scheme runs PROD with the loss

`ft := 1{Ct = 1}1{f(Xt) 6∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥}.

We first observe that repeating the proof of Lemma 13 with aft replaced by `ft gives us that for any
g ∈ VT , ∑

t,f

πft `
f
t ≤

logN

η
+
∑
t

`gt + η
∑

(`gt )
2. (1)

5More formally, given any leaner, we can create the better—in expectation—learner that abstains when the
given one does, and predicts 1 when the given one plays something other than ⊥.
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Note that this relation holds given the context and label processes. For g = f∗ ∈ VT , we observe that
`f
∗

t = λ1{f∗(Xt) = ⊥}, since by definition f∗ makes no mistakes. Instantiating the above with
f∗, and noting

∑
1{f∗(Xt) = ⊥} = A∗T , we conclude that∑

t,f

πft `
f
t ≤

logN

η
+ λA∗T + ηλ2A∗T . (2)

We proceed to characterise the mistakes and abstentions that the learner makes in terms of
∑
t,f `

f
t .

To this end, notice that

MT =
∑
t,f

1{ft = f} · 1{Ct = 0} · 1{f(Xt) 6∈ {⊥, Yt}}.

As a result, integrating over the randomness of the algorithm, but not over the contexts or labels, we
find that

E[MT ] = E

∑
t,f

E[1{ft = f}1{Ct = 0}1{f(Xt) 6∈ {⊥, Yt}}|H A
t−1, Xt, Yt]


=
∑
t,f

E
[
πft (1− p)1{f(Xt) 6∈ {⊥, Yt}

]
.

But, observe that

E[πft `
f
t ] = E

[
E[πft Ct1{f(Xt) 6∈ {⊥, Yt}+ λπft 1{f(Xt) = Yt}|H A

t−1]
]

= E[pπft 1{f(Xt) 6∈ {⊥, Yt}}] + λE[πft 1{f(Xt) = ⊥}].
Therefore,

E[MT ] =
∑
t,f

E
[

(1− p)
p

(
πft `

f
t − π

f
t λ1{f(Xt) = ⊥}

)]
. (3)

Further, notice that

AT =
∑
t

1{Ct = 1}+
∑
t,f

1{Ct = 0}1{ft = f}1{f(Xt) = ⊥},

and thus,

E[AT ] = E

pT + (1− p)
∑
t,f

πft 1{f(Xt) = ⊥}

 .
Moving the negative terms in (3) to the left hand side, and exploiting the above, we find that

E[MT ] +
λ

p
E[AT − pT ] =

1− p
p

E

∑
t,f

πft `
f
t

 ,
where we note that both the terms E[MT ] and E[AT − pT ] are non-negative.

Exploiting the inequality 2 and the above relation, we conclude that

E[MT ] + E
[
λ

p
(AT − pT )

]
≤ E

[
1− p
p

(
logN

η
+ λA∗T + ηλ2A∗T

)]
. (4)

The required bounds are now forthcoming. Dropping the MT term in the left hand side of (4), and
pushing the constants N, η, p, λ through the expectations,

λ

p
E[AT − pT ] ≤ (1− p) logN

pη
+

(1− p)λ
p

E[A∗T ] +
η(1− p)λ2

p
E[A∗T ]

⇐⇒ E[AT − pT ] ≤ (1− p) logN

ηλ
+ (1− p)E[A∗T ] + ηλ(1− p)E[A∗T ]

⇐⇒ E[AT −A∗T ] ≤ pT +
logN

ηλ
+ (ηλ− p)E[A∗T ].
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Taking η = 1/2, λ ≤ p, observe that the last term is negative (since A∗T ≥ 0). Thus, making these
substitutions and dropping the final term gives the required excess abstention control.

In a similar way, dropping the E[AT − pT ] term in (4) gives

E[MT ] ≤ logN

pη
+
λ(1 + ηλ)

p
E[A∗T ].

The claim follows on setting η = 1/2, and observing that ηλ ≤ 1.

D.1 Adapting Rates for small A∗T

D.1.1 Deriving the form of α̃

We first describe a derivation of the form of α̃. As noted, the relevant parametrisation is p = T−u, λ =
T−(u+v), for u, v ≥ 0. This, with the bounds of the previous section gives the control

E[MT ] ≤ 2Tu logN + Tα
∗−v

E[AT −A∗T ] ≤ T 1−u + 2Tu+v logN + Tα
∗−u−v.

Notice that α∗ − u− v ≤ 1− u− v ≤ 1− u, since α∗ ≤ 1, v ≥ 0. Thus, we have the rate bounds

µ = max(u, α∗ − v)

α = max(1− u, u+ v)

Deriving the optimal α attainable for a fixed µ then amounts to the following convex program

min max(1− u, u+ v)

s.t. 0 ≤ u ≤ µ
max(0, α∗ − µ) ≤ v

Notice that the objective is a non-decreasing function of v, so the optimal choice of the same is
(α∗ − µ)+, the smallest value it may take. This leaves us with trying to minimise max(1− u, u+

(α∗ − µ)+) for 0 ≤ u ≤ µ. The unconstrained minimum of this function occurs at u0 = 1−(α∗−µ)+
2 ,

which is feasible if µ ≥ u0. If on the other hand µ < u0, then the max-affine function is in the
decreasing branch 1− u, and the optimal choice of u is just µ. Thus, the optimum is achieved at

v = (α∗ − µ)+

u =

{
1−(α∗−µ)+

2 1− (α∗ − µ)+ ≤ 2µ

µ 1− (α∗ − µ)+ > 2µ
=

min(1− (α∗ − µ)+, 2µ)

2
.

Correspondingly, α̃ takes the form

α̃(µ;α∗) =

{
1+(α∗−µ)+

2 1− (α∗ − µ)+ ≤ 2µ

max(1− µ, µ+ (α∗ − µ)+) 1− (α∗ − µ)+ > 2µ
.

But,
1− (α∗ − µ)+ > 2µ ⇐⇒ 1− µ ≥ µ+ (α∗ − µ)+,

and therefore

α̃(µ;α∗) =

{
1+(α∗−µ)+

2 1− (α∗ − µ)+ ≤ 2µ

1− µ 1− (α∗ − µ)+ > 2µ
= max

(
1− µ, 1 + (α∗ − µ)+

2

)
.

D.1.2 Adaptive Scheme and Proofs

We start by recalling the definition of B∗t

B∗t = min
f∈Vt

∑
s≤t

1{f(Xt) = ⊥}.
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We will also use the term
β∗t :=

logB∗t
log T

.

For the remainder of this section, let κ := λ
p . Recall that the optimal behaviour is attained by setting

p = T−u, κ = T−v, where

u =
min(1− (α∗ − µ)+, 2µ)

2
v = (α∗ − µ)+.

Algorithm 4 essentially consitutes a doubling trick by setting p and κ in phases, which are indexed by
non-negative integers, n. The scheme is parametrised by a scale parameter, θ.

• We begin in the zeroth phase, with κ = 1, p = T−min(1,2µ)/2 This phase ends when β∗ first
exceeds µ, at which point the first phase begins.

• At the beginning of each phase, we re-initialise the scheme.
• For n ≥ 1, the nth phase ends when (the reinitialised) β∗ first exceeds µ+ nθ.

• Each time the nth phase ends, we restart the scheme, with κ = T−(n+1)θ, p =
T−min(1−(n+1)θ,2µ)/2.

Since the scheme is restarted in each phase, we may analyse each phase separately. Note that if
AT ≤ Tα

∗
almost surely, then the index of the largest phase is at most n∗ = b (α

∗−µ)+
θ c phases, since

β∗t ≤ α∗ always. For convenience, we set Tn to be the length of the nth phase. Times tn correspond
to rounds within the nth phase, and Mn

Tn
, AnTn are the number of mistakes and abstentions incurred

by the learner in the nth phase, while , A∗,nTn is the number of abstentions incurred by f∗ in the nth
phase.

Consider the behaviour in the nth phase. Let gn be the function that minimises
∑
sn≤Tn 1{g(Xt) =

⊥}, subject to
∑
sn≤Tn Ct1{g(Xt) 6∈ {⊥, Yt} = 0, and set the value of this optimum to B∗,nTn By

exploiting inequality (1) instantiated with gn, and setting η = 1/2, we may infer that∑
tn≤Tn

πftn`
f
tn ≤ 2logN + pnκnB

∗,n
Tn

+
p2nκ

2
n

2
B∗,nTn .

As a result, reiterating the previous analysis over the nth phase, the number of mistakes and abstentions
incurred in this phase

E[Mn
Tn ] ≤ 2 logN

pn
+ 2E[κnB

∗,n
Tn

]

E[AnTn −B
∗,n
Tn

] ≤ E[pnTn + 2
logN

κnpn
]

Further, notice that in each phase, B∗,nTn ≤ Tµ+(n+1)θ, κn = T−nθ, pn = T−min(1−nθ,2µ)/2.
Substituting these into the above bounds, we have

E[Mn
Tn ] ≤ 2Tmin(1−nθ,2µ)/2 logN + 2Tµ+θ ≤ 4Tµ+θ logN

E[AnTn −B
∗,n
Tn

] ≤ T−min(1−nθ,2µ)/2E[Tn] + Tnθ+
min(1−nθ,2µ)/2 logN

But then, summing over the phases,

E[MT ] =
∑

0≤n≤n∗
E[Mn

Tn ]

≤ 4Tµ logN · (n∗ + 1)T θ

≤ 4Tµ logN · T
θ

θ
.
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Further,

E[AT −A∗T ] = E[
∑
n≤n∗

AnTn −A
∗,n
Tn

]

≤ E[
∑

0≤n≤n∗
AnTn −B

∗,n
Tn

]

≤ E[
∑

0≤n≤n∗
T−min(µ,1−nθ/2)Tn] + logN

∑
0≤n≤n∗

Tnθ+min(1−nθ/2,µ)

≤

(
n∗∑
n=0

T 1−min(µ,1−nθ/2) +
∑
n=0

Tnθ+min(1−nθ/2,µ)

)
logN.

To simplify the above, let n0 = b 1−2µθ c, so that min(µ, 1−nθ2 ) = µ for n ≤ n0. Notice that n0 may
be bigger or smaller than n∗. We can then write the bound as

E[AT − T ∗T ]

logN
≤

min(n∗,n0)∑
n=0

T 1−µ +

n∗∑
n=min(n∗,n0)+1

T
1+nθ

2 +

min(n∗,n0)∑
n=0

Tnθ+µ +

n∗∑
n=min(n∗,n0)+1

T
1+nθ

2 ,

where we interpret
∑j
n=i = 0 for i > j. This can further be simplified to

E[AT −A∗T ]

logN
≤ min(n∗ + 1, n0 + 1)T 1−µ +

Tµ

T θ − 1
T (min(n∗,n0)+1)θ) + 21{n0 < n∗}T

1+(n∗+1)θ
2

T θ/2 − 1
.

If we further assume that θ is chosen so that T θ/2 ≥ 2, we can lower bound T θ/2−1 ≥ T θ/2/2, T θ−
1 ≥ T θ/2 which gives the bound

E[AT −A∗T ]

4 logN
≤ (min(n0, n∗) + 1)

(
T 1−µ + Tµ+min(n0,n

∗)θ + 1{n0 < n∗}T (1+n∗θ)/2
)
,

from which we can derive the rate control

α ≤ ζ(µ, n0, n
∗, θ) = max(1− µ, µ+ min(n0, n

∗)θ,1{n0 < n∗}(1 + n∗θ)/2)

The exact statement of the theorem is now straightforward to prove

Proof of Theorem 9. We run the above procedure with θ = 2 ln 2
log T . Notice that T θ/2 ≥ 2, and that

T θ/θ ≤ 2
ln 2 log T ≤ T ε for large enough T . Therefore, mistakes are controlled at O(Tµ+ε).

Further, for the abstention control, again min(n∗, n0) + 1 ≤ n0 + 1 ≤ 1
θ = log T

2 ln 2 . Recall the
abstention rate bound ζ above. It suffices to argue that ζ ≤ α̃+ θ, since T θ = 4 = O(1).

To this end, first notice that

n0 < n∗ ⇐⇒ b1− 2µ

θ
c < b (α

∗ − µ)+
θ

c =⇒ 1− 2µ < (α∗ − µ)+.

In this case,

ζ = max

(
1− µ, µ+ n0θ,

1 + n∗θ

2

)
≤ max

(
1− µ, µ+

(1− 2µ)

θ
· θ,

1 + (α∗−µ)+
θ · θ

2

)

= max

(
1− µ, 1 + (α∗ − µ)+

2

)
= α̃(µ;α∗).
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Algorithm 4 ADAPTIVE-MIXED-LOSS-PROD

1: Inputs: F , Time T , Mistake rate µ, Scale θ.
2: Initialise: n← 0;nmax ← d1/θe;∀f ∈ F , wf1 ← 1; ∀n ≤ nmax, τn ← T.
3: for t ∈ [1 : T ] do
4: u← min(1− nθ, 2µ)/2, v ← nθ
5: p← T−u, λ← T−(u+v).
6: Sample ft ∼ πt = wft/

∑
wft .

7: Toss Ct ∼ Bern(p).
8: if Ct = 1 then
9: Ŷt ← ⊥

10: else
11: Ŷt ← ft(Xt)

12: ∀f ∈ F , evaluate

`ft = Ct1{f(Xt) 6∈ {⊥, Yt}}+ λ1{f(Xt) = ⊥}

13: wft+1 ← wft (1− η`ft ).
14: Compute

B∗ = min
g∈F

∑
τn<s≤t

1{g(Xs) = ⊥}

s.t.
∑

τn<s≤t

Cs1{g(Xs) 6∈ {⊥, Yt} = 0.

15: if logB∗ ≥ (µ+ nθ) log T then
16: n← n+ 1
17: τn+1 ← t

18: ∀f ∈ F , wft+1 ← 1.

On the other hand, if n0 ≥ n∗ then we have that

(α∗ − µ)+
θ

− 1 ≤ (1− 2µ)

θ
⇐⇒ µ ≤ 1 + θ − (α∗ − µ)+

2
.

As a result, in this case,

ζ ≤ max (1− µ, µ+ n∗θ)

≤ max (1− µ, µ+ (α∗ − µ)+)

≤ max

(
1− µ, 1 + (α∗ − µ)+ + θ

2

)
≤ α̃(µ;α∗) + θ/2

E Details of Experiments.

N.B. Code required to reproduce the experiments is provided at https://github.com/
anilkagak2/Online-Selective-Classification.

E.1 Dataset Details

GAS [Ver+12] dataset is a 6-way classification task based on the 16 chemical sensors data. These
sensors are used to discriminate 6 gases at various levels of concentrations. The data consists of these
sensor readings for over a period of 36 months divided into 10 batches. There are 13, 910 data points
in this dataset. We use the first 7 batches as training set and the remaining 3 batches as test set. This
split results in train and test sets with 9546 and 4364 data points respectively. The gas task contains
data from 16 sensors (each of which gives 8 numbers). The standard error attained by the class we
use (see below) on this is ≈ 87%. For the selective classification task, we use only the data from
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the first 8 sensors (and thus only 64 out of 128 features). The standard error attainable for this is
≈ 67%. Importantly, for the GAS task, the selective classification setting we study only demands
matching the performance of the best classifier with the full 16-sensor data, and thus supervision for
the 8-sensor function is according to this best function. To be more concrete, denote the training data
as {(X1

i , X
2
i , Yi)}, whereX1 andX2 are the features from the first and second 8 sensors respectively,

and Y is the label. We train a classifier g on this whole dataset. Then we produce the labelled dataset
{(X1

i , g(X1
i , X

2
i ))}, and train selective classifiers on this dataset. The online problem then takes the

test dataset, and gives to the learner only the X1 features from it. If the learner abstains, then the
label Yt = g(X1

t , X
2
t ) is given to the learner.

CIFAR-10 [KH09] dataset is a popular image recognition dataset that consists of 32 × 32 pixels
RGB images of 10 classes. It contains 50, 000 training and 10, 000 test images. We use standard
data augmentations (shifting, mirroring and mean-std gaussian normalisation) for preprocessing the
datasets. The best standard error attainable for this task by the models we use (see below) is ≈ 90%.
This experiment is more straightforward to describe- selective classifiers are trained on the whole
dataset. For the online problem, the test image is supplied to the learner, and if it abstains, then the
true label of that image is provided as feedback.

E.2 Training Experts

[GKS21] proposed a scheme to train classifiers with an in-built abstention option. This scheme
provides a loss function, which takes a single hyper-parameter µ, and is trained as a minimax program
using gradient ascent-descent. The scheme then uses the outputs of this training with a second
hyper-parameter t to provide classification or abstention decisions. Therefore, the scheme utilises
two hyper-parameters (µ, t) to control the classification accuracy and abstentions.

We trained selective classifiers using this scheme. As per their recommendation, we used 30 values of
µ with 10 values equally spaced in [0.01, 1] and remaining 20 values in the [1, 16]. For the threshold
parameter t, we used 20 equally spaced values in [0.2, 0.95). The minimax program was run with the
learning rates (10−4, 10−6) for the descent and ascent respectively. Notice that the resulting set of
classifiers have 20× 30 = 600 functions.

Note that classification on CIFAR-10 is a relatively difficult task than GAS. Hence, we used a simpler
3-layer fully connected neural network architecture for the GAS dataset, and a Resnet32 architecture
[Ide19; HZRS16] for the CIFAR-10 dataset.

E.3 Algorithm implementation, Hyper-parameters, Compute requirements

We implemented Algorithm 5 (which relaxes the versioning in 2) using Python constructs. It has
three hyper-parameters: (a) T denoting the number of rounds, (b) the exploration rate p, and (c) ε
controlling the mistake tolerance. For each run, the test data points were randomly permuted, and the
first T of them were presented to the algorithm.

There are two main departures from the scheme in the main text. Firstly, rather than only using
feedback gained when Ct = 1, the version space is refined whenever Ŷt = ⊥, allowing faster
learning. Secondly, the versioning is relaxed as already described, to only exclude functions that
make too many mistakes, as determined by ε.

An important implementation detail is that for very small ε, the version space may get empty before
the run concludes. This is particularly relevant for small values of ε. As a simple fix, we modify
the versioning rule so that if the version space were to become empty at the end of a round, it is not
updated (and, indeed, the state of the scheme is retained, see below).

Since our experiments are CPU compute bounded, we used a machine with two Intel Xeon 2.60 GHz
CPUs providing 40 cores. Both the regret-with-varying-time experiments took about 1 hour compute
time, and the operating point experiments took nearly 5 hours each.

E.4 Regret Behaviour as Time-horizon in Varied.

We use the hyperparameter ε = 0.01. For the sake of efficiency, we use the adaptive scheme
Algorithm 6 that adapts to the time horizon, that instead varies p with the number of rounds as
pt = min(0.1, 1√

t
), ηt = pt. This adaptation strategy is a standard way to handle varying horizons,
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Algorithm 5 VUE-PROD-RELAXED

1: Inputs: F , Exploration rate p, Learning rate η, Tolerance ε.
2: Initialise: V1 ← F ;∀t,Ut ← ∅;∀f ∈ F , wf1 ← 1, of0 ← 0; Ctr0 ← 0.
3: for t ∈ [1 : T ] do
4: Sample ft ∼ πt =

wft 1{f∈Vt}∑
f∈Vt

wft
.

5: Toss Ct ∼ Bern(p).

6: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

7: if Ŷt = ⊥ then . Refine the version space if the exploratory coin is heads
8: Ctrt ← Ctrt−1 + 1.
9: for f ∈ Vt do

10: oft ← oft−1 + 1{f(Xt) 6∈ {⊥, Yt}
11: if oft ≤ εCtrt +

√
2εCtrt then . Retain all fs that have error rate < ε w.h.p.

12: Ut ← Ut ∪ {f}.
13: Vt+1 = Vt ∩ Ut.
14: else
15: Vt+1 ← Vt.
16: ∀f ∈ Vt+1, o

f
t ← oft−1

17: Ctrt ← Ctrt−1.
18: if Vt+1 6= ∅ then . Penalise Abstentions if the version space is non-empty
19: for f ∈ Vt+1 do
20: aft ← 1{f(Xt) = ⊥}
21: wft+1 ← wft · (1− ηa

f
t ).

22: else . Vt+1 = ∅, and so revert the state
23: Vt+1 ← Vt.
24: Ctrt ← Ctrt−1.
25: for f ∈ Vt+1 do
26: oft ← oft−1.

27: wft+1 ← wft .

and the observations obtained via this represent (and slightly overestimate) the regrets for when
Algorithm 5 is run with p = η = 1√

T
. A major advantage is that this significantly increases the

efficiency of the procedure, since instead of re-starting the experiment for each time horizon, we can
now run for one single time horizon, and obtain representative values of regret at smaller horizons by
recording the values at checkpoints corresponding to these. In the plots, we ran for T = 4000, and
checkpointed every 250 rounds.

E.4.1 Excess Abstention Behaviour

As noted in the main text, the excess abstention regret for both datasets is negative. This remains
consistent with the theory, and likely arises since these datasets are, of course, not the worst case
distributions. The excess abstentions regret are plotted below.

E.5 Achievable Operating Points of Mistakes and Abstentions

We use Algorithm 5, instantiated with T = 500, and always choosing η = p. The particular values
of p, ε that are scanned are, as listed in the main text, 20 equally spaced values of p in the range
[0.015, 0.285], and 10 equally spaced values of ε in the range [0.001, 0.046], giving in total 200
values of (p, ε) pairs that are scanned over.

The post-hoc batch operating points are obtained as follows: We first find the largest value of the
number of mistakes that are attained by the online learner for some choice of (p, ε). Call this
M . The values attained were MCIFAR = 50 and MGAS = 120. Then, we then instantiated the set
MCIFAR = {2, 3, . . . , 50}, and forMGAS = {2, 7, . . . , 117}. The density was chosen lower for GAS
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Algorithm 6 VUE-PROD-RELAXED-TIME-ADAPTED

1: Inputs: F , Tolerance ε.
2: Initialise: V1 ← F ;∀t,Ut ← ∅;∀f ∈ F , wf1 ← 1, of0 ← 0; Ctr0 ← 0.
3: for t ∈ [1 : T ] do
4: pt ← min(0.1, 1/

√
t).

5: ηt ← pt.
6: Sample ft ∼ πt =

wft 1{f∈Vt}∑
f∈Vt

wft
.

7: Toss Ct ∼ Bern(pt).

8: Ŷt ←
{
⊥ Ct = 1

ft(Xt) Ct = 0
.

9: if Ŷt = ⊥ then . Refine the version space if the exploratory coin is heads
10: Ctrt ← Ctrt−1 + 1.
11: for f ∈ Vt do
12: oft ← oft−1 + 1{f(Xt) 6∈ {⊥, Yt}
13: if oft ≤ εCtrt +

√
2εCtrt then . Retain all fs that have error rate < ε w.h.p.

14: Ut ← Ut ∪ {f}.
15: Vt+1 = Vt ∩ Ut.
16: else
17: Vt+1 ← Vt.
18: ∀f ∈ Vt+1, o

f
t ← oft−1

19: Ctrt ← Ctrt−1.
20: if Vt+1 6= ∅ then . Penalise Abstentions if the version space is non-empty
21: for f ∈ Vt+1 do
22: aft ← 1{f(Xt) = ⊥}
23: wft+1 ← wft · (1− ηta

f
t ).

24: else . Vt+1 = ∅, and so revert the state
25: Vt+1 ← Vt.
26: Ctrt ← Ctrt−1.
27: for f ∈ Vt+1 do
28: oft ← oft−1.

29: wft+1 ← wft .

for visual pleasantness. Finally, for each m ∈M∗, we run the post-hoc optimisation

a(m) := min
f∈F

∑
t

1{f(Xt) = ⊥} s.t.
∑
t

1{f(Xt) 6∈ {⊥, Yt}} ≤ m.

The resulting points (a(m),m) are plotted as black triangles.

Definition of MMEA As stated in the main text, the mistake matched competitor is defined as follows:
suppose that the scheme makesM mistakes andA abstentions over a stream. If the following program
is feasible, then we define

A∗(m) = min
f∈F

∑
1{f(Xt) = ⊥} s.t.

∑
1{f(Xt) 6∈ {⊥, Yt}} ≤M.

If not, then we take A∗(M) to be the abstentions made by the least mistake f , which is the competitor
in the rest of the section. Then we define

MMEA = A−A∗(M).

E.6 Sensitivity of the scheme to hyperparameters

Working in the setting of Figure 2, we show how the excess mistake and abstention regrets vary at
T = 4000 (the final point) as ε is varied in Figure 5. As expected, the excess mistakes increase
roughly linearly with large ε, but the data reflects subtle non-monotonicities in the same. The variation
in abstentions is, as expected, essentially opposite to that of the mistakes.
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Figure 4: Excess abstention regret, normalised by T , in the setting of Figure 2 for CIFAR-10 (left)
and GAS (right). The plots are averaged over 100 runs, and one-standard-deviation error bars are
drawn. Notice that the values are negative for GAS, and strongly dominated by the MMEA for
CIFAR.

Figure 5: Senstivity with ε of the excess mistakes (left) and excess abstention (right) regrets at
T = 4000 for CIFAR (top) and GAS (bottom) datasets. Points are averaged over 100 runs, and
one-standard-deviation error bars are included.

Similarly, in Figure 6, we show the operating points that can be achieved by varying ε for a fixed
p, and by varying p for a fixed ε. We observe first that the variation with ε for a fixed p is relatively
regular, with larger ε increasing mistakes but decreasing abstentions at roughly the same rate, up to
small variations. On the other, the behaviour with increasing p for a fixed ε is much more subtle, and
indicates that a sweet-spot of the coin-based exploration rate exists for each tolerance level.

Together, these plots indicate that the optimal tuning of ε and p together can be subtle, and exploring
how one can execute the same in an online way is an interesting open problem.
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Figure 6: Illustration of how operating points achieved by the scheme vary as p is changed for fixed
values of ε (left) and as ε is changed for fixed values of p (right), in the CIFAR (top) and GAS
(bottom) datasets. The sets of εs and ps marking the traces is reduced with respect to Figure 3 for the
sake of legibility. The arrow denotes the direction of increasing the varied parameter.
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