
A Proof of Theoretical Results

A.1 Proof of Lemma 1

The MSE can be computed as

E
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]
=
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E
[
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=
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n∑
i=1

xij
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Now, as E
[
d
khij

]
= xij , it holds that

1

n2

n∑
i=1

E

[(
d

k
hij − xij

)2
]

=
1

n2

n∑
i=1

(
E
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d

k
hij
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]
− x2

ij

)
. (18)

Since hij = xij with probability k/d and hij = 0 otherwise (by definition), therefore E
[(

d
khij

)2]
=

d
kx

2
ij , which implies

E
[
‖x̂− x̄‖2

]
=

1

n2

(
d

k
− 1

) n∑
i=1

d∑
j=1

x2
ij =

1

n2

(
d

k
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)
R1, (19)

where R1 =
∑n
i=1 ‖xi‖

2.

A.2 Proof of Lemma 2

We begin by recalling our definition of β̄.

β̄ ,

(
k

d
EMj |Mj≥1

[
1

T (Mj)

])−1

(20)

Let ξij be an indicator random variable which is 1 or 0, depending on whether hij = xij or not.

Case 1: With probability (1− k
d ), ξij = 0 which implies hij = 0. Therefore,

EMj |ξij=0

[
β̄hij
T (Mj)

]
= 0 (21)

Case 2: With probability k
d , ξij = 1 which implies hij = xij . Therefore,

EMj |ξij=1

[
β̄hij
T (Mj)

]
= EMj |Mj≥1

[
β̄hij
T (Mj)

]
= β̄xijEMj |Mj≥1

[
1

T (Mj)

]
(22)

The crucial observation here is that ξij = 1 only implies Mj ≥ 1 and does not give any other
information about Mj . This allows us to decouple the relation between hij and Mj for this proof as
well as our proof of Theorem 1. Next, taking expectation with respect to ξij we have,

EξijEMj |ξij =
k

d
β̄xijEMj |Mj≥1

[
1

T (Mj)

]
= xij (23)

which follows from the definition of β̄. This proves that the estimate (4) is unbiased.

A.3 Proof of Theorem 1

The MSE can be computed as

E
[
‖x̂− x̄‖2

]
=

d∑
j=1

E
[
(x̂j − x̄j)2

]
=

d∑
j=1

E

( 1

n

β̄

T (Mj)

n∑
i=1

hij −
1

n

n∑
i=1

xij

)2
 . (24)
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As the estimator is designed to be unbiased, i.e., E
[(

1
n

β̄
T (Mj)

∑n
i=1 hij

)]
= 1

n

∑n
i=1 xij , it holds

that

E

( 1

n

β̄

T (Mj)

n∑
i=1

hij −
1

n

n∑
i=1

xij

)2
 =

1

n2
E

( β̄

T (Mj)

n∑
i=1

hij

)2
− 1

n2

(
n∑
i=1

xij

)2

(25)

We now analyze the first term above.

E

( β̄

T (Mj)

n∑
i=1

hij

)2
 =

n∑
i=1

β̄2E
[

hij
T (Mj)

]2

+

n∑
i=1

n∑
k=i+1

β̄2E

[
hijhkj

T (Mj)
2

]
(26)

Note here that the expectation is taken over the randomness in hij as well as T (Mj). Further,

β̄2
[

hij

T (Mj)

]2
is non-zero only when a node i samples coordinate j, i.e., hij = xij . This implies that

Mj ≥ 1. Therefore, by the law of total expectation, we have

β̄2E
[

hij
T (Mj)

]2

= β̄2EMj |Mj≥1

[
kx2

ij

dT (Mj)
2

]
(27)

=

(
β̄2

n∑
m=1

k

dT (m)2

(
n− 1

m− 1

)(
k

d

)m−1(
1− k

d

)n−m)
x2
ij (28)

=

(
d

k
+ c1

)
x2
ij (29)

where c1 = β̄2
∑n
m=1

k
dT (m)2

(
n−1
m−1

) (
k
d

)m−1 (
1− k

d

)n−m − d
k . Here, the second equality uses the

fact that when node i samples coordinate j (i.e., xij = hij), then Mj ≥ 1.

Following a similar argument as above, note that β̄2
[
hijhkj

T (Mj)2

]
is non-zero only when nodes i and k

sample coordinate j, i.e., hij = xij and hkj = xkj . This implies that Mj ≥ 2. Therefore, by the law
of total expectation, we have

β̄2E

[
hijhkj

T (Mj)
2

]
= β̄2EMj |Mj≥2

[
k2xijx

2
kj

d2T (Mj)
2

]
(30)

=

(
β̄2

n∑
m=2

k2

d2T (m)2

(
n− 2

m− 2

)(
k

d

)m−2(
1− k

d

)n−m)
xijxkj (31)

= (1− c2)xijxkj , (32)

where c2 = 1− β̄2
∑n
m=2

k2

d2T (m)2

(
n−2
m−2

) (
k
d

)m−2 (
1− k

d

)n−m
Substituting (29) and (32) in (26), we get

E

[(
β̄

T (Mj)

n∑
i=1

hij

)]2

=

(
d

k
+ c1

) n∑
i=1

x2
ij + (1− c2)

n∑
i=1

n∑
k=i+1

xijxkj (33)

Now, substituting (33) in (25), we get

E

( 1

n

β̄

T (Mj)

n∑
i=1

hij −
1

n

n∑
i=1

xij

)2
 =

1

n2

(
d

k
+ c1 − 1

) n∑
i=1

x2
ij −

1

n2
c2

n∑
i=1

n∑
k=i+1

xijxkj

(34)

Finally replacing (34) in (24) we get,

E
[
‖x̂− x̄‖2

]
=

1

n2

(
d

k
− 1

)
R1 +

1

n2
(c1R1 − c2R2) (35)

where R1 =
∑n
i=1 ‖xi‖

2 and R2 = 2
∑n
i

∑n
j=i+1〈xi,xj〉.
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A.4 Proof of Theorem 2

Observe that in (6), the only term that depends on T (.) is c1R1 − c2R2. Thus to find the function
T ∗(.) that minimizes the MSE, we just need to minimize this term.

Recall that R1 =
∑n
i=1 ‖xi‖

2 and R2 = 2
∑n
i

∑n
j=i+1〈xi,xj〉. Note that R1 +R2 = ‖∑n

i=1 xi‖
2.

Since ‖∑n
i=1 xi‖

2 ≥ 0 and ‖∑n
i=1 xi‖

2 ≤ nR1, it follows that R2

R1
∈ [−1, n− 1].

Next, from the definitions of c1 and c2 in (7) and (8) respectively, we can obtain the following
expression for T ∗

T ∗(m) = arg min
T

β̄2
n∑

m=1

k

dT (m)2

(
n− 1

m− 1

)(
k

d

)m−1(
1− k

d

)n−m
+
R2

R1
β̄2

n∑
m=2

k2

d2T (m)2

(
n− 2

m− 2

)(
k

d

)m−2(
1− k

d

)n−m
, (36)

where β̄ =
(∑n

m=1
k

dT (m)

(
n−1
m−1

) (
k
d

)m−1 (
1− k

d

)n−m)−1

.

We claim that T ∗(m) = 1 + R2

R1

m−1
n−1 is an optimal solution for our objective defined in (36). To see

this, consider the following cases,

Case 1: p = 0 or p = 1.

In this case c1 and c2 are independent of T (.) and hence our objective does not depend on the choice
of T (.).

Case 2: 0 < p < 1 and R2

R1
= −1.

Since R2

R1
= −1 this implies ‖∑n

i=1 xi‖
2

= 0 and therefore x̄ = 0.

Note that in this case T ∗(n) = 0 =⇒ β̄ = 0 =⇒ x̂ = 0, thereby recovering the true mean with
zero MSE.

Case 3: 0 < p < 1 and R2

R1
∈ (−1, n− 1]

We define

w∗ = arg min
w

wTAw

(bTw)2
, (37)

where w is a n-dimensional vector whose mth entry is wm = 1/T (m), b is a vector whose mth

entry is

bm =

(
n− 1

m− 1

)
pm−1(1− p)n−m, (38)

where p = k/d, and A is a diagonal matrix whose mth diagonal entry is

Amm =

(
n− 1

m− 1

)
pm−1(1− p)n−m + p ∗ R2

R1

(
n− 2

m− 2

)
pm−2(1− p)n−m (39)

= bm(1 +
R2

R1

m− 1

n− 1
). (40)

Note that Amm > 0 for all m ∈ {1, 2, . . . , n} which implies that w → A1/2w is a one-to-one
mapping. Therefore setting z = A1/2w, the objective in (37) reduces to

z∗ = arg min
z

‖z‖2
(bTA−1/2z)2

(41)

Observe that the objectives (36), (37), (41) are invariant to the scale of T (.), w, and z respectively
and thus the solutions will be unique up to a scaling factor (this doesn’t affect our estimate of the
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mean in (4) since β̄ will be adjusted accordingly). Therefore, in the case of (41), it is sufficient to
solve the reduced objective,

z∗ = arg min
z, ||z||=1

‖z‖2
(bTA−1/2z)2

= arg min
z, ||z||=1

1

(bTA−1/2z)2
(42)

which is minimized (denominator is maximized) by z∗ = A−1/2b
||A−1/2b|| . Therefore, the optimal solution

(up to a constant) is w∗ = A−1/2(A−1/2b). Correspondingly, we have that

T ∗(m) =
1

w∗m
=
Amm
bm

= 1 +
R2

R1

m− 1

n− 1
. (43)

minimizes (36), and consequently minimizes the MSE of the Rand-k-Spatial family of estimators.

A.5 Proof of Theorem 3

The MSE can be written as

E
[
‖x̂− x̄‖2

]
=

d∑
j=1

E
[
(x̂j − x̄j)2

]
=

d∑
j=1

E

( 1

n

n∑
i=1

h′ij −
1

n

n∑
i=1

xij

)2
 . (44)

Since E
[
h′ij
]

= xij , it holds that

1

n2

n∑
i=1

E
[(
h′ij − xij

)2]
=

1

n2

n∑
i=1

(
E
[(
h′ij
)2]− x2

ij

)
. (45)

From the definition of h′ij , we see that

E
[(
h′ij
)2]− x2

ij =

(
1− k

d

)
b2ij +

k

d

(
b2ij +

d2

k2
(xij − bij)2 +

2d

k
bij(xij − bij

)
− x2

ij (46)

=
d

k
(xij − bij)2 − (xij − bij)2 (47)

=

(
d

k
− 1

)
(xij − bij)2. (48)

This implies,

E
[
‖x̂− x̄‖2

]
=

1

n2

(
d

k
− 1

) n∑
i=1

d∑
j=1

(xij − bij)2 =
1

n2

(
d

k
− 1

) n∑
i=1

‖xi − bi‖2 (49)

A.6 Proof of Theorem 4

At round t, nodes receive the current global model w(t) from the server and calculate their gradients
given by,

x
(t)
i = ∇Fi(w(t)) (50)

= w(t) − ei (51)

which are then sparsified and averaged using the Rand-k-Temporal estimator to update w(t) as
follows,

w(t+1) = w(t) − ηx̂. (52)

= w(t) − η 1

n

n∑
i=1

h
′(t)
i (53)
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Our goal is to bound E
[∥∥w(t+1) −w∗

∥∥2
]
. We first define the following quantities that we use in

our proof.

p ,
k

d
; α ,

1

n

(
d

k
− 1

)
; y(t) ,

1

n

n∑
i=1

E
[∥∥∥b(t)

i −∇Fi(w∗)
∥∥∥2
]

(54)

Let ξ(t) denote the randomness resulting due to the random sparsification at nodes at round t. We
have,

Eξ(t)
[∥∥∥w(t+1) −w∗

∥∥∥2
]

= Eξ(t)
[∥∥∥w(t) − ηx̂(t) −w∗

∥∥∥2
]

(55)

=
∥∥∥w(t) −w∗

∥∥∥2

− 2ηEξ(t)
[
〈x̂(t),w(t) −w∗〉

]
+ η2Eξ(t)

[∥∥∥x̂(t)
∥∥∥2
]

(56)

=
∥∥∥w(t) −w∗

∥∥∥2

− 2η〈∇F (w(t)),w(t) −w∗〉+ η2Eξ(t)
[∥∥∥x̂(t)

∥∥∥2
]

(
since Eξ(t)

[
x̂(t)

]
= ∇F (w(t))

)
(57)

=
∥∥∥w(t) −w∗

∥∥∥2

− 2η〈∇F (w(t)),w(t) −w∗〉+ η2
∥∥∥∇F (w(t))

∥∥∥2

+ η2 1

n2

(
d

k
− 1

) n∑
i=1

∥∥∥∇Fi(w(t))− b
(t)
i

∥∥∥2

( using bias-variance decomposition) (58)

= (1− η)2
∥∥∥w(t) −w∗

∥∥∥2

+ η2α
1

n

n∑
i=1

∥∥∥∇Fi(w(t))− b
(t)
i

∥∥∥2

( since ∇F (w(t)) = w(t) −w∗)

(59)

≤ (1− η)2
∥∥∥w(t) −w∗

∥∥∥2

+ 2η2α
1

n

n∑
i=1

∥∥∥∇Fi(w(t))−∇Fi(w∗)
∥∥∥2

+

+ 2η2α
1

n

n∑
i=1

∥∥∥b(t)
i −∇Fi(w∗)

∥∥∥2

( using ‖a+ b‖2 ≤ 2 ‖a‖2 + 2 ‖b‖2) (60)

=
(
(1− η)2 + 2η2α

) ∥∥∥w(t) −w∗
∥∥∥2

+ 2η2α
1

n

n∑
i=1

∥∥∥b(t)
i −∇Fi(w∗)

∥∥∥2

(61)

Recall the update rule of b(t+1)
ij .

b
(t+1)
ij =

{
b
(t)
ij with probability 1− p(
∇Fi(w(t))

)
j

with probability p
(62)
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This gives us,

Eξ(t)
[∥∥∥b(t+1)

i −∇Fi(w∗)
∥∥∥2
]

=

d∑
j=1

Eξ(t)
[∥∥∥b(t+1)

ij − (∇Fi(w∗))j
∥∥∥2
]

(63)

=

d∑
j=1

(
p

∥∥∥∥(∇Fi(w(t))
)
j
− (∇Fi(w∗))j

∥∥∥∥2

+ (1− p)
∥∥∥b(t)ij − (∇Fi(w∗))j

∥∥∥2
)

(64)

= p
∥∥∥∇Fi(w(t))−∇Fi(w∗)

∥∥∥2

+ (1− p)
∥∥∥b(t)

i −∇Fi(w∗)
∥∥∥2

(65)

= p
∥∥∥w(t) −w∗

∥∥∥2

+ (1− p)
∥∥∥b(t)

i −∇Fi(w∗)
∥∥∥2

(66)

Therefore,

1

n

n∑
i=1

Eξ(t)
[∥∥∥b(t+1)

i −∇Fi(w∗)
∥∥∥2
]

= p
∥∥∥w(t) −w∗

∥∥∥2

+ (1− p) 1

n

n∑
i=1

∥∥∥b(t)
i −∇Fi(w∗)

∥∥∥2

(67)

This implies,

y(t+1) = pE
[∥∥∥w(t) −w∗

∥∥∥2
]

+ (1− p)y(t) (68)

Using (61) we have,

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]
≤
(
(1− η)2 + 2η2α

)
E
[∥∥∥w(t) −w∗

∥∥∥2
]

+ 2η2αy(t) (69)

Using (68) we can unroll the dependence on y(t) to get,

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]
≤
(
(1− η)2 + 2η2α

)
E
[∥∥∥w(t) −w∗

∥∥∥2
]

+ 2η2αp

t−1∑
k=0

(1− p)kE
[∥∥∥w(t−1−k) −w∗

∥∥∥2
]

+ 2η2α(1− p)ty0 (70)

We define the quantity G as follows,

G ,
∥∥w0 −w∗

∥∥2
+ y0 (71)

=
∥∥w0 −w∗

∥∥2
+

1

n

n∑
i=1

‖∇Fi(w∗)‖2 (72)

We now claim that E
[∥∥w(t+1) −w∗

∥∥2
]
≤ (1− η)t+1G for a sufficiently small value of η.

To show this we use the following inductive argument- assume that E
[∥∥w(k) −w∗

∥∥2
]
≤ (1− η)kG

holds for all k ≤ t, then E
[∥∥w(t+1) −w∗

∥∥2
]
≤ (1 − η)t+1G. Note that

∥∥w(0) −w∗
∥∥2 ≤ G is

already satisfied along with y0 ≤ G, by the definition of G.
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Now using our result in (70) and our inductive assumption we have,

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]
≤
(
(1− η)2 + 2η2α

)
(1− η)tG

+ 2η2αp

(
t−1∑
k=0

(1− p)k(1− η)t−1−k

)
G+ 2η2α(1− p)tG (73)

= (1− η)t

[ (
(1− η)2 + 2η2α

)
+

2η2αp

1− η

(
t−1∑
k=0

[
1− p
1− η

]k)
+ 2η2α

[
1− p
1− η

]t ]
G (74)

≤ (1− η)t

[ (
(1− η)2 + 2η2α

)
+

2η2αp

p− η + 2η2α

]
G (75)

where the last line follows from the condition that η < p. Our goal is to now find a condition on η
such that,

(1− η)2 + 2η2α+
2η2αp

p− η + 2η2α ≤ (1− η) (76)

We first impose the condition that p
p−η ≤ 2. This gives us

η ≤ p

2
(77)

Now to satisfy,

(1− η)2 + 8η2α ≤ 1− η (78)

we must have,

η ≤ 1

1 + 8α
(79)

Therefore for η ≤ min
{

1
1+8α ,

p
2

}
we have,

E
[∥∥∥w(t+1) −w∗

∥∥∥2
]
≤ (1− η)t+1

[∥∥w0 −w∗
∥∥2

+
1

n

n∑
i=1

‖∇Fi(w∗)‖2
]

(80)

thereby completing our proof.

Note that our proof can be easily extended to the case where F (w) is µ-strongly convex and Fi(w)
are L-smooth functions by using the appropriate convexity and smoothness properties in equations
(59) and (66) respectively.
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B Simulation Results:

B.1 MSE vs R2/R1 for Rand-k-Spatial family of estimators

We first note that,

R2

R1
=

2
∑n
i

∑n
j=i+1〈xi,xj〉∑n
i=1 ‖xi‖

2 (81)

=
‖∑n

i=1 xi‖
2 −∑n

i=1 ‖xi‖
2∑n

i=1 ‖xi‖
2 (82)

=
‖∑n

i=1 xi‖
2∑n

i=1 ‖xi‖
2 − 1 (83)

For the purpose of this simulation, we first generate 5 all-(1) vectors and 5 all-(-1) vectors. We
additionally normalize the vectors by dividing them by

√
d, where d is the dimension of the vectors.

Note that in this case since
∑10
i=1 xi = 0 we have R2/R1 = −1 following (83). We then change the

signs of the elements (one at a time) of the 5 all-(−1/
√
d) vectors, until they are all-(1/

√
d). Note

that at the final iteration we have x1 = x2 = . . .xn which corresponds to R2/R1 = n− 1 = 9. The
algorithm for varying R2/R1 and estimating the MSE at each step is shown below,

Algorithm 1: Estimating MSE for varying R2/R1

Input: n (even), k, dimension d, number of iterations T , ESTIMATOR (from Rand-k-Spatial
family)

Data: xi = 1√
d

for i ∈ [1, n2 ], xi = −1√
d

for i ∈ [n2 + 1, n]

1 for j = 1, 2, . . . , d do
2 for i = n

2 + 1, . . . , n do
3 Set s = 0

4 Set xij = 1√
d

5 for t = 1, 2, . . . , T do
6 Sample h1,h2, . . .hn
7 x̂ = ESTIMATOR(h1,h2, . . . ,hn)

8 s = s+ ‖x̂− x̄‖2
9 end

Output: Estimated MSE = s
T

10 end
11 end

We present here additional results for k = 1 and k = 50 keeping n = 10, d = 100, T = 1000 fixed
in Fig. 6.

We note that as k/d increases the relative difference between the performance of various estimators
starts increasing. In particular, for k/d = 0.1 we see that the MSE of all estimators is of the same
order. However, on increasing k/d to 0.5, we see that Rand-k-Spatial(Max) and Rand-k-Spatial(Avg.)
have an order of magnitude lower MSE than Rand-k for R2/R1 ≥ 8. This further strengthens our
proposition for using the Rand-k-Spatial family of estimators especially at high values of k/d.
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Figure 6: MSE v/s R2/R1 for the Rand-k-Spatial family of estimators for k = 0.1d and k = 0.5d. Rand-k-
Spatial(Avg.) closely matches the performance of the optimal estimator across the range of R2/R1 in both cases.
Moreover, as k/d increases the MSE of the Rand-k-Spatial family of estimators relative to Rand-k improves by
an order of magnitude for high values of R2/R1.
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B.2 R2/R1 for real-world data settings

We demonstrate how R2/R1 varies across iteration when nodes are performing some real-world tasks
under different data settings. We focus on distributed Power Iteration which uses mean estimation as
a subtask. We partition the Fashion-MNIST and CIFAR-10 datasets equally among 100 nodes, either
in an IID or Non-IID fashion and plot how R2/R1 varies for the vectors generated at the nodes in
each round. For more details on the dataset and data split please refer to Appendix C.

0 5 10 15
Iteration No.

88

90

92

94

96

98

R
2
/R

1

CIFAR-10 IID

CIFAR-10 Non-IID

(a) CIFAR-10

0 5 10 15
Iteration No.

70

80

90

100

R
2
/R

1

Fashion-MNIST IID

Fashion-MNIST Non-IID

(b) Fashion-MNIST

Figure 7: R2/R1 across iterations for nodes performing distributed Power Iteration under different data settings.
In the IID case R2/R1 quickly reaches the maximum possible value (99 in this case), indicating that node
vectors converge to the same point. In the Non-IID case we see a drop in R2/R1 which is expected as the
convergence of node vectors is now dependent on their local data. However R2/R1 is still significantly greater
than 0, pointing to the benefit of using the Rand-k-Spatial(Avg.) estimator in such settings. This is demonstrated
by our experimental results in Fig. 8.

Our results show that R2/R1 is likely to vary and be greater than zero in real world settings, thus
further motivating the use of Rand-k-Spatial(Avg.) estimator. We note that in the IID case, node
vectors get highly correlated after a few rounds as R2/R1 reaches close to the maximum of 99
indicating that x1 ≈ x2 · · · ≈ xn. In the Non-IID setting, we see a drop in R2/R1 indicating that
node vectors are more dissimilar at convergence, which is expected. However, R2/R1 is still higher
than n/2 = 50 in which we case we expect Rand-k-Spatial(Avg.) to outperform the Rand-k estimator.
This is corroborated by our experimental findings in Fig. 8.
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C Experimental Details

C.1 Platform

Experiments were run on Google Colab, a free cloud service providing interactive Jupyter notebooks
to run and execute Python code through the browser. We use Numpy for implementing our algorithms.

C.2 Dataset Description:

The Fashion-MNIST(FMNIST) dataset consists of 60,000 training images (and 10,000 test images)
of fashion and clothing items, taken from 10 classes (7000 images per class). The dimension of each
image is 28×28 in grayscale (784 total pixels). Fashion-MNIST is intended to be used as a compatible
replacement for the original MNIST dataset of handwritten digits.

The CIFAR-10 dataset is a natural image dataset consisting of 60000 32x32 colour images, with each
image assigned to one of 10 classes (6000 images per class). The data is split into 50000 training
images and 10000 test images.

C.3 Data Split:

For Non-IID data split we follow a similar procedure as [25]. The data is first sorted by labels and
then divided into 2n shards with each shard corresponding to data of a particular label. Each of the n
nodes is then assigned 2 such shards. For the IID split nodes are assigned data chosen uniformly at
random from the dataset. Note that in all cases, data is partitioned equally among all nodes.

C.4 Experiments

We focus on the following three applications of our proposed sparsification techniques that use mean
estimation as a subroutine i) Power Iteration ii) K-Means iii) Logistic Regression. We present below
additional details and results for each of the three applications by varying the compression parameter
k and incorporating different data settings.
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i) Power Iteration:

The goal of the server here is to estimate the principal eigenvector of the covariance matrix of the
data distributed across 100 nodes by power iteration. Given a current estimate of the eigenvector,
nodes perform one step of power iteration on their local covariance matrix and send back the updated
eigenvectors to the server. These updates are then averaged by the server and normalized to form a
new estimate of the eigenvector for the next round. The initial estimate of the principal eigenvector is
drawn from [0, 1]d. We present here additional results for k = {0.05d, 0.1d, 0.2d} both for IID and
Non-IID data splits on the Fashion-MNIST dataset. Our results show that Rand-k-Spatial(Avg.) and
Rand-k-Temporal significantly outperform other baselines in all settings.
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Figure 8: Experiments on distributed Power Iteration on Fashion-MNIST dataset for varying k under different
data splits. Note that Rand-k-Spatial(Avg.) and Rand-k-Temporal outperform baselines in all cases. While
Rand-k-Temporal performs equally well in IID and Non-IID settings, the performance of Rand-k-Spatial is
affected by the data split. In particular, Rand-k-Spatial(Avg.) performs best in the IID data setting, where we
expect spatial correlation to be higher.
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ii) K-Means:

The goal of the server here is to cluster data points distributed across 100 nodes into 10 different
clusters using Llyod’s algorithm. Nodes update the current cluster centres based on their local data
and send back the updated centres to the server. The server then computes a weighted average of the
updated centres for each cluster. Note that this effectively reduces to solving 10 different instances
of the mean estimation problem. Cluster centers are initialized by randomly assigning them to one
of the node data points. We present here additional results for k = {0.05d, 0.1d, 0.2d} for both IID
and Non-IID data splits on the Fashion-MNIST dataset. We see that Rand-k-Temporal outperforms
baselines in most cases, while Rand-k-Spatial outperforms baselines in the IID case and performs
equally well in the Non-IID case where spatial correlation is expected to be lower.
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Figure 9: Experiments on distributed K-Means on Fashion-MNIST dataset for varying k under different data
splits. Note that we solve 10 instances of the mean estimation problem for each of the cluster centres which
makes compression schemes more sensitive to the choice of the compression factor k/d. This is seen by the
fact that baselines start to diverge at k = 0.05d. Note that Rand-k-Temporal outperforms other methods in
most cases while Rand-k-Spatial(Avg.) outperforms baselines in the IID case and performs equally well in the
Non-IID case where spatial correlation is expected to be lower.
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ii) Logistic Regression:

The goal of the server here is to classify data points distributed across 10 nodes into 10 different
classes using a simple linear classifier followed by softmax activation. Nodes compute stochastic
gradients on the global model sent by the central server on their local data, which is then sparsified
and aggregated at the central server to update the global model. We use a learning rate η = 0.01 and
batch size of 512 at the nodes. We present here additional results for k = {0.005d, 0.01d, 0.02d} for
a Non-IID data split on the CIFAR-10 dataset showing both the training loss and test accuracy. We
use a much higher compression factor here as we find node vectors are more robust to compression
compared to Power Iteration and K-Means.
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(c) Non-IID, k = 0.02d
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Figure 10: Experiments for logistic regression on CIFAR-10 dataset distributed across 10 nodes. Observe that
Rand-k-Temporal substantially outperforms other baselines, and achieves lower training loss and 2-3% higher
test accuracy in all cases.

We see that Rand-k-Temporal substantially outperforms other baselines, and achieves lower training
loss and 2-3% higher test accuracy in all cases of compression factors. Interestingly, the performance
of Rand-k-Spatial seems to be affected due to the non-IID split, which opens up an interesting
direction for future work.
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D Additional Experiments:

D.1 Reducing Storage Cost at the Server for Rand-k-Temporal:

As outlined in our discussion on reducing the storage cost of the Rand-k-Temporal estimator, we
propose to keep the vector bi fixed for all i ∈ [n], thereby reducing the storage cost to justO(d). More
specifically, we set b(t+1)

i = x̂(t) for all i ∈ [n] where x̂(t) is the mean estimate at round t (assuming
b(0) = 0). Experimental results for this O(d) memory strategy for distributed Power Iteration
experiment on Fashion-MNIST with IID data and n = 100 nodes are shown below. Interestingly we
observe that this strategy achieves a lower error floor at much fewer iterations compared to all other
sparsification and estimation strategies, especially for smaller values of k. A drawback however of
reducing storage is that the error floor does not decay to zero, as is the case with Rand-k-Temporal
with full storage. This points to a non-trivial trade-off between storage cost and mean estimation
error, which we believe is an interesting direction for future work.
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Figure 11: Experiments on distributed Power Iteration on Fashion-MNIST dataset for varying k with IID
data split, comparing the performance of Rand-k-Temporal with O(d) memory against other sparsification
and estimation strategies. Observe that despite the reduced storage, this strategy continues to achieve a lower
error floor than other sparsification strategies that do not utilize temporal information, thereby confirming the
effectiveness of our approach.
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