
Supplementary Information: A sampling-based
circuit for optimal decision making

Camille E. Rullán Buxó
Center for Neural Science

New York University
New York, NY 10003
ch2880@nyu.edu

Cristina Savin
Center for Neural Science
Center for Data Science

New York University
New York, NY 10003
csavin@nyu.edu

1 Inference in a linear Gaussian model

The generative model for our observations is defined as s = Ax + ε. We assume that the latent
x is normally distributed, N (µx,Σx), and that it has dimensionality D. We further assume that
the observation is generated by a linear mapping of x through a matrix A with dimensionality
M ×D,M > D. This measurement is corrupted by i.i.d. noise drawn from a zero mean Gaussian,
ε ∼ N (0, σ2I). The observation model is P(s|x) = N (Ax,AΣxA> + Σε), and the posterior is a
Gaussian distribution with mean

µx|s = (AΣx)>(AΣxA> + σ2I)−1s (1)

and variance

Σx|s = Σx − (AΣx)>(AΣxA> + σ2I)−1AΣx (2)

The inference circuit samples this posterior using simple Langevin sampling dynamics as in [1].

2 Network implementation

2.1 Linear dynamics

The network implements dynamics defined by

ċt =
1

α
(f(ct−1) + φ(xt)) (3)

where vector φ(xt) concatenates all basis K functions evaluated at the current input. At the fixed
point, ċt = 0, and f(ct−1) = φ(xit). We assume that f(ct−1) = βct−1. In order to ensure that the
fixed point is a properly normalized distribution,

∑
k φk(xt) =

∑
k βck,t = 1. We therefore set β to

Kφ̄, where φ̄ is the average magnitude of the kernel functions.

For all of our simulations, the kernels were a set of 20 Gaussians with σ = 0.06, centered such that
they evenly tile the range from −1 to 1, and β = 9.45.

2.2 Decision making circuit dynamics

The framework that we use to implement the marginalization circuit is a stochastic version of the
the balanced spiking network (BSN) by Boerlin et al [2, 3]. Briefly, this framework proposes a way
of embedding a linear dynamical system defined by (3) in the spiking activity of a network of N
neurons. The network’s estimate of the desired dynamics, ĉt, can be read out linearly from the filtered
spike trains rt through a set of K ×N readout weights, D. The i’th component of the vector rt is

35th Conference on Neural Information Processing Systems (NeurIPS 2021), .

given by rit = oit ∗ ht =
∫ t
0
e−t

′/τd sit′dt
′ where oit =

∑
tisp
δ(t− tisp) denotes the i’th neuron’s spike

train, defined by a series of delta functions at spike times {tisp}, and τd is the time constant of the
exponential filter ht.

By postulating that a neuron spikes to reduce the mean squared error between the true dynamics, ct,
and the network’s estimate of the dynamics, ĉt, we can derive a spiking condition where the voltage
of a neuron is proportional to the residual between ct and ĉt, and the neuron spikes whenever the
error exceeds a certain value proportional to its corresponding decoding weight, Di.

Specifically, the voltage update equation for our network can be written as

vit = vit−1 + Di
>
((

β

α
+

1

τd

)
Drit−1 +

1

α
φ
(
xit
))

dt (4)

The Poisson BSN proposed in [3] introduces a soft threshold for spiking such that spike probability
grows as a nonlinear function of membrane potential. Specifically, each neuron’s conditional intensity
function is a sigmoidal function of its membrane potential:

λit = f(vit) =
Fmax − Fmin
1 + e−γ(v

i
t−T)

+ Fmin (5)

where vit is the membrane potential at time t, T is the spike threshold, γ is a slope parameter governing
the sharpness of the threshold, Fmax is the maximal firing rate and Fmin is a baseline firing rate,
meant to simulate random firing activity in the absence of a stimulus. The spike threshold is equal to
1
2 ||Di||22, as in [2]. For each time bin, neuron i spikes with a probability equal to

P
(
oit = 1|λit

)
= 1− exp(−∆λit) (6)

After each spike, oit = 1, the filtered spike trains rt are augmented and the membrane potential is
reset:

rt = rt + ot (7)

vt = vt −D>Dot (8)

which ensures that post-spike membrane potential equals the difference between the target variable,
ct and network output, ĉt = Drt.

The full derivation of the Poisson-noise embedding network can be found in [3].

3 Simulations

3.1 Simulation parameters

Unless otherwise specified, the network parameters for all of our simulations were:

• N (number of neurons) = 160
• τd (spike rate time constant) = 20
• Fmax (maximal firing rate) = 1
• Fmin (minimal firing rate) = 0
• γ (slope of spiking threshold nonlinearity) = 105

• α (decay rate of kernel dynamics) = 800
• dt = 0.1 ms

The decoding weights were randomly initialized from a standard normal distribution and re-scaled
such that the magnitude of each neuron’s decoding vector in all dimensions was 0.1.

Fig. 2 shows a simple demonstration of the decision circuit using samples from a 2D posterior
generated by the inference circuit. Code to implement the simulation can be found on https:
//github.com/camillerb/RullanSavin2021. In this case, the inference circuit is sampling
from the posterior of a linear Gaussian model. The prior is a Gaussian with zero mean and variance

2

https://github.com/camillerb/RullanSavin2021
https://github.com/camillerb/RullanSavin2021

[
0.8 −0.3
−0.3 0.2

]
, the observation matrix is the identity matrix and the measurement noise has a variance

of σ = 0.1 for each dimension. The measurement, s, was placed at
[
−0.2
0.1

]
. The full posterior is then

a Gaussian distribution with mean µx|s =

[
−0.18
0.08

]
and variance Σx|s =

[
0.08 −0.02
−0.02 0.05

]
. The

second network encodes a marginal over the first dimension, or a one-dimensional Gaussian with
mean µx1|s1 = −0.18 and variance σx1|s1 = 0.08.

The bi-modal posterior in Fig. 3A-C is a mixture of two Gaussians with means µ1 = −0.5 and
µ2 = 0.75 and variances σ1 = 0.3 and σ2 = 0.15, with weighting w1 = 0.6 and w2 = 0.4. The
MAP estimate is 0.75 and the posterior mean is 0.125, but strictly speaking there is more probability
mass on the left side of the boundary (probability mass ratio = 0.98). In the case of asymmetric cost,
option ’L’ has an expected cost of 1.25 and option ’R,’ 0.5.

Fig. 3D was generated by drawing a stimulus from a measurement distribution centered at one of nine
locations, evenly spaced between −1 and 1. The prior was a Gaussian with zero mean and variance
σ = 0.8 and the measurement noise was varied between high uncertainty (σH = 0.5), medium
uncertainty (σM = 0.3), and low uncertainty (σL = 0.15). Each simulation was repeated twenty
times, with the same stimulus location but different samples from the posterior. For Fig. 3E, the same
procedure was repeated but with a prior centered at −1 or 1.

For Fig. 4, we analyzed the network output from 25 repetitions of simulations with measurements
at one of eleven evenly spaced locations between −1 and 1 with the same prior as Fig. 3. The
measurement noise was σH = 0.8, σM = 0.4, and σL = 0.2. Each simulation was run for 8s (8000
time bins).

Fig. 5A was generated using the same broad prior and stimuli used for Fig. 4. Neurons were sorted by
their preference to stimuli, with the stimuli eliciting the highest response categorized as its preferred
stimuli, and the one eliciting the lowest response as its non-preferred stimuli. The firing rate responses
shown were averaged over 10ms time windows, then over all neurons. The measurement noise was
σ = 0.1.

For Fig. 5B, we similarly calculated the firing rate time courses of the 50 most active neurons when
presented with a stimulus at 0.5 with measurement noise of σ = 0.1 and a prior centered at zero. We
then subtracted that from the firing rate time courses for the same neurons in the case of a leftward
(µx = −0.5) or rightward (µx = 0.5) biased prior.

To generate Fig. 6B, we continuously fed samples from a posterior centered at one of five evenly
spaced locations between −1 and 1. The measurement distributions had widths of σ = 0.4, 0.2, 0.1
and 0.05, and the prior was once again zero mean and variance σ = 0.8. Fig. 6A shows the variance
explained for σ = 0.4 (lightest blue) and σ = 0.05 (darkest blue). Figs. 6C-D were generated using
the neural activity from the simulations in Fig. 3D-E.

Finally, for Fig. 7, the network received 4000 samples first from a posterior centered at −0.5 and
then the same amount of samples from a posterior centered at 0.5 with observation noise σ = 0.15.
For Fig. 7A-C, the simulation shown has α = 500.

References

[1] Cristina Savin and Sophie Denéve. Spatio-temporal representations of uncertainty in spiking
neural networks. In Advances in Neural Information Processing Systems 27, pages 2024–2032.
2014.

[2] Martin Boerlin, Christian K. Machens, and Sophie Denève. Predictive coding of dynamical vari-
ables in balanced spiking networks. PLoS Computational Biology, 9(11):e1003258, November
2013.

[3] Camille E. Rullán Buxó and Jonathan W. Pillow. Poisson balanced spiking networks. PLOS
Computational Biology, 16(11):e1008261, November 2020.

3

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See discussion section.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes] See Discussion.
(b) Did you include complete proofs of all theoretical results? [Yes] See section 1 and

supplementary information.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] The simulation
implementation is explained in section 1 and in the supplementary information, along
with code that reproduces all main results.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [N/A]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL?

[Yes] The code to reproduce the main results can be found at https://github.com/
camillerb/RullanSavin2021.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

4

https://github.com/camillerb/RullanSavin2021
https://github.com/camillerb/RullanSavin2021

	Inference in a linear Gaussian model
	Network implementation
	Linear dynamics
	Decision making circuit dynamics

	Simulations
	Simulation parameters

