
A Static Exponential Graph

A.1 Weight matrix example

Fig. 6 illustrates the weight matrix W defined in (5) for the 6-node static exponential graph. The four
nonzero entries in the first column of W correspond to the three outgoing neighbors of node 0 and
the node itself; the four nonzero entries on the first row corrspond to the three incoming neighbors of
node 0 and the node itself.

Figure 6: Illustration of the 6-node static exponential graph and its associated weight matrix.

A.2 Spectral gap of static exponential graph

Before we present the proof of the spectral gap of static, we first need to review the Discrete Fourier
Transform (DFT) and its connection to circulant matrix, which plays the critical role in the proof. We
let Circ(c0, c1, . . . , cn−1) denote a circulant matrix, which has the form:

C = Circ(c0, c1, . . . , cn−1) ,

c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 c2
... c1 c0

. . . cn−2

cn−1
. cn−1

cn cn−1 . . . c1 c0

 (12)

and we call the circulant matrix C is generated by the vector c = (c0, c1, c2, . . . , cn−1). With this
notation, the circulant convolution can be equivalently re-written as the matrix-vector multiplication.
Suppose we have two vectors c ∈ Cn and v ∈ Cn:

c⊗ v = Cv (13)

where ⊗ means the n-point circular convolution and C is the circulant matrix generated by vector c.

Lemma 2 (Eigenvalue of circulant matrix) The eigenvalues of a circulant matrix
Circ(c0, c1, . . . , cn−1) are given by

λi = c0 + c1ω
i + c1ω

2i + · · ·+ cn−1ω
(n−1)i, i = 0, 1, · · · , n− 1 (14)

where ωi is the i-th root of unity under n-order, i.e., ωi = exp(2πj in). (Note we use j for imaginary
number instead of i.)

Proof. From the convolution theorem of Discrete Fourier Transform (DFT), we know that, for
arbitrary n-dimension vector c and v, DFT of the n−circulant convolution of c and v equals to the
element-wise multiplication of DFT of c and DFT of v:

F(c⊗ v) = F(c)� F(v) ∀c, v (15)

14

where � means the Hadamard product. Introduce the DFT Matrix:

F ,

1 1 1 . . . 1

1 ω1 ω2 ωn−1

1 ω2 ω4 ω2(n−1)

...
...

...
. . .

...
1 ωn−1 . . . ω(n−1)2

 (16)

It can be verified that

Diag(Fc)Fv = (Fc)� (Fv) = F(c⊗ v) = FCv =
1

n
FCF†Fv (17)

where Diag(x) means the diagonal matrix built from vector x and F† denotes the conjugate transpose
of F . In (17), we utilize the two identities that x� y = Diag(x)y and x⊗ y = Xy, where X is the
circulant matrix generated by x. Since (17) holds for any vector v, we must have(

1√
n
F
)
C

(
1√
n
F†
)

= Diag(Fc) (18)

Hence, any circulant matrix C can be diagonalized by DFT matrix F and the corresponding eigenval-
ues are the DFT of the generating vector c. Expanding the expression for each element in Fc will
lead to (14) immediately. �.

With this powerful tool, we are ready to prove the spectral gap of exponential graph in Proposition
1. To make the proof easier to follow, we split the proof into two parts. The first part is for special
n = 2τ case. After that, we present the proof for arbitrary number n.

Proof of Proposition 1 (special n = 2τ case). First, we note by definition the combination matrix
W exp is a circulant matrix:

W exp = Circ

(
1

τ + 1
,

1

τ + 1
, . . . , 0,

1

τ + 1
, 0, . . .

)
(19)

Resorting to lemma 2, we can immediate conclude that all eigenvalues of exponential graph have the
following form:

λi =
1

τ + 1
+

1

τ + 1
ωi +

1

τ + 1
ω2
i +

1

τ + 1
ω22

i + . . .+
1

τ + 1
ω2τ−1

i , i = 0, 1, ..., N − 1 (20)

where ωi = exp (2πj iN) is the i-th root of unity under N -order. The magnitude of each eigenvalue
is:

|λi| =

√√√√(1

τ + 1
+

1

τ + 1

τ−1∑
n=0

cos(
2πi

N
2n)

)2

+

(
1

τ + 1

τ−1∑
n=0

sin(
2πi

N
2n)

)2

(21)

However, it is not obvious which eigenvalue has the second largest magnitude. It is easy to see that

λ0 =
1

τ + 1
+

1

τ + 1
1 + . . .+

1

τ + 1
1 = 1 (22)

Recall that the eigenvalues of doubly stochastic matrix W must be equal to or smaller than 1, we
know λ0 is the largest eigenvalue in magnitude. Next, it is also not hard to check that

λn/2 =
1

τ + 1
+

1

τ + 1
ωn/2 + . . .+

1

τ + 1
ω2τ−1

n/2

=
1

τ + 1
+

1

τ + 1
(−1) +

1

τ + 1
(−1)2 . . .+

1

τ + 1
(−1)2

τ−1

=
τ − 1

τ + 1
(23)

where n/2 must be integer since n = 2τ . As long as we can show that there is no other eigenvalue λi
lying between τ−1

τ+1 and 1, we can claim that 2
τ+1 is the spectral gap of exponential graph.

Consider two cases for the rest λi:

15

1. If i is an odd number, we know that :

ω2τ−1

i = exp(2πj
i2τ−1

2τ
) = exp(2πj

i

2
) = (−1)i = −1 (24)

Then applying the triangle inequality, we know that

|λi| =
∣∣∣∣ 1

τ + 1
ωi +

1

τ + 1
ω2
i +

1

τ + 1
ω22

i + . . .+
1

τ + 1
ω2τ−2

i

∣∣∣∣︸ ︷︷ ︸
τ−1 terms

≤ τ − 1

τ + 1
(25)

Therefore, we conclude that the magnitude of any |λi|, where i is an odd number, must not
lie between τ−1

τ+1 and 1.

2. If i is an even number and i is not zero. We can assume its prime factor decomposition has
the following format:

i = 2t
′
pt11 p

t2
2 · · · p

t`
` (26)

where p` is some prime number except 2 and t` is the corresponding order. Because we know
i is strictly smaller than 2τ and 2 is smallest prime number, we can claim that t′ ≤ τ − 1.
Since i is some even number larger than 0, we also know t′ > 0. These two conditions
implies that among the index set {0, 1, 2, · · · , τ − 1}, we can always find a number τ ′ such
that τ ′ + t′ = τ − 1. We evaluate :

ω2τ
′

i = exp

(
2πj

i2τ
′

2τ

)

= exp

(
2πj

2τ
′
2t
′
pt11 p

t2
2 · · · p

t`
`

2τ

)

= exp

(
2πj

pt11 p
t2
2 · · · p

t`
`

2

)
=− 1 (27)

Again, using the triangle inequality, we also can conclude that the magnitude of any |λi|,
where i is an even number, must not lie between τ−1

τ+1 and 1.

So combining above two cases, we complete the proof that there is no other eigenvalue having the
magnitude that is larger than (τ − 1)/(τ + 1) and smaller than 1. �

Proof of Proposition 1 (the general cases). The first several steps are the same as we did in previous
proof. Next, we just need to show that there is no eigenvalue lying between τ−1

τ+1 and 1.

Among in the index set {0, 1, 2, · · · , τ − 1}, we select two numbers, denoting them as set S. Using
the triangle inequality, we have

|λi| ≤
1

τ + 1

∣∣∣∣∣∣
τ−1∑

t=0,t/∈S

w2t

i

∣∣∣∣∣∣+
1

τ + 1

∣∣∣∣∣1 +
∑
t∈S

w2t

i

∣∣∣∣∣
≤τ − 2

τ + 1
+

1

τ + 1

∣∣∣∣∣1 +
∑
t∈S

w2t

i

∣∣∣∣∣ , ∀i (28)

As long as we show that for all feasible i but 0, there always exist a set S such that∣∣∣∣∣1 +
∑
t∈S

w2t

i

∣∣∣∣∣ ≤ 1 (29)

we establish the upper bound for the second largest eigenvalue. The key to solve it is notice that, for
α ∈ [0.25, 0.75], we have

|1 + e2πjα + e2πj2α| = |e2πjα(e−2πjα + 1 + e2πjα)| = |1 + cos(2πα)| ≤ 1 (30)

Next, we discuss case-by-case:

16

1.0 0.5 0.0 0.5 1.0
Real

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Im
ag

ar
y

1.0 0.5 0.0 0.5 1.0
Real

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Im
ag

ar
y

Figure 7: The position of each {ω2t

i }
τ−1
t=0 in the complex plane. The left figure shows the case that

i = 1 and n = 36 and the right one shows the case that i = 19 and n = 36.

• If 3n
4 ≥ i ≥

n
4 , we can simply choose S = {0, 1}. We know

∣∣1 + wi + w2
i

∣∣ =

∣∣∣∣1 + exp(2πj
i

n
) + exp(2πj

2i

n
)

∣∣∣∣ ≤ 1 (31)

• If n4 > i > 1. Because 2τ ≥ n, there exist a t satisfying 3n
4 ≥ i2

t ≥ n
4 and t ≤ τ−2. Choos-

ing S = {t, t+ 1} yields the desired inequality as we have in (31):
∣∣∣1 +

∑
t∈S w

2t

i

∣∣∣ ≤ 1

• If n− 1 > i > 3n
4 . Due the circular symmetry, we know that wi = w∗n−i, where we use x∗

as the conjugate of complex number x. It implies∣∣1 + wi + w2
i

∣∣ =
∣∣1 + w∗n−i + (wn−2n−i)

∗∣∣
=
∣∣1 + wn−i + wn−2n−i

∣∣ (32)

Notice n− i belongs to the range (1, n4), we can immediate conclude that (32) is smaller
than 1.

• If i = 1. We need to use a different argument to select the index set S since the t satisfying
3n
4 ≥ i2

t ≥ n
4 may equal τ − 1. However, we still can select S = {τ − 2, τ − 1}:∣∣∣1 + exp2πj 2τ−2

n + exp2πj 2τ−1

n

∣∣∣ =
∣∣∣exp−2πj

2τ−2

n +1 + exp2πj 2τ−2

n

∣∣∣
=

∣∣∣∣1 + cos

(
2π

2τ−2

n

)∣∣∣∣ (33)

Since 2τ ≥ n, we know 2τ−2

n ≥ 1
4 . And we also know 2τ−2

n ≤ 1
2 , otherwise it indicates that

2τ−1 ≥ n, which contradicts the assumption that τ = dlog2(n)e. Hence, we can conclude
that cos

(
2π 2τ−2

n

)
≤ 0.

• If i = n− 1. Use the conjugate argument then apply the similar procedure as i = 1.

Above 5 cases cover all possible choices of i for eigenvalues(except 0). Hence, we conclude that for
arbitrary n, the second largest magnitude of eigenvalue of exponential graph is bounded by τ−1

τ+1 .

This bound is attained if n is an even number, λn/2 is that desired eigenvalue. Based on the numerical
experiment, we know it if n is an odd number, this bound cannot be attained. Unfortunately, we
neither have a closed form solution for the spectral gap nor know which eigenvalue will becomes the
second largest magnitude of eigenvalue.

17

Lastly, we need to show that the `2 matrix norm ‖W exp − 1
n11

T ‖22 is the same value as spectral gap.
To prove that, we resort to the Discrete Fourier Transform again

‖W exp − 1

n
11T ‖22

(a)
= eig1

(
(W exp)TW exp − 1

n
11T

)
(b)
=eig1

(1

n2
FD†F†FDF† − 1

n
11T

)
(c)
=eig1

(1

n
F
(
D†D −Diag{1, 0, 0, · · · , 0}

)
F†
)

=eig1

((
D†D −Diag{1, 0, 0, · · · , 0}

))
=ρ(W exp)2 (34)

where eig1(·) means the largest eigenvalue of matrix, step (a) is because ‖X‖22 = ‖XTX‖2 =
eig1(XTX), step (b) applied the eigenvalue decomposition of W exp through the DFT, step (c)
follows the fact that 1 is the first column of F . �

A.3 Comparing static exponential graph with commonly-used topologies

A.3.1 Details of each graph and the associated weight matrix

Figure 8: The shape of the 6-node topologies discussed in Sec. A.3.1.

• Ring. The ring topology is undirected, and is illustrated in Fig. 8(a). Its weight matrix is
generated according to the Metropolis rule [43, Eq. (8)], which is symmetric.

18

• Star. The star topology is undirected, and is illustrated in Fig. 8(b). Its weight matrix is
generated according to the Metropolis rule, which is symmetric. Note that DmSGD with
star graph still conducts partial averaging per iteration. It is different from parallel SGD that
utilizes parameter-server (which is also of the star shape) to conduct global averaging.

• 2D-grid. The 2D-grid topology is undirected, and is illustrated in Fig. 8(c). Its weight
matrix is generated according to the Metropolis rule, which is symmetric.

• 2D-torus. The 2D-torus topology is undirected, and is illustrated in Fig. 8(d). Its weight
matrix is generated according to the Metropolis rule, which is symmetric.

• 1
2 -random graph. Consider a random n-node graph generated with each edge populating
independently with probability p = 1

2 . Let A ∈ Rn×n be the symmetric adjacency matrix
of the graph, with Aij = 1 if nodes i and j are connected, and 0 otherwise. We let
W = A/dmax where dmax = maxi

∑
j Aij . By union bound and Bernstein’s inequality,

one can easily derive dmax concentrates around (n− 1)/2 with probability 1. It is derived
in [43, Proprosition 5] that the 1

2 -random graph has 1 − ρ = O(1). A realization of one
1
2 -random graph is depicted in Fig. 8(e). It is observed that the random graph is rather dense.

• Bipartite random match graph. We assume n is even. Bipartite random match graph
is undirected and time-varying. To generate such graph at iteration k, we first randomly
permute the index (1, 2, . . . , n) to (σ(k)(1), σ(k)(2), . . . , σ(k)(n)), where σ(k)(·) denotes
the permutation function at iteration k. Next we let node σ(k)(2j + 1) be the neighbor of
node σ(k)(2j) for each j = 0, · · · , n/2− 1. It is obvious that, at iteration k, each node only
exchanges information with one neighbor. The spectral gap of the bipartite random match
graph, to our knowledge, is unknown yet in literature. Fig. 8(f) illustrates a sequence of the
bipartite random match graphs.

A.3.2 Comparison with commonly-used topologies

Table 5 summarizes the maximum degree and 1− ρ for commonly-used graphs. The spectral gaps of
ring, star, grid and torus are discussed in [43, Proprosition 5].

Table 5: Comparison between commonly-used topologies in maximum degree and 1− ρ.

1− ρ Max-degree

ring O(1
n2) 2

star O(1
n2) n− 1

2D-grid O(1
n log2(n)

) 4

2D-torus O(1
n) 4

1
2 -random graph O(1) n−1

2

random match N.A. 1

static exponential O(1
log2(n)

) log2(n)

A.3.3 Comparison with random topologies

A random graph is achieved by starting with a set of n nodes and imposing successive edges between
them randomly. Random graph is extensively studied in wireless networks. To show the comparison
between the exponential graph and various random graphs studied in [41, 6, 9, 10], we first summarize
the differences between scenarios in deep learning and in wireless network and control theory:

• Topology size. The GPUs utilized in deep learning are typically very expensive. A topology
with tens or hundreds of GPUs is already regarded as a large network. This is different from
wireless networks which may consist of thousands of (relatively cheap) sensors or mobile
agents. The properties that are very likely to hold for large networks with thousands of
nodes (e.g. the connectivity of the random graphs in [41, 6, 9, 10] with such a large size)
may not valid for network with a small or moderate size.

19

Table 6: Comparison between exponential graph and the random graphs.

E.-R. Random Geometric Random Static Exp. O.P. Exp

Per-iter. comm. Ω̃(1) in expectation Ω̃(1) in expectation Ω̃(1) Ω(1)

Transient iter. Ω̃(n3) Ω̃(n5) Ω̃(n3) Ω̃(n3)

Connectivity Connected when n
is sufficiently large

Connected when n
is sufficiently large

Always
Connected

Disconnected
for some iter.†

Degree balance Can be highly
unbalanced

Can be highly
unbalanced Balanced Balanced

†While disconnected for some iteration, it is proved to work for DmSGD.

• Topology control. Decentralized deep learning is typically conducted in data-center GPU
clusters. In these clusters, GPUs are connected with high-bandwidth channels (such as
InfiniBand, the optical fiber, etc.), and they can be organized in any topology shape. However,
the network connectivity in the wireless network is highly sensitive to the geographical
location of the nodes, and the radius of their wireless signals. The topology cannot be
controlled freely in the latter setting.

• Balanced degree. Since the topology is in full control for deep learning, the topology design
is very important for communication efficiency. In deep learning, we prefer topologies in
which all nodes have identical degrees (i.e., the number of neighbors) so that they can finish
the communication almost at the same time without waiting for the slowest one. Static and
one-peer exponential graphs studied in our paper are such topologies. However, for the
random graph in references [41, 6, 9, 10], there always exists the possibility to generate a
realization with highly unbalanced degrees, especially when the network size is not large.

References [41, 6, 9, 10] studied various random graphs. In this subsection, we will focus on the
Erdos-Renyi graph G(n, p) with p = (1 + c) log(n)/n for some c > 0, and the 2-D geometric
random graph G(n, r) with r2 = (1 + c) log(n)/n for some c > 0. Both random graphs are
widely used in wireless networks. Table 6 lists the comparison between exponential graph and the
random graphs. In the table, it is observed that the E.-R. and geometric random graphs are either
equivalent to, or worse than, exponential graphs in either per-iteration communication, or the transient
iteration complexity. Moreover, note that the per-iteration communication cost for random graphs is
calculated in expectation. In practice, the maximum degree in both random graphs must be greater
than the expected degree for each node in the table, which will lead to an even slower per-iteration
communication cost than exponential graphs. With the results listed in the above table as well as the
other comparison described below, we still recommend using exponential graphs in deep learning.

B One-peer Exponential Graph

B.1 Weight matrix example

Fig. 9 illustrates the weight matrix W defined in (7) for the 6-node one-peer exponential graph.

B.2 Periodic exact averaging of one-peer exponential graph
We present and prove a lemma that is more general than Lemma 1 in the main body. Therefore, its
proof also serves the proof of Lemma 1.

Lemma 3 (EXACT AVERAGING) Suppose W (k), k ≥ 0, are the weight matrices defined in (7) over
the one-peer exponential graph. It holds that each W (k) is doubly-stochastic, i.e., W (k)1 = 1 and
1TW (k) = 1T . Furthermore, if there exists an integer τ ≥ 0 such that n = 2τ , then it holds that

W (k`) · · ·W (k2)W (k1) =
1

n
11T (35)

20

Figure 9: Illustration of the 6-node one-peer exponential graph and its associated weight matrix.

as long as {mod(k1, τ), . . . ,mod(k`, τ)} = {0, . . . , τ − 1}. In particular, the weight matrices
associated with one-peer exponential graph can help reach an exact consensus average after all τ
different matrices are each applied at least once.

Proof. The double stochasticity of every W (k) follows directly from their definitions. It is left to
establish (35).

Since W (k1) = W (k2) as long as mod(k1, τ) = mod(k2, τ), we can assume all ki ∈ {0, . . . , τ − 1}
without loss of generality.

Since the eigenvectors of all circulant matrices of the same size are the same set of Fourier modes,
circulant matrices W (k) for all k ≥ 0 are simultaneously diagonalizable and their multiplications are
commutative, i.e., W (k1)W (k2) = W (k2)W (k1) for any k1, k2 ≥ 0. This property, together with the
fact {k1, . . . , k`} = 0, . . . , τ − 1 and the double stochasticity of every W (k), implies it suffices to
show W (0)W (1) . . .W (τ−1) = 1

n11
T or, for the convenience of argument below,

(W (τ−1))T . . . (W (1))T (W (0))T =
1

n
11T . (36)

Consider y = (W (τ−1))T . . . (W (1))T (W (0))Tx. (We index the entries of x, y starting from 0,
instead of 1, for we use a binary representation below.) Since all nodes are treated equally, it suffices
to show y0 = 1

n (x0 + · · · + xn−1) since, through shifting the node indices, this equality implies
yi = 1

n (xi + · · ·+ xn−1 + x0 + · · ·+ xi−1) = 1
n (x0 + · · ·+ xn−1) for i = 1, 2, . . . , n− 1.

21

In a graph with n = 2τ nodes, index the nodes by decimal numbers 0, . . . , n − 1. Obtain their
binary-form numbers:

decimal index | binary index
0 = 0 . . . 00b
1 = 0 . . . 01b
2 = 0 . . . 10b

...
n− 2 = 1 . . . 10b
n− 1 = 1 . . . 11b.

There are τ bits in each binary number above, denoted by b; the jth bit, j = 0, . . . , τ − 1, from
right to left is denoted by bj . For the example of node 2, b0 = 0, b1 = 1, and then bj = 0 for
j = 2, . . . , τ − 1.

Pick any single (W (k))T from k = 0, . . . , τ − 1. The results of applying x′ = (W (k))Tx are

yb =
1

2
(xmod(b,n) + xmod(b+2k,n)), ∀b = 0, . . . , n− 1.

In particular, x′ = 1
2

∑
b∈B xb for B = {b : bj = 0 ∀j 6= k} = {0, 2k}, that is, all bits of b are 0

except for the kth bit, which is either 0 or 1.

Now pick k1 6= k2 ∈ {0, . . . , τ − 1}, then x′′ = (W (k2))T (W (k1))Tx satisfies

x′′b =
1

2
(x′mod(b,n) + x′mod(b+2k2 ,n)) where x′ = (W (k1))Tx

=
1

4
(xmod(b,n) + xmod(b+2k1 ,n) + xmod(b+2k2 ,n) + xmod(b+2k1+2k2 ,n)), ∀b = 0, . . . , n− 1.

In particular, y0 = 1
2

∑
b∈B xb for B = {b : bj = 0 ∀j 6= k1, k2}, that is, all bits of b are 0 except

for the k1th and k2th bits, which are either 0 or 1.

Using proof by induction, it is easy to show that z = (W (k`))T . . . (W (k1))Tx for distinct
k`, . . . , k1 ∈ {0, . . . , τ − 1} satisfies

y0 =
1

2`

∑
b∈B

xb, B = {b : bj = 0,∀j 6∈ {k1, . . . , k`}}.

By taking k` = τ − 1, . . . , k2 = 1, k1 = 0 (where ` = τ − 1), we have proved (36) and the lemma.
quadquadquad �

Corollary 2 Under the same condition as stated in Lemma 3, it also holds that(
W (k`) − 1

n
11T

)
· · ·
(
W (k2) − 1

n
11T

)(
W (k1) − 1

n
11T

)
= 0 (37)

as long as {mod(k1, τ), . . . ,mod(k`, τ)} = {0, . . . , τ − 1}.

Proof. Consider the production of two terms:(
W (k`) − 1

n
11T

)(
W (k`−1) − 1

n
11T

)
= W (k`)W (k`−1) − 1

n
11T (38)

Here we utilize the doubly stochastic property of W (k`) that W (k`)11T = 11T . Repeating above
process until all terms are merged, we(

W (k`) − 1

n
11T

)(
W (k`−1) − 1

n
11T

)
· · ·
(
W (k1) − 1

n
11T

)
= W (k`)W (k`−1) · · ·W (k2)W (k1) − 1

n
11T (39)

Last, referring Lemma 3, we conclude the l.h.s product in (37) is an all-zero matrix. �

22

B.3 More about one-peer exponential graph

B.3.1 One-peer exponential graph with the size that is not power 2

Numerical validation. First, we numerically examine whether one-peer exponential graph can
achieve periodic exact-averaging when the number of nodes is not the power of 2. To this end, we
consider the same setting as in Fig. 4, and depict how the consensus residue ‖(Πk

`=0W
(`)− 1

n11
T)x‖

decreases as iteration increases in Fig. 10. It is observed that, when n is not a power of 2, one-peer
exponential graphs can only achieve the asymptotic, not periodic, exact averaging.

0 5 10 15 20 25 30
Iterations

10 8

10 6

10 4

10 2

100
Consensus Residue

O.E. n=7
O.E. n=9
O.E. n=13
O.E. n=21
O.E. n=24
O.E. n=36
O.E. n=39

Figure 10: Illustration of how consensus residues decay with iterations for one-peer exponential graph with the
size of nodes is not the power of 2.

A case study: One-peer exponential graph with 3 nodes. We provide an example to show that it
is impossible to achieve the periodic exact averaging that when the size of nodes is 3. In this case,
the period is dlog2(3)e = 2. Due to the symmetry between the nodes, the product of two one-peer
exponential graph weight matrices has the form

W (1)W (0) =

[
1− β β

1− β β
β 1− β

][
1− α α
α 1− α

α 1− α

]

=

[
1− α− β + 2αβ β − αβ α− αβ

α− αβ 1− α− β + 2αβ β − αβ
β − αβ α− αβ 1− α− β + 2αβ

]
(40)

In order to achieve the exact averaging, the product has to be 1
3131

T
3 . Under this requirement, it is

easy to derive that

α = β, α2 − α+
1

3
= 0 =⇒ α = β =

1

6
(3± j

√
3) (41)

However, it is meaningless to let the combination weights to be complex number since the domain of
iterate x(k)i is Rd.

B.3.2 One-peer exponential graph with uniform sampling and random permutation

In the main body, we only consider the one-peer exponential graphs in the cyclic order. However,
that is not the only choice of selecting one-peer exponential graphs. Other two popular strategies are
random permutation and uniform sampling. It is easy to describe these two strategies by taking an
example. Consider

W , {W (0),W (1), · · · ,W (τ−1)}. (42)

Uniform sample strategy is at each iteration, one W (t) randomly selected with replacement. While
random permutation is at each iteration, one W (t) randomly selected without replacement. After τ
iterations, W will reset with τ element and repeat the sampling without replacement.

23

0 5 10 15 20 25
Size of network

10 9

10 7

10 5

10 3

10 1

Consensus Residue

Perm. n=8
Perm. n=16
Perm. n=32
Perm. n=64
Perm. n=128
Perm. n=256
Perm. n=512

U.S. n=8
U.S. n=16
U.S. n=32
U.S. n=64
U.S. n=128
U.S. n=256
U.S. n=512

Figure 11: Illustration of how consensus residues decay with iterations for one-peer exponential graph. Perm.
stands for random-permutation one-peer exponential graphs and U.S. stands for uniformed sampling one-peer
exponential graphs.

With slightly modification of the proof in lemma 1, we also show that one-peer exponential graph
with random permutation still has the exact averaging property. Meanwhile, one-peer exponential
graph with uniform sample may no longer has this property within τ -iterations. With some none-zero
probability, the realization of uniform sampling with τ times can be one permutation order. Obviously,
in this realization, uniform sample will have exact convergence property. Under the rest realizations,
it cannot since it may miss at least one element. However, with long enough time t, the realization of
uniform sampling with t times will contain all possible elements in W with probability one. These
claims are validated in the Fig. 11.

C Deriving transient iteration complexity for DmSGD

We copy the convergence rate of DmSGD for non-convex costs in (3) as follows

1

T

T∑
k=1

E ‖∇f(x̄(k))‖2 = O

(
σ2

√
nT

+
nσ2

T (1− ρ)
+

nb2

T (1− ρ)2

)
(43)

in which x̄(k) = 1
n

∑n
i=1 x

(k)
i , and the influence of momentum β is ignored. In the following,

we will derive the transient iteration complexity of DmSGD for the data-homogeneous and data-
heterogeneous scenarios, respectively.

• In the data-homogeneous scenario, it holds that Di = Dj for any i and j, and hence
∇fi(x) = ∇fj(x). This implies that b2 = 1

n

∑n
i=1 ‖∇fi(x) − ∇f(x)‖2 = 0. To reach

the linear speedup stage, the iteration T has to be sufficiently large so that the nT -term
dominates, i.e.,

σ2

√
nT
≥ nσ2

T (1− ρ)
, which is equivalent to T ≥ n3

(1− ρ)2
.

As a result, the transient iteration complexity of DmSGD is given by Ω(n3/(1− ρ)2).
• In the data-heterogeneous scenario, it holds that b2 6= 0. To reach the linear speedup stage,

the iteration T has to be sufficiently large so that

σ2

√
nT
≥ nb2

T (1− ρ)2
, which is equivalent to T ≥ n3b4

(1− ρ)4σ4
.

As a result, the transient iteration complexity of DmSGD is given by Ω(n3/(1− ρ)4) if the
influences of b4 and σ4 are ignored.

With the above arguments, we achieve the transient iteration complexity in (4).

24

D Proof of Theorem 1

D.1 Notations and preliminaries

Notations. We first introduce necessary notations as follows.

• x(k) = [(x
(k)
1)T ; (x

(k)
2)T ; · · · ; (x

(k)
n)T] ∈ Rn×d

• m(k) = [(m
(k)
1)T ; (m

(k)
2)T ; · · · ; (m

(k)
n)T] ∈ Rn×d

• ∇F (x(k); ξ(k)) = [∇F1(x
(k)
1 ; ξ

(k)
1)T ; · · · ;∇Fn(x

(k)
n ; ξ(k)n)T] ∈ Rn×d

• ∇f(x(k)) = [∇f1(x
(k)
1)T ;∇f2(x

(k)
2)T ; · · · ;∇fn(x

(k)
n)T] ∈ Rn×d

• x̄(k) =
(

1
n

∑n
i=1 x

(k)
i

)T
∈ Rd

• m̄(k) =
(

1
n

∑n
i=1m

(k)
i

)T
∈ Rd

• W = [wij] ∈ Rn×n.

• 1n = col{1, 1, · · · , 1} ∈ Rn

• Given two matrices x,y ∈ Rn×d, we define inner product 〈x,y〉 = tr(xTy), the Frobenius
norm ‖x‖2 = 〈x,x〉, and the ‖x‖2 as x’s matrix `2 norm.

From the above definitions, it is quick to check that x̄(k) = 1
n1

Tx(k) and m̄(k) = 1
n1

Tm(k). We
adopt the convention 4 that

x̄(k) − x(k) ,

[
(x

(k)
1 − 1

n

n∑
i=1

x
(k)
i)T ; (x

(k)
2 − 1

n

n∑
i=1

x
(k)
i)T ; · · · ; (x(k)

n −
1

n

n∑
i=1

x
(k)
i)T

]
∈ Rn×d

(44)

Same convention applies when m̄(k) adds or subtracts with the stacked variables like x(k) and m(k).

Algorithm reformulation. With the above notations, DmSGD (Algorithm 1) can be re-written as a
more elegant vector-matrix form. For k = 0, 1, · · · , DmSGD with one-peer exponential graph will
iterate as follows:

g(k) =∇F (x(k); ξ(k)), (45)

m(k+1) =W (k)(βm(k) + g(k)), (46)

x(k+1) =W (k)(x(k) − γm(k)), (47)

where m(0) = 0, x(0) can be set arbitrarily, and W (k) is the weight matrix associated with the
one-peer exponential graph defined by (7). Note that the weight matrix sequence {W (k)} satisfies
the periodic exact averaging property, see Lemma 1.

Smoothness. Since each fi(x) is assumed to be L-smooth in Assumption A.3, it holds that f(x) =
1
n

∑n
i=1 fi(x) is also L-smooth. As a result, the following inequality holds for any x,y ∈ Rd:

f(x)− f(y)− L

2
‖x− y‖2 ≤ 〈∇f(y),x− y〉 (48)

Submultiplicativity of the Frobenius norm. Given matrices W ∈ Rn×n and y ∈ Rn×d, we have

‖Wy‖ ≤ ‖W‖2‖y‖. (49)

To verify it, by letting yj be the j-th column of y, we have ‖Wy‖2 =
∑d
j=1 ‖Wyj‖22 ≤∑d

j=1 ‖W‖22‖yj‖22 = ‖W‖22‖y‖2.

4If you are familiar with the NumPy library, it is the array broadcasting concept [https://numpy.org/
doc/stable/user/basics.broadcasting.html].

25

https://numpy.org/doc/stable/user/basics.broadcasting.html
https://numpy.org/doc/stable/user/basics.broadcasting.html

DmSGD: the averaged recursion. Multiplying 1
n1

T
n to both sides of (46) and (47), we establish the

averaged (or centralized) recursion:
m̄(k+1) =βm̄(k) + ḡ(k) (50)

x̄(k+1) = x̄(k) − γm̄(k) (51)

where ḡ(k) , 1
n1

T
ng

(k).

A critical auxiliary recursion. We also need to introduce a auxiliary sequence {z̄(k)}, which is
commonly used for the convergence analysis in momentum methods [64, 39, 4]:

z̄(k) =
1

1− β
(x̄(k) − βx̄(k−1)), z̄(0) =

1

β
x̄(0) (52)

It is easy to validate that [64, lemma 3]:

z̄(k+1) − z̄(k) = − γ

1− β
ḡ(k) (53)

When β = 0 and z̄(0) = x̄(0), recursion (52) reduces to,
z̄(k) = x̄(k), x̄(k+1) = x̄(k) − γḡ(k) (54)

Main idea to prove Theorem 1. Theorem 1 can be proved in two steps. First, we need to establish
a decent lemma on how f(z̄(k)) would evolve as iteration increases. Second, we will establish a
consensus lemma showing that the consensus distance E ‖x(k) − x̄(k)‖2 would gradually decrease to
zero. These two lemmas together will lead to the result in Theorem 1.

D.2 Descent lemma

Lemma 4 Suppose the learning rate satisfies the condition γ ≤ (1−β)2
2(1+β)L , the main recursion of

(46)-(47) under the Assumption A.1 - A.4 has

1

T + 1

T∑
k=1

E ‖∇f(x̄(k))‖2 ≤ 2(1− β)

γ(T + 1)
(E f(z̄(0))− f?) +

γL

n(1− β)
σ2 +

βLγ

n(1− β)2
σ2

+
L2

T + 1

T∑
k=0

E ‖x̄(k) − x(k)‖2 (55)

where f? is the minimum value of the problem (1); σ2 and L are the constants defined in Assumptions.

Proof. Utilizing the L-smooth assumption of loss function f – Eq. (48), we have:
E f(z̄(k+1))

≤E f(z̄(k)) + E 〈z̄(k+1) − z̄(k),∇f(z̄(k))〉+
L

2
E ‖z̄(k+1) − z̄(k)‖2

(a)
= E f(z̄(k))− γ

1− β
E 〈ḡ(k),∇f(z̄(k))〉+

γ2L

2(1− β)2
E ‖ḡ(k)‖2

(b)
= E f(z̄(k))− γ

1− β
E

〈
1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉
+

γ2L

2(1− β)2
E ‖ḡ(k)‖2 (56)

where step (a) expands z̄(k+1) − z̄(k) according to (53) and step (b) utilizes the unbiased and
independent assumption of gradient noise (Assumption A.2):
E 〈ḡ(k),∇f(z̄(k))〉

=E

〈
1

n

n∑
i=1

∇Fi(x(k)
i ; ξi)−

1

n

n∑
i=1

∇fi(x(k)
i) +

1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉

=E

〈
1

n

n∑
i=1

∇Fi(x(k)
i ; ξi)−

1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉
+ E

〈
1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉

=E

〈
1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉
(57)

26

Next, we focus on bounding the middle term in (56). First, we expand it into:

− E

〈
1

n

n∑
i=1

∇fi(x(k)
i),∇f(z̄(k))

〉
(58)

= − E

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
(∇f(z̄(k))−∇f(x̄(k)))− E

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
∇f(x̄(k))

To bound the first term in (58), we apply the Young’s inequality – aT b ≤ 1
2ε‖a‖

2 + ε
2‖b‖

2:

−

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
(∇f(z̄(k))−∇f(x̄(k)))

≤ 1

2ε
‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

ε

2
‖∇f(z̄(k))−∇f(x̄(k))‖2

≤ 1

2ε
‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

εL2

2
‖z̄(k) − x̄(k)‖2

=
1

2ε
‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

εL2β2γ2

2(1− β)2
‖m̄(k)‖2 (59)

where the last equality relied on the observation that

z̄(k) − x̄(k) =
β

1− β
[x̄(k) − x̄(k−1)] = − βγ

1− β
m̄(k) (60)

If we choose ε = (1−β)2
γβL , we obtain:

−

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
(∇f(z̄(k))−∇f(x̄(k))) ≤ βLγ

2(1− β)2
‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

βLγ

2
‖m̄(k)‖2

(61)

To bound the second term in (58), we use the identity that aT b = 1
2

(
‖a‖2 + ‖b‖2 − ‖a− b‖2

)
:

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
∇f(x̄(k))

=
1

2

(
‖∇f(x̄(k))|‖2 + ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 − ‖∇f(x̄(k))− 1

n

n∑
i=1

fi(x
(k)
i)‖2

)

≥1

2

(
‖∇f(x̄(k))|‖2 + ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 − L2

n

n∑
i=1

‖x̄(k) − x(k)
i ‖

2

)

=
1

2

(
‖∇f(x̄(k))|‖2 + ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 − L2‖x̄(k) − x(k)‖2

)
(62)

27

Noting (61) and (62) hold for all realization. Substituting them back to (58) and simplifying the
terms, the middle term in (56) is bounded as follows

− γ

1− β
E

(
1

n

n∑
i=1

∇fi(x(k)
i)

)T
(∇f(z̄(k)))

≤ γ2βL

2(1− β)3
E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

βLγ2

2(1− β)
E ‖m̄(k)‖2 +

L2γ

2(1− β)n

n∑
i=1

E ‖x̄(k) − x(k)
i ‖

2

− γ

2(1− β)
E ‖∇f(x̄(k))‖2 − γ

2(1− β)
E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2

=
βLγ2

2(1− β)
E ‖m̄(k)‖2 +

L2γ

2(1− β)
E ‖x̄(k) − x(k)‖2

− γ

2(1− β)
E ‖∇f(x̄(k))‖2 − γ

2(1− β)

(
1− γβL

(1− β)2

)
E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 (63)

The third term in the main recursion (56) can be bounded as similar as we did in (57):

E ‖ḡ(k)‖2 =E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i) +

1

n

n∑
i=1

∇Fi(x(k)
i ; ξi)−

1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

(a)
=E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

n

n∑
i=1

∇Fi(x(k)
i ; ξi)−

1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

(b)
=E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

+
1

n2

n∑
i=1

E
∥∥∥∇Fi(x(k)

i ; ξi)−∇fi(x
(k)
i)
∥∥∥2

≤E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

+
1

n
σ2 (64)

where the step (a) that separates the norm square term into the sum of two terms is thanks to the
independent assumption of gradient noise over the past data; the step (b) is one of the key step that
relied on the independent assumption of gradient noise across the agents. Substituting (63) and (64)
back to main recursion (56) and re-organize the terms, we establish

γ

2(1− β)
E ‖∇f(x̄(k))‖2 ≤E f(z̄(k))− E f(z̄(k+1)) +

γ2L

2(1− β)2
E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

+
βLγ2

2(1− β)
E ‖m̄(k)‖2 +

L2γ

2(1− β)
E ‖x̄(k) − x(k)‖2

− γ

2(1− β)

(
1− γβL

(1− β)2

)
E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 +

γ2L

2(1− β)2n
σ2

(65)

Next step is to expand the momentum term E ‖m̄(k)‖2 back to the first iteration:

m̄(k) =

k−1∑
t=0

βk−1−tḡ(t) (66)

28

Taking the expectation and norm square on both sides, we have

E ‖m̄(k)‖2
(a)

≤E

∥∥∥∥∥sksk
k−1∑
t=0

βk−1−tḡ(t)

∥∥∥∥∥
2

(b)

≤sk
k−1∑
t=0

βk−1−tE
∥∥∥ḡ(t)

∥∥∥2
(c)

≤sk
k−1∑
t=0

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

+
s2k
n
σ2 (67)

where in step (a), we define sk ,
∑k−1
t=0 β

k−1−t as the sum of weights; we applied the Jensen’s
inequality in the step (b); step (c) used the conclusion from (64). Note the sum of weight sk is
bounded by constant:

sk =
1− βk

1− β
≤ 1

1− β
(68)

Plug it back to (65), we have

γ

2(1− β)
E ‖∇f(x̄(k))‖2 ≤E f(z̄(k))− E f(z̄(k+1)) +

γ2L

2n(1− β)2
σ2 +

s2kβLγ
2

2n(1− β)
σ2

+
skβLγ

2

2(1− β)

k−1∑
t=0

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

+
L2γ

2(1− β)
E ‖x̄(k) − x(k)‖2

− γ

2(1− β)

(
1− γL

1− β
− γβL

(1− β)2

)
E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2

(69)

Taking the average of (69) from time k = 0 to k = T , we have

γ

2(T + 1)(1− β)

T∑
k=0

E ‖∇f(x̄(k))‖2

≤ 1

T + 1
(E f(z̄(0))− E f(z̄(T+1))) +

γ2L

2n(1− β)2
σ2 +

βLγ2

2n(1− β)3
σ2

+
1

T + 1

T∑
k=0

skβLγ
2

2(1− β)

k−1∑
t=0

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

+
L2γ

2(1− β)

1

T + 1

T∑
k=0

E ‖x̄(k) − x(k)‖2

− γ

2(1− β)

(
1− γL

1− β
− γβL

(1− β)2

)
1

T + 1

T∑
k=0

E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 (70)

29

Focus on the term in the second line of r.h.s of (70):

1

T + 1

T∑
k=0

skβLγ
2

2(1− β)

k−1∑
t=0

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

(a)

≤ βLγ2

2(1− β)2
1

T + 1

T∑
k=0

k−1∑
t=0

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

(b)
=

βLγ2

2(1− β)2
1

T + 1

T−1∑
t=0

T∑
k=t+1

βk−1−tE

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t)
i)

∥∥∥∥∥
2

(c)

≤ βLγ2

2(1− β)3
1

T + 1

T∑
k=0

E

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(k)
i)

∥∥∥∥∥
2

(71)

where step (a) uses the upper bound of sk in (68); step (b) switches the order of two summations;
step (c), again, uses the upper bound of sk and re-align the index of summation due to non-negativity
of each term. Hence, we establish

γ

2(T + 1)(1− β)

T∑
k=1

E ‖∇f(x̄(k))‖2

≤ 1

T + 1

(
E f(z̄(0))− E f(z̄(T+1))

)
+

γ2L

2n(1− β)2
σ2 +

βLγ2

2n(1− β)3
σ2

+
L2γ

2(1− β)

1

T + 1

T∑
k=0

E ‖x̄(k) − x(k)‖2

− γ

2(1− β)

(
1− γL

1− β
− 2γβL

(1− β)2

)
1

T + 1

T∑
k=0

E ‖ 1

n

n∑
i=1

∇fi(x(k)
i)‖2 (72)

In order to discard the E ‖ 1n
∑n
i=1∇fi(x

(k)
i)‖2, the step-size has to be small enough so that the

coefficient is negative. To achieve that, we need 1− γL
1−β −

2γβL
(1−β)2 ≥ 0. The idea is we can require

last two terms bounded by two constants, which sum up to 1. Suppose we require that:

γL

1− β
≤ 1− β

1− β2
=⇒ γ ≤ 1− β

(1 + β)L
(73)

2γβL

(1− β)2
≤ β(1− β)

1− β2
=⇒ γ ≤ (1− β)2

2(1 + β)L
(74)

Since 1 > β ≥ 0, (74) is always smaller than (73). So as long as γ ≤ (1−β)2
2(1+β)L , we can safely discard

the last terms in (72).

Finally, we arrive at the conclusion in the lemma by noting f? is the minimum value of the problem:

1

T + 1

T∑
k=0

E ‖∇f(x̄(k))‖2 ≤ 2(1− β)

γ(T + 1)
(E f(z̄(0))− f?) +

γL

n(1− β)
σ2 +

βLγ

n(1− β)2
σ2

+
L2

T + 1

T∑
k=0

E ‖x̄(k) − x(k)‖2 (75)

A few comments about this bounds: the historical average of gradient at the average trajectory x̄(k) is
bounded by the excess risk at the initial value, the gradient noise, and the average of the consensus
residue over the time. �

D.3 Consensus lemma

Before we can bound the consensus residue of the DmSGD algorithm, we transform the main
recursion (46) and (47) into the following consensus residue form, which is much easier for analysis.

30

Because of the periodic exact averaging property, we can view the main recursion in every τ iterations
as reference point. Recall τ = ln(n) which is an integer. We define m = bk/τc− 1. (More precisely,
m should be a function of k. m(k) would be more proper but we choose m to light the notation).
Apparently, it holds that 2τ > k−mτ ≥ τ . It implies from iteration k to mτ it must contain as least
one period.

Lemma 5 If we expand the recursion from iteration k to the previous period mτ , it has following
concise form due to exact averaging property:

x(k) − x̄(k) = −γ
k−1∑
t=mτ

 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t)), ∀k ≥ τ (76)

where Ŵ (i) ,W (i) − 1
n11

T .

Proof: Recalling that decentralized momentum SGD in (46) subtract it by the centralized recursion:

x(k) − x̄(k) = W (k−1)(x(k−1) − x̄(k−1) − γ(m(k−1) − m̄(k−1)))

=

(
W (k−1) − 1

n
11T

)
(x(k−1) − x̄(k−1) − γ(m(k−1) − m̄(k−1))) (77)

where we utilized the average of the average value is still the average value: W (k−1)x̄(k−1) = x̄(k−1)

and W (k−1)m̄(k−1) = m̄(k−1). For the short notation, we denote that

Ŵ (k−1) := W (k−1) − 1

n
11T (78)

For any k ≥ τ , we can always expand the recursion into mτ :

x(k) − x̄(k) = Ŵ (k−1)(x(k−1) − x̄(k−1) − γ(m(k−1) − m̄(k−1)))

=

k−1∏
i=mτ

Ŵ (i)(x(mτ) − x̄(mτ))− γ
k−1∑
j=mτ

k−1∏
i=j

Ŵ (i)(m(j) − m̄(j))

(a)
= −γ

k−1∑
j=mτ

k−1∏
i=j

Ŵ (i)(m(j) − m̄(j))

= −γ
k−1∑
j=mτ

k−1∏
i=j

W (i)(m(j) − m̄(j)) (79)

where step (a) discards the first term because of the periodic exact averaging property in Lemma 1.
To evaluate the sum of production term in (79), we first expand the momentum term according the
recursion (46) until iteration mτ

m(j) =βj−mτ
j−1∏
i=mτ

W (i)m(mτ) +

j−1∑
t=mτ

βj−1−t
j−1∏
q=t

W (q)g(t) (80)

Multiplying
∏k−1
i=j W

(i) on both sides and note we can exchange the order of
∏
i and

∑
t when their

index is not dependent:

k−1∏
i=j

W (i)m(j) =βj−mτ
k−1∏
i=j

W (i)

j−1∏
i=mτ

W (i)m(mτ) +

j−1∑
t=mτ

βj−1−t
k−1∏
i=j

W (i)

j−1∏
q=t

W (q)g(t)

=βj−mτ
k−1∏
i=mτ

W (i)m(mτ) +

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

W (i)g(t)

=βj−mτm̄(mτ) +

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

W (i)g(t) (81)

31

where the last equality is, again, thanks to the periodic exact averaging property. We can establish the
similar conclusion for average momentum term:

k−1∏
i=j

W (i)m̄(j) = m̄(j) =βj−mτm̄(mτ) +

j−1∑
t=mτ

βj−1−tḡ(t)

=βj−mτm̄(mτ) +

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

W (i)ḡ(t) (82)

Combining above two, we get

k−1∏
i=j

W (i)(m(j) − m̄(j)) =

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

W (i)(g(t) − ḡ(t))

=

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

Ŵ (i)(g(t) − ḡ(t)) (83)

Substituting (83) back to (79), we establish

x(k) − x̄(k) = −γ
k−1∑
j=mτ

j−1∑
t=mτ

βj−1−t
k−1∏
i=t

Ŵ (i)(g(t) − ḡ(t)) (84)

Note we can switch the order of two summations:

k−1∑
j=mτ

j−1∑
t=mτ

≡
k−1∑
t=mτ

k−1∑
j=t+1

(85)

By above identity, we can group the coefficients and finally arrive at

x(k) − x̄(k) = −γ
k−1∑
t=mτ

 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t)) (86)

�

With this simplified consensus residue form (86), we ready to present the consensus lemma.

Lemma 6 (Consensus Lemma) Suppose the learning rate satisfies the condition γ ≤ 1−β
6Lτ and

Assumption A.1 - A.4 holds, the consensus residue have

1

T + 1

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤ 8τγ2ρ2max

(1− β)2
(σ2 + 4τb2) +

2

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 (87)

where σ2 and b2 are the constants defined in Assumptions for gradient noise and data heterogeneous
respectively; the spectral gap ρ2max is defined as

ρ2max = max
i∈[0,τ−1]

∥∥∥Ŵ (i)
∥∥∥2
2
≤ 1 (88)

32

Proof. Taking norm and expectation on both sides of (86), we obtain

E
∥∥∥x(k) − x̄(k)

∥∥∥2
=γ2E

∥∥∥∥∥∥
k−1∑
t=mτ

 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t))

∥∥∥∥∥∥
2

≤ 2γ2E

∥∥∥∥∥∥
k−1∑
t=mτ

 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(∇F (x(t))−∇f(x(t)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=(A)

+ 2γ2E

∥∥∥∥∥∥
k−1∑
t=mτ

 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t) −∇F (x(t)) +∇f(x(t)))

∥∥∥∥∥∥
2

︸ ︷︷ ︸
:=(B)

(89)

where the inequality is due to Jensen’s inequality. First, let’s exam the second term in (89), which
contains the gradient noise only

(B)
(a)
= 2γ2

k−1∑
t=mτ

E

∥∥∥∥∥∥
 k−1∑
j=t+1

βj−1−t

(k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t) −∇F (x(t)) +∇f(x(t)))

∥∥∥∥∥∥
2

(b)

≤ 2γ2

1− β

k−1∑
t=mτ

k−1∑
j=t+1

βj−1−tE

∥∥∥∥∥
(
k−1∏
i=t

Ŵ (i)

)
(g(t) − ḡ(t) −∇F (x(t)) +∇f(x(t)))

∥∥∥∥∥
2

(c)

≤ 2γ2

1− β

k−1∑
t=mτ

k−1∑
j=t+1

βj−1−t

∥∥∥∥∥
k−1∏
i=t

Ŵ (i)

∥∥∥∥∥
2

2

E
∥∥∥g(t) − ḡ(t) −∇F (x(t)) +∇f(x(t))

∥∥∥2
(d)

≤ 2γ2

1− β

k−1∑
t=mτ

k−1∑
j=t+1

βj−1−t

∥∥∥∥∥
k−1∏
i=t

Ŵ (i)

∥∥∥∥∥
2

2

E
∥∥∥g(t) −∇F (x(t))

∥∥∥2
(e)

≤ 2γ2

1− β

k−1∑
t=mτ

k−1∑
j=t+1

βj−1−t

∥∥∥∥∥
k−1∏
i=t

Ŵ (i)

∥∥∥∥∥
2

2

σ2

(f)

≤ 4τγ2ρ2max

(1− β)2
σ2 (90)

where the step (a) is thanks to the independent properties of gradient noise; in the step (b), we
apply the Jensen’s inequality and loosen the sum of weights to 1/(1 − β); step (c) utilized the
submultiplicative property of norm; by noting that

ḡ(t) −∇f(x(t)) =
1

n
1n1

T
n

(
g(t) −∇F (x(t))

)
(91)

step (d) applies the inequality ‖x − x̄‖2 ≤ ‖x‖2; step (e) is because of Assumption A.2; step (f)
define that

ρ2max , max
k,t

∥∥∥∥∥
k−1∏
i=t

Ŵ (i)

∥∥∥∥∥
2

2

∀k ≥ τ, t ∈ [mτ, k − 1] (92)

It is easy to that for any i:∥∥∥Ŵ (i)
∥∥∥2
2

= λmax

(
(W (i))TW (i) − 1

n
1n1

T
n

)
≤ 1 (93)

33

where the inequality is thanks to the property of doubly stochastic matrix. (Noting (W (i))TW (i) is
just a symmetric doubly stochastic matrix). So using the sub-multiplicity property of matrix norm,
ρ2max also equals to the following definition:

ρ2max := max
i∈[0,τ−1]

∥∥∥Ŵ (i)
∥∥∥2
2

(94)

We will revisit this quantity numerically later. In most of case, this ρ2max can be omitted since it
equals to 1, but we keep it for the place-holder. Next, we can use the similar procedure for the first
term in (89). The difference is that the first step, we use Jensen’s inequality to take the summation
over t out of the norm since we can no longer use the independent assumption about the noise:

(A) ≤ 4τγ2

(1− β)2

k−1∑
t=mτ

k−1∑
j=t+1

βj−1−t

∥∥∥∥∥
k−1∏
i=t

Ŵ (i)

∥∥∥∥∥
2

2

E ‖∇F (x(t))−∇f(x(t))‖2

≤4τγ2ρ2max

(1− β)2

k−1∑
t=mτ

E ‖∇F (x(t))−∇F(x̄(t)) +∇F(x̄(t))−∇f(x̄(t))

+∇f(x̄(t))−∇f(x(t))‖2

(a)

≤ 8τγ2ρ2max

(1− β)2

k−1∑
t=mτ

(
E ‖∇F (x(t))−∇F(x̄(t)) +∇f(x̄(t))−∇f(x(t))‖2

+E ‖∇F(x̄(t))−∇f(x̄(t))‖2
)

(b)

≤ 8τγ2ρ2max

(1− β)2

k−1∑
t=mτ

(
E ‖∇F (x(t))−∇F(x̄(t))‖2 + E ‖∇F(x̄(t))−∇f(x̄(t))‖2

)
(c)

≤ 8τγ2ρ2max

(1− β)2

k−1∑
t=mτ

(
L2E ‖x(t) − x̄(t)‖2 + b2

)
≤8τγ2ρ2maxL

2

(1− β)2

k−1∑
t=mτ

E ‖x(t) − x̄(t)‖2 +
16τ2γ2ρ2max

(1− β)2
b2 (95)

where step (a) applied Jensen’s inequality; step (b) is similar as (91) by applying the inequality ‖x−
x̄‖2 ≤ ‖x‖2; step (c) utilize the L-smoothness assumption and the data heterogeneous assumption
(Assumption A.1 and A.3);

Plugging (90) and (95) back to (89), we establish

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤ 8τγ2ρ2maxL
2

(1− β)2

k−1∑
t=mτ

E ‖x(t) − x̄(t)‖2 +
4τγ2ρ2max

(1− β)2
(σ2 + 4τb2), ∀k ≥ τ (96)

Taking average over iteration k from 0 to T , we have

1

(T + 1)

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2
≤ 8τγ2ρ2maxL

2

(1− β)2
1

T + 1

T∑
k=τ

k−1∑
t=mτ

E ‖x(t) − x̄(t)‖2 +
4τγ2ρ2max

(1− β)2
(σ2 + 4τb2)

+
1

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 (97)

One key observation is that for arbitrary term ψt, there exists a non-negative sequence {dk} which is
uniformly bounded by 2τ such that

T∑
k=τ

k−1∑
t=mτ

ψt =

T∑
k=0

dkψk, ∀ψt (98)

34

It implies

1

T + 1

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤16τ2γ2ρ2maxL
2

(1− β)2
1

T

T∑
k=0

E ‖x(k) − x̄(k)‖2 +
4τγ2ρ2max

(1− β)2
(σ2 + 4τb2)

+
1

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 (99)

We can conclude that

1

T + 1

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤(1− 16τ2γ2ρ2maxL
2

(1− β)2

)−1
4τγ2ρ2max

(1− β)2
(σ2 + 4τb2) (100)

+

(
1− 16τ2γ2ρ2maxL

2

(1− β)2

)−1
1

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2
where the step-size γ has to be small enough. Supposing

16τ2γ2ρ2maxL
2

(1− β)2
≤ 1

2
=⇒ γ ≤ 1− β

6Lτρmax
(101)

it guarantees that

1

T + 1

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤ 8τγ2ρ2max

(1− β)2
(σ2 + 4τb2) +

2

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 (102)

Since ρmax ≤ 1, (101) can be further relaxed into the condition γ ≤ 1−β
6Lτ . �

As we seen in (102), there is an extra terms of
∑τ−1
k=0 E

∥∥x(k) − x̄(k)
∥∥2 due to the initial phase. But

it is easy to see the impact of this is small since it only contain the initial τ -iterations results and
coefficient is diminished by T . When the T is large enough, the extra term is almost negligible.
Moreover, we can use some warm-up strategy, such as allreduce, that forces all agents’ iterates in the
first period are the same, i.e.

∑τ−1
k=0 E

∥∥x(k) − x̄(k)
∥∥2 = 0. Under this situation, we immediately

obtain the following corollary.

Corollary 3 Under the same assumptions as lemma 6 and using the all-reduce warm-up strategy at
the first τ iterations, it holds

1

T + 1

T∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 ≤ 8τγ2ρ2max

(1− β)2
(σ2 + 4τb2) (103)

Proof. Replacing
∑τ−1
k=0 E

∥∥x(k) − x̄(k)
∥∥2 by 0 gives the conclusion immediately. �

Lastly, we revisit the quantity ρ2max by numerical experiment here. Looking at the (90) again, we
relax our bounds by simply taking the maximum value of all ‖

∏k−1
i=t Ŵ

(i)‖22. But this value can be
much smaller than ρ2max. We just validate them by the numerical experiment in Fig. 12.

D.4 Proof of the convergence Theorem 1

Finally, we are ready to present the convergence theorem about the decentralized momentum SGD
over one-peer exponential graph. Substituting the conclusion of the descent lemma 4 into the
consensus lemma6, we immediately establish

1

T + 1

T∑
k=1

E ‖∇f(x̄(k))‖2 ≤ 2(1− β)

γ(T + 1)
(E f(z̄(0))− f?) +

γL

n(1− β)
σ2 +

βLγ

n(1− β)2
σ2

+
8τγ2L2ρ2max

(1− β)2
(σ2 + 4τb2) +

2L2

(T + 1)

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2
(104)

35

1 2 3 4 5 6 7 8
k

0.0

0.2

0.4

0.6

0.8

1.0

||k
1

i=
0W

(i)
||2

Nodes: 8
Nodes: 16
Nodes: 32
Nodes: 64
Nodes: 128
Nodes: 256

Figure 12: The value of ‖
∏k−1
i=0 Ŵ

(i)‖2 evolves with k over different number of nodes.

where the learning rate γ requires:

γ ≤ min

{
1− β
6Lτ

,
(1− β)2

2(1 + β)L

}
(105)

Simplifying and grouping the terms, we obtain

1

T + 1

T∑
k=1

E ‖∇f(x̄(k))‖2

≤ 2(1− β)

γ(T + 1)

(
E f(z̄(0)) +

γL2

1− β

τ−1∑
k=0

E
∥∥∥x(k) − x̄(k)

∥∥∥2 − f?)

+
γL

n(1− β)2
σ2 +

8τγ2L2ρ2max

(1− β)2
(σ2 + 4τb2)

=O

(
(1− β)

γT

)
+O

(
γ

σ2

n(1− β)2

)
+O

(
σ2τγ2

(1− β)2

)
+O

(
b2τ2γ2

(1− β)2

)
(106)

If we set the learning rate as γ = O

(√
n(1−β)3√

T

)
, we have

1

T

T∑
k=1

E ‖∇f(x̄(k))‖2 = O

(
σ2√

(1− β)nT

)
+O

(
n(1− β)σ2τ

T

)
+O

(
n(1− β)b2τ2

T

)
(107)

Last, we derive the transient iteration complexity for the data-homogeneous and data-heterogeneous
scenarios, respectively.

σ2√
(1− β)nT

=
n(1− β)σ2τ

T
=⇒ T = (1− β)3n3τ2 (data-homogeneous) (108)

σ2√
(1− β)nT

=
n(1− β)b2τ2

T
=⇒ T = (1− β)3n3τ4(b4/σ4) (data-heterogeneous) (109)

Absorbing the constants into Ω(·) notation and replacing τ by log2(n), we establish the transient
iteration complexity as stated in Theorem 1. �

D.5 Comparison with other commonly-used graphs

D.5.1 Comparison in per-iteration communication and transient iteration (Homogeneous)

Table 7 summarizes the per-iteration communication and transient iteration complexity of DmSGD
with commonly-used topologies. The details of each topology and its associated weight matrix W

36

can be referred to Sec. A.3. Table 7 assumes homogeneous data distributions across all nodes. If the
logarithm term can be ignored when n is large, it is observed that both static and one-peer exponential
graphs can achieve Ω̃(1) per-iteration communication and Ω̃(n3) transient iteration complexity, both
of which are nearly best among all compared graphs. Table 7 is an extension of Table 1 by comparing
with more topologies.

Table 7: Comparison in per-iteration communication time and transient iteration complexity between de-
centralized momentum SGD over various commonly-used topologes. The table assumes homogeneous data
distributions across all nodes.

Per-iter. Comm. Transient iter. complexity

ring Ω(2) Ω(n7)

star graph Ω(n) Ω(n7)

2D-Grid Ω(4) Ω(n5 log2
2(n))

2D-Torus Ω(4) Ω(n5)
1
2 -random graph Ω(n2) Ω(n3)

bipartite random match Ω(1) N.A.
static exponential Ω(log2(n)) Ω(n3 log2

2(n))

one-peer exponential Ω(1) Ω(n3 log2
2(n))

D.5.2 Comparison in per-iteration communication and transient iteration (Heterogeneous)

Table 8 summarizes the per-iteration communication and transient iteration complexity of DmSGD
with commonly-used topologies when data distributions are heterogeneous. Compared to Table 7, it
is observed that the transient iteration complexity achieved by each topology in the heterogeneous
scenario is typically worse than that in the heterogeneous scenario. Again, if the logarithm term can
be ignored when n is large, it is observed that both static and one-peer exponential graphs can achieve
Ω̃(1) per-iteration communication and Ω̃(n3) transient iteration complexity, both of which are nearly
best among all compared graphs.

Table 8: Comparison in per-iteration communication time and transient iteration complexity between de-
centralized momentum SGD over various commonly-used topologes. The table assumes heterogeneous data
distributions across all nodes.

Per-iter. Comm. Transient iter. complexity

ring Ω(2) Ω(n11)

star graph Ω(n) Ω(n11)

2D-Grid Ω(4) Ω(n7 log4
2(n))

2D-Torus Ω(4) Ω(n7)
1
2 -random graph Ω(n2) Ω(n3)

bipartite random match Ω(1) N.A.
static exponential Ω(log2(n)) Ω(n3 log4

2(n))

one-peer exponential Ω(1) Ω(n3 log4
2(n))

D.5.3 Exponential graphs endow DmSGD with smaller transient iterations: numerical
validation

In Tables 7 and 8, it is observed that exponential graphs endow DmSGD with smaller transient
iterations. In this subsection, we validate it with numerical experiments.

We consider a distributed logistic regression problem with each local cost function as

fi(x) =
1

M

M∑
m=1

ln[1 + exp(−yi,mhi,m)Tx], (110)

37

0 2000 4000 6000 8000 10000 12000 14000
Iterations

10 4

10 3

10 2

10 1

M
ea

n-
Sq

ur
e

Er
ro

r

PmSGD
DmSGD-Sta-Exp
DmSGD-OP-Exp
DmSGD-Grid
DmSGD-Ring

Figure 13: Convergence curves of DmSGD with various topologies. It is observed that DmSGD with
exponential graphs has less transient iterations than with other graphs.

where {hi,m, yi,m}Mm=1 are local data samples at agent i with hi,m ∈ Rd being the feature vector
and yi,m ∈ {+1,−1} being the corresponding label. Each hi,m is generated from the normal
distribution N (0; 10Id). To generate yi,m, we first generate an auxiliary random vector x?i ∈ Rd
with each entry following N (0, 1). Next, we generate yi,m from a uniform distribution U(0, 1). If
yi,m ≤ 1/[1 + exp(−hTi,mx?i)] then yi,m is set as +1; otherwise yi,m is set as −1. We consider a
non-iid scenario in which x?i 6= x?j ∀i, j. Each x?i is normalized. We set the number of nodes as 64.

Fig. 13 illustrates the convergence curves of DmSGD with different topologies as well as parallel
momentum SGD (PmSGD). The momentum parameter β = 0.8. The mean-square-error in the y-axis
indicates 1

n

∑n
i=1 E‖x

(k)
i −x?‖2. We set d = 10 andM = 14000. The step-size γ is initialized as 0.2

and gets decreased by half for every 1000 iterations. We repeat all simulations 20 times and illustrate
the mean of all trials. It is observed that DmSGD with static exponential graph converges closely to
PmSGD, and it is with the shortest transient iterations. Also, DmSGD with one-peer exponential
graph is observed to have slightly longer transient iterations than with the static exponential graph.
However, both exponential graphs endow DmSGD with shorter transient iterations than grid and ring.

E More Experiments

E.1 Details of each topology and the weight matrix

The description of the tested topology and its associated weight matrix can be referred to Sec. A.3.1.

E.2 DmSGD with exponential graphs when n is not a power of 2

Under the same experimental setting as in Sec. 6.2, this subsection examines the performance of
exponential graphs when n is not a power of 2. As shown in Table 9, one-peer exponential graph
can still endow DmSGD with similar, or even better, training performance compared to its static
counterpart.

Table 9: Comparison of top-1 validation accuracy(%) when using DmSGD with arbitrary numbers of nodes.

NODES 6(6X8 GPUS) 9(9X8 GPUS) 12(12X8 GPUS) 15(15X8 GPUS)

STATIC EXP. 76.21 75.93 75.73 76.03
ONE-PEER EXP. 76.16 76.17 75.85 76.19

E.3 Performance with DSGD

In empirical studies, we conducted a few more experiments to validate how DSGD performs over
exponential graphs in deep learning. In Table 10, we repeated the same experiment in Table 2 except
for the parameter setting β = 0 i.e. eliminating the influence of momentum. It is observed that:

38

• The accuracy performance of all DSGD scenarios has dropped over 7% compared to the DmSGD
scenarios. This highlights the critical role of the momentum in DSGD for real deep learning
experiments.

• DSGD over the one-peer exponential graph achieves similar accuracy as the static exponential
graph, and both topologies enable DSGD with higher accuracy than the ring topology. This is
consistent with the two conclusions listed above.

• The training time of DSGD over different topologies is similar to DmSGD listed in Table 2, and
we, therefore, omitted it in the following table.

Table 10: Comparison of top-1 validation accuracy(%) when using DSGD with different topologies.

NODES 4(4X8 GPUS) 8(8X8 GPUS) 16(16X8 GPUS)

RING 68.85 68.62 68.78
STATIC EXP. 69.08 68.81 68.79

ONE-PEER EXP. 69.01 68.94 68.85

E.4 Example code for implementation

For the implementation of decentralized methods, we utilize BlueFog, which is an open-source
high-performance decentralized deep training framework, to facilitate the topology organization,
weight matrix generation, and efficient partial averaging.

1 def neighbor_allreduce(tensor: torch.Tensor,
2 self_weight: float,
3 src_weights: Dict[int, float],
4 dst_weights: Dict[int, float]) -> torch.Tensor:

Listing 1: Neighbor allreduce functionality for communication.

One major functionality for decentralized communication is neighbor_allreduce, as listed in Listing
1, implementing the following equation.

x
(k+1)
i = wiix

(k)
i +

∑
j∈Ni\i

wijx
(k)
j , (111)

The argument self_weight stands forwii, andwij for communication with the other node j is achieved
by either using src_weights in pull-mode or using dst_weights in push-mode.

Listing 2 gives two utility functions for one-peer exponential graphs generation. For each node, each
call of function GetOnePeerExpGraphGenerator provides the one-peer nodes connection information
for communication. Passing this connection information to neighbor_allreduce is achieved through
updating the member variables of decentralized optimizer in UpdateOnePeerExpGraph.

1 # One-peer exponential graph generation
2 def GetOnePeerExpGraphGenerator(size, self_rank):
3 tau = math.ceil(math.log2(size)) # Periodic cycle
4 index = 0
5 while True:
6 send_rank = (self_rank + 2**index) % size
7 recv_rank = (self_rank - 2**index) % size
8 yield send_rank, recv_rank
9 index += 1

10 index = index % tau
11

12 # Graph update in each iteration
13 one_peer_exp_graph_gen = GetOnePeerExpGraphGenerator(bf.size(), bf.rank())
14 def UpdateOnePeerExpGraph(optimizer):
15 dst_rank, src_rank = next(one_peer_exp_graph_gen)
16 optimizer.dst_weights = {dst_rank: 1.0}
17 optimizer.src_weights = {src_rank: 0.5} # Corresponds to W matrix
18 optimizer.self_weight = 0.5 # Corresponds to the diagonal of W matrix

39

Listing 2: Utility functions for the generation of one-peer exponential graphs.

With that, Listing 3 shows a simplified code for model training. The overall code structure is similar
as the traditional model training script, with few modifications for decentralized environment. On
line 5, a decentralized optimizer wraps the original SGD optimizer. Under the hood, it registers the
neighbor_allreduce communication function through the hook mechanism. On line 11, the one-peer
exponential graphs get updated in each iteration. After the model forward propagation is computed
locally, the backward propagation is performed on line 19. Meanwhile, it also triggers communication
using neighbor_allreduce. In order to boost the training efficiency, the time of computation and
communication are overlapped as much as possible through the multi-threading. Finally, line 21
updates the model until the communication finishes.

1 import bluefog.torch as bf
2 ... # Model and data preparation
3 # Generate decentralized optimizer
4 optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
5 optimizer = DmSGDOptimizer(optimizer, model=model)
6 ...
7 for epoch in range(num_epochs):
8 # Training the model
9 for data, target in train_loader:

10 # Graph update in each iteration
11 UpdateOnePeerExpGraph(optimizer)
12 data, target = data.cuda(), target.cuda()
13 optimizer.zero_grad()
14 # Local forward propagation
15 output = model(data)
16 loss = F.cross_entropy(output, target_batch)
17 # Local backward propagation
18 # Meanwhile triggering neighbor_allreduce communication
19 loss.backward()
20 # Model update and wait until the communication finishes
21 optimizer.step()
22 # Validation
23 ...

Listing 3: Example of how to train a model using a DmSGD optimizer under a one-peer exponential graph.
The communication graph is updated in each iteration.

40

	Exponential_Graph_Neurips2021

