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Abstract

A significant obstacle in the development of robust machine learning models is
covariate shift, a form of distribution shift that occurs when the input distributions
of the training and test sets differ while the conditional label distributions remain
the same. Despite the prevalence of covariate shift in real-world applications, a
theoretical understanding in the context of modern machine learning has remained
lacking. In this work, we examine the exact high-dimensional asymptotics of ran-
dom feature regression under covariate shift and present a precise characterization
of the limiting test error, bias, and variance in this setting. Our results motivate
a natural partial order over covariate shifts that provides a sufficient condition
for determining when the shift will harm (or even help) test performance. We
find that overparameterized models exhibit enhanced robustness to covariate shift,
providing one of the first theoretical explanations for this ubiquitous empirical phe-
nomenon. Additionally, our analysis reveals an exact linear relationship between
the in-distribution and out-of-distribution generalization performance, offering an
explanation for this surprising recent observation.

1 Introduction
Theoretical justification for almost all machine learning methods relies upon the equality of the
distributions from which the training and test data are drawn. Nevertheless, in many real-world
applications, this equality is violated—naturally-occurring distribution shift between the training data
and the data encountered during deployment is the rule, not the exception [31]. Even non-adversarial
changes in distributions can uncover the surprising fragility of modern machine learning models
[55, 56, 43, 26, 12, 50]. Such shifts are distinct from adversarial examples, which require explicit
poisoning attacks [22]; rather, they can result from mild corruptions, ranging from changes of camera
angle or blur [26], to subtle, unintended changes in data acquisition procedures [56]. Moreover, this
fragility limits the application of deep learning in certain safety-critical areas [31].

Empirical studies of distribution shift have observed several intriguing phenomena, including linear
trends between model performance on shifted and unshifted test distributions [56, 26, 31], dramatic
degradation in calibration [50], and surprising spurious inductive biases [12]. Theoretical under-
standing of why such patterns occur across a variety of real-world domains is scant. Even basic
questions such as what makes a certain distribution shift likely to hurt (or help) a model’s performance,
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and by how much, are not understood. One reason that these phenomena have eluded theoretical
understanding is that there is often a strong coupling between model and distribution, implying that
the effect of a given shift cannot usually be understood in a model-agnostic way. Another reason
that satisfactory explanations have remained lacking is that the go-to formalism for studying general-
ization in classical models, namely uniform convergence theory (see e.g. [66]), may be insufficient
to explain the behavior of modern deep learning methods (even in the absence of distribution shift)
[47, 68]. Indeed, classical measures of model complexity, such as various norms of the parameters,
have been found to lead to ambiguous conclusions [49].

In this paper, we follow a different approach: instead of focusing on worst-case bounds for generic
distributions, we study average-case behavior for narrowly specified distributions. While this change
in perspective sacrifices generality, it allows us to derive more precise predictions, which we believe
are necessary to fully capture the relevant phenomenology. We study a specific type of distribution
shift called covariate shift, in which the distributions of the training and test covariates differ, while
the conditional distribution of the labels given the covariates remains fixed. Using random matrix
theory, we perform an asymptotically exact computation of the generalization error of random feature
regression under covariate shift. The random feature model provides a useful testbed to (1) investigate
the interplay between various factors such as model complexity, label noise, bias, variance, and
covariate shift; (2) rigorously define a model-agnostic notion for the strength of covariate shift; and (3)
provide a theoretical explanation for the linear relationships recently observed between in-distribution
and out-of-distribution generalization performance [55, 56, 27].

1.1 Contributions

Our primary contributions are to:

1. Provide a model-agnostic partial order over covariate shifts that is sufficient to determine when a
shift will increase or decrease the test error in random feature regression (see Def. 4.1);

2. Compute the test error, bias, and variance of random feature regression for general multivariate
Gaussian covariates under covariate shift in the high-dimensional limit (see Sec. 5.1);

3. Prove that overparameterization enhances robustness to covariate shift, and that the error, bias,
and variance are nonincreasing functions of the number of excess parameters (see Sec. 5.3);

4. Deduce an exact linear relationship between in-distribution and out-of-distribution generalization
performance, offering an explanation for this surprising recent empirical observation (see Sec. 5.4).

1.2 Related work

There is extensive literature on the empirical analysis of distribution shift in all of its myriad
forms, ranging from domain adaptation [62, 20, 8, 70, 69, 37, 36] to defenses against adversarial
attacks [39, 60] to distributionally robust optimization [59, 15, 16], among many others. Interestingly,
for naturally occurring distribution shifts [31, 26], standard robustness interventions provide little
protection [56, 63]. Indeed, empirical risk minimization on clean, unshifted training data often
performs better on out-of-distribution benchmarks than more sophisticated methods [31]. One of
the most striking observations in the context of natural distribution shifts is that model robustness
improves with the classifier’s accuracy [56, 63, 26, 43]. For example, if a classifier’s accuracy
increases by 1.0% on the unshifted CIFAR-10 test set, this tends to increase its accuracy by 1.7%
on the CIFAR-10.1 dataset (a dataset with natural distribution shift) [56]. Moreover, such linear
trends between the unshifted and shifted measures of error have now been observed in several
contexts [56, 63, 43, 40, 44].

The number of theoretical works studying the impact of distribution shift on generalization is far
smaller. One pioneering work provides VC-dimension-based error bounds for classification that
are augmented by a discrepancy measure between source and target domains [10], while another
demonstrates a similar class of uniform convergence-based results in the setting of kernel regres-
sion [11]. Recent work shows that learning domain-invariant features is insufficient to guarantee
generalization when the class-conditional distributions of features may shift [69]. When the source
domain gradually shifts toward the target domain, non-vacuous margin-based bounds for self-training
can be established [32]. In [40], assumptions based on model similarity are used to help explain why
classifiers exhibit linear trends between their accuracies on shifted and unshifted test sets [56, 43].
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Our technical tools build on a series of works that have studied the exact high-dimensional limit of
the test error for a growing class of model families and data distributions. In the context of linear
models, recent work analyzes ridge regression for general covariances and a general non-isotropic
source condition on the parameters which generate the targets [57], extending earlier work studying
minimum-norm interpolated least squares and ridge regression in the random design setting [9, 14, 24].
The non-isotropy of source parameter effectively induces a shift on the bias term of this model, but
the phenomenon is distinct from the covariate shifts we study here. Beyond linear regression, random
feature models provide a rich but tractable class of models to gain further insight into generalization
phenomena [2, 3, 41, 35]. These methods are of particular interest because of their connection to
neural networks, with the number of random features corresponding to the network width (or model
complexity) [48, 33, 29], and because they serve as a practical method for data analysis in their own
right [54, 61]. In this context, a precise characterization of the gaps between uniform convergence and
the (asymptotic) exact test error as a function of the sample size and number of random features can be
derived [68]. Since this paper’s publication, we released follow-up work considering unequal scales
in the training and test distributions and optimal regularization [64]. From the technical perspective,
our analytic techniques build upon these works and a series of recent results stemming from the
literature on random matrix theory and free probability [53, 52, 1, 2, 38, 51, 19, 45].

2 Preliminaries

2.1 Problem setup and notation

As in prior work studying random feature regression [24, 41, 2, 1], we compute the test error in the
high-dimensional, proportional asymptotics where the dataset size m, input feature dimension n0, and
hidden layer size n1 all tend to infinity at the same rate, with � := n0/m and  := n0/n1 held fixed.
We refer to �/ as the overparameterization ratio, which is the limit of n1/m and characterizes the
normalized complexity of the (random) feature model.

Interestingly, in this high-dimensional limit, the conditional distribution of a linear labeling function is
asymptotically equivalent to a wide class of nonlinear teacher functions (see [41, 2] for more details).
With this in mind, we consider the task of learning an unknown function from m i.i.d. samples
(xi, yi) 2 Rn0 ⇥ R for i 2 {1, . . . ,m}, where the covariates are Gaussian, xi ⇠ N (0,⌃) with
positive definite covariance matrix ⌃, and the labels are generated by a linear function parameterized
by � 2 Rn0 , drawn from N (0, In0). In particular

y(xi) = �>xi/
p
n0 + ✏i, (1)

where ✏i ⇠ N (0,�2
✏
) is additive label noise on the training points.

We study the class of prediction models defined by kernel ridge regression using unstructured random
feature maps [54]. The random features are given by a single-layer, fully-connected neural network
with random weights. Given a set of training data X = [x1, . . . ,xm] and a prospective test point x,
the random features embeddings of the training and test data are given by

F := �(WX/
p
n0) and f := �(Wx/

p
n0) , (2)

for a random weight matrix W 2 Rn1⇥n0 with i.i.d. standard Gaussian entries and an activation
function � : R ! R applied elementwise. The induced kernel is

K(x1,x2) :=
1

n1
�(Wx1/

p
n0)

>�(Wx2/
p
n0) , (3)

and the model’s predictions are given by ŷ(x) = Y K�1Kx, where Y := [y(x1), . . . , y(xm)],
K := K(X,X)+�Im, Kx := K(X,x), and � � 0 is a ridge regularization constant1. Owing to the
implicit regularization effect of the nonlinear feature maps [7], in low noise settings the optimal value
of � can sometimes be negative [30]. For simplicity, we nevertheless make the standard assumption
that � � 0, though we emphasize our techniques readily accommodate negative values.

1We overload the definition of K to include the additive regularization whenever no arguments are present.
Also, if � = 0 and K is not full-rank, K�1 should be understood as the Moore–Penrose pseudoinverse.
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Our central object of study is the expected test loss for a datapoint x ⇠ N (0,⌃⇤) where ⌃⇤ may be
different from the training covariance ⌃. The test error (without label noise on the test point) is

E⌃⇤ = E[(�>x/
p
n0 � Y K�1Kx)

2] (4)

= Ex,� [(E[ŷ(x)]� y(x))2]
| {z }

B⌃⇤

+Ex,� [V[ŷ(x)]]| {z }
V⌃⇤

, (5)

where the inner expectations defining the bias and variance are computed over W , X , and Y . We
decompose the training and test covariance matrices into eigenbases as ⌃ =

P
n0

i=1 �ivivi
> and ⌃⇤ =P

n0

i=1 �
⇤
i
v⇤
i
v⇤
i

>, where the eigenvalues are in nondecreasing magnitude, i.e. �1  �2  . . .  �n0

and �⇤1  �⇤2  . . .  �⇤
n0

. We define the overlap coefficients

ri := v>
i
⌃⇤vi =

n0X

j=1

(v⇤
j
· vi)

2�⇤
j

(6)

to measure the alignment of ⌃⇤ with the ith eigendirection of ⌃. In particular, ri is the induced
norm of vi with respect to ⌃⇤. We use t̄r to denote the dimension-normalized trace: for a matrix
A 2 Rn⇥n, t̄r(A) = 1

n
tr(A). We use kAk1 and kAkF to denote the operator norm and Frobenius

norm of matrix A respectively. Finally, we use �x to denote the Dirac delta function centered at x.

2.2 Assumptions

Regularity assumptions on the spectra of ⌃ and ⌃⇤ are necessary to state the limiting behavior of this
system. As in [67], it is not sufficient to consider the spectra of these matrices individually; they must
be considered jointly. We do this in an eigenbasis of ⌃.
Assumption 1. We define the empirical joint spectral distribution (EJSD) as

µn0
:=

1

n0

n0X

i=1

�(�i,ri) (7)

and assume it converges in distribution to some µ, a distribution on R2
+ as n0 ! 1. We re-

fer to µ as the limiting joint spectral distribution (LJSD), and emphasize that this defines the
relevant limiting properties of the train and test distributions2. Additionally, we require that
lim sup

n0
max(k⌃k1, k⌃⇤k1)  C for a constant C.

Often we use (�, r) for random variables sampled jointly from µ and denote the marginal of � under
µ with µtrain. The conditional expectation E[r|�] is an important object in our study. We frequently
overload the notation E[r|�] to view it as a function of �, and we assume the following for simplicity.

Assumption 2. µ is either absolutely continuous or a finite sum of delta masses. Moreover, the
expectations of � and r are finite.

When the eigenspaces of ⌃ and ⌃⇤ are aligned and ri = �⇤
i
= �(�i) for some smooth function �, the

support of the LJSD degenerates. Here, Assump. 1 is essentially equivalent to assuming the empirical
spectral distribution of ⌃ converges in distribution to some µtrain, which is a standard assumption
in the regression literature [14, 41]. One special case of note is when there is no shift, i.e. � is the
identity, in which case the LJSD degenerates to µ; defined by

µ;(�, r) := µtrain(�)��(r) , i.e. (�,�) ⇠ µ; for � ⇠ µtrain . (8)
As our analysis will eventually take place in the high-dimensional limit, we further define
the asymptotic scales of the training and test covariances as s := limn0!1 t̄r(⌃) = Eµ[�] and
s⇤ := limn0!1 t̄r(⌃⇤) = Eµ[r] under the limiting behavior specified in Assump. 1.

Throughout this paper, we also enforce the following standard regularity assumptions on the activation
functions to ensure the existence of the moments and derivatives we compute.
Assumption 3. The activation function � : R ! R is assumed to be differentiable almost everywhere.
We assume that, |�(x)|, |�0(x)|  c0 exp(c1x) for constants c0, c1.

2Note that the EJSD depends not only on ⌃ and ⌃⇤ but also on a choice of eigendecomposition for ⌃ when
it has repeated eigenvalues. However, all possible choices for the EJSD form an equivalence class, and the
ambiguity does not affect later definitions and conclusions. See Sec. A3.
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2.3 A simple family of diatomic distributions

As the above assumptions allow such a general class of covariance structures, it is useful to consider
our results in the context of a simple family of distributions that readily admits a simple interpretation.
Definition 2.1. For ↵ � 1 and ✓ 2 R, we define the family of (↵, ✓)-diatomic LJSDs with ✓-power-
law shifts as

µdiatomic
↵,✓

:=
1

↵+ 1
�(↵,C↵✓) +

↵

↵+ 1
�(↵�1,C↵�✓), (9)

where C is a normalization constant chosen so that E
µ

diatomic
↵,✓

[r] = 1. Note that µdiatomic
↵,✓

is the limit of

⌃ij :=

8
><

>:

↵ if i = j and i  b n0
1+↵c

↵�1 if i = j and i > b n0
1+↵c

0 if i 6= j

and ⌃⇤ :=
1

t̄r(⌃✓)
⌃✓ . (10)

This simple two-parameter family of distributions captures the fast eigenvalue decay observed in
many datasets in machine learning, for which the covariance spectra are often dominated by several
large eigenvalues and exhibit a long tail of many small eigenvalues [34]. Note that the trivial case of
↵ = 1 yields an identity covariance with no shift. For the nontrivial setting ↵ > 1, the exponent ✓
parameterizes the strength of the shift in an intuitive way: when ✓ = 1, there is no shift; when ✓ < 1,
↵✓ < ↵, so the large eigendirections of the training distribution are suppressed in the test distribution,
suggesting that the shift makes learning harder; when ✓ > 1, ↵✓ > ↵, so the large eigendirections
of the training distribution are further emphasized in the test distribution, suggesting that the shift
makes learning easier. We will return to the notion of shift strength in Secs. 3 and 4.

3 Motivating example: linear regression
We first consider the relatively simple case of ridgeless linear regression (LR), which will help build
some intuition for the more general analysis of random feature regression in Sec. 5.1. Assuming the
labels are generated by the linear model defined above, i.e. yi = �>xi/

p
n0 + "i, the estimator is

given by �̂ = (XX>)�1XY , and the test risk (see Eq. (4)) has the following simple form.
Proposition 3.1. For fixed dimension n0 and sample size m>n0+1, the test error of LR is given by

ELR
⌃⇤ = �2

✏

n0

m� n0 � 1
t̄r(⌃⇤⌃�1) = �2

✏

n0

m� n0 � 1

1

n0

n0X

i=1

ri
�i

. (11)

Under Assump. 1, as n0,m ! 1 with � = n0/m fixed, ELR
⌃⇤ ! ELR

µ
= �2

✏
�/(1� �)Eµ[r/�].

One immediate question is whether a given shift will increase or decrease the test error relative to
ELR

⌃ . While the precise answer is of course determined by the value of t̄r(⌃⇤⌃�1), it useful for the
subsequent analysis to develop an understanding of the individual contributions to this term. Similar
decompositions of the test error into eigenspaces have proved useful in a variety of other contexts, e.g.
[42, 4]. We begin with a specific example in the setting of the finite-dimensional analog of Def. 2.1.
Example 3.1. For the finite form of the (↵, ✓)-diatomic density defined in Eq. (10), the test error of
LR is given by

ELR
⌃⇤ = �2

✏

n0

m� n0 � 1

↵+ w(↵2✓�1 � ↵)

1 + w(↵2✓ � 1)
for w =

1

n0

�
n0

1 + ↵

⌫
, (12)

and so @

@✓
ELR

⌃⇤ = �2
✏

n0
m�n0�1

2(1�w)w↵2✓�1(1�↵2) log(↵)
(1+w(↵2✓�1))2  0, which implies ELR

⌃⇤
1
 ELR

⌃⇤
2

whenever
✓1 � ✓2, in accordance with the discussion in Sec. 2.3. It follows from Eq. (10) that the condition
✓1 � ✓2 not only implies t̄r(⌃⇤

1⌃
�1)  t̄r(⌃⇤

2⌃
�1), but also that the ratios of overlap coefficients

ri,1/ri,2 form a nondecreasing sequence. It is this condition involving all the eigendirections that
will generalize to the nonlinear random feature setting in Sec. 4.

The following proposition captures the essence of these considerations in the context of linear
regression. See Sec. A4 for the proof.
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Proposition 3.2. Let ri,1 and ri,2 denote the overlap coefficients3 of ⌃⇤
1 and ⌃⇤

2 relative to ⌃. If
tr(⌃⇤

2) � tr(⌃⇤
1) and the ratios ri,1/ri,2 form a nondecreasing sequence, then in the setting of

Prop. 3.1, ELR
⌃⇤

2
� ELR

⌃⇤
1
.

Whereas the (↵, ✓)-diatomic LJSDs explicitly enforce the trace normalizations
tr(⌃) = tr(⌃⇤

1) = tr(⌃⇤
2) = 1, Prop. 3.2 provides sufficient conditions for the ordering of

test errors for non-unit traces. The fact that ELR
⌃⇤ scales linearly with the overall scale of ⌃⇤ is a

unique feature of linear regression and does not generalize to the nonlinear random feature setting.
We return to this issue in Sec. 4.

4 Definition of shift strength
Deriving conditions on whether a shift will hurt or help a model’s performance is crucial to building
an understanding of covariate shift. Motivated in part by the above results for linear regression, and
in part by the results for random feature regression that we present in Sec. 5.3, we introduce the
following definition of shift strength, which is a direct generalization of the conditions of Prop. 3.2:
Definition 4.1. Let µ1 and µ2 be LJSDs with the same marginal distribution of �, denoted µtrain. If
the asymptotic overlap coefficients are such that Eµ1 [r|�]/Eµ2 [r|�] is nondecreasing as a function of
� on the support of µtrain and Eµ1 [r]  Eµ2 [r], we say µ1 is easier than µ2 (or µ2 is harder than µ1),
and write µ1  µ2. Comparing against the case of no shift µ;, we say µ1 is easy when µ1  µ; and
hard when µ1 � µ;.

A priori, there is little reason to hope that such a model-independent definition of shift strength would
adequately characterize a shift’s impact on the total error, bias, or variance of a given model. Even for
the relatively simple case of random feature kernel regression, the nonlinear feature maps of Eq. (2)
would seem to inextricably couple the covariance distribution to the model.

Nevertheless, as we show in Sec. 5.1, the coupling between model and shift simplifies considerably
in the high-dimensional proportional asymptotics. It is characterized by a handful of constants that
depend solely on the overall covariance scale Eµ[r] and a collection of functionals of µ, whose
magnitudes can be bounded in terms of the ratio Eµ[r|�]/Eµ; [r|�]. The conditions that Def. 4.1
places on Eµ[r] and Eµ[r|�]/Eµ; [r|�] can be augmented by various constraints on the model to
derive bounds on how the total error and bias will respond to a shift of a given strength. This
perspective introduces considerable complexity and we present the details of this analysis elsewhere.

In this work, we focus on a simpler, surprising result: by merely normalizing the scales of the
covariate distributions (i.e. enforcing s = s⇤), Def. 4.1 provides a model-independent definition of
shift strength that determines how random feature models respond to shifts of different strength. This
observation motivates the following assumption.
Assumption 4. The training and test covariance scales are equal, Eµ[�] = Eµ[r], i.e. s = s⇤.

We emphasize that Assump. 4 reflects common practice for many models and data modalities, as
preprocessing techniques such as standardization are ubiquitous and many architectural components
such as layer- or batch-normalization achieve a similar effect [21, 28, 46].

5 Covariate shift in random feature kernel regression
5.1 Main results

Our main results characterize the high-dimensional limits of the test error, bias, and variance of the
nonlinear random feature model of Sec. 2. Before stating them, we first introduce some additional
constants that capture the effect of the nonlinearity �. For z ⇠ N (0, s), define

⌘ := V[�(z)] , ⇢:= ( 1
s
E[z�(z)])2 , ⇣ := s⇢ , and ! := s(⌘/⇣ � 1) . (13)

Our results also depend on the covariance spectra through two sets of functionals of µ,

Ia,b(x) := � Eµ

⇣
�a (�+ x�)�b

⌘
and I⇤

a,b
(x) := � Eµ

⇣
r�a�1 (�+ x�)�b

⌘
. (14)

3Recall the definition of the overlap coefficients in Eq. (6).
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Figure 1: The asymptotic predictions of Thm. 5.1 as a function of the overparameterization ratio
(�/ = n1/m) and the shift power (✓) for the (2, ✓)-diatomic LJSD (Eq. (9)) with � = n0/m = 0.5,
� = ReLU, � = 0.001, and �2

"
= 0.1. (a) The test error exhibits the characteristic double descent

behavior for all shift powers. (b) The bias is a nonincreasing function of �/ for all shift powers,
as in Prop. 5.2. (c) The variance is the source of the double-descent peak, and is a nonincreasing
function of �/ for all shift powers in the overparameterized regime, as in Prop. 5.3. In (a,b), the
total error and bias are nonincreasing functions of ✓, as in Prop. 5.1. (d) 1D horizontal slices of (a,b,c)
demonstrate the monotonicity in �/ predicted by Props. 5.2 and 5.3. (e) 1D vertical slices of (a,b,c)
demonstrate the monotonicity in ✓ predicted by Prop. 5.1 (the variance also appears monotonic, but
it need not be in general). (f) The generalization gap between the error on shifted and unshifted
distributions is a nonincreasing function of �/ in the overparameterized regime, as in Prop. 5.4.
Markers in (d,e,f) show simulations for n0 = 512 and agree well with the asymptotic predictions.

Theorem 5.1. Under Assumps. 1, 2, 3 and 4, as n0, n1,m ! 1 the test error E⌃⇤ converges to
Eµ = Bµ + Vµ, with the bias Bµ and variance Vµ given by

Bµ = �I⇤
1,2 (15)

Vµ = �⇢ 
�

@x

@�

✓
I1,1(! + �I1,2)(! + I⇤

1,1) +
�2

 
�⌧̄I1,2I⇤

2,2

+ �⌧I2,2(! + �I⇤
1,2) + �2

"

⇣
(! + �I1,2)(! + I⇤

1,1) +
�

 
�⌧̄I⇤

2,2

⌘◆
, (16)

where x is the unique nonnegative real root of x = 1��⌧
!+I1,1

, @x
@�

= � x

�+⇢�(⌧ /�+⌧̄)(!+�I1,2)
, and

⌧ =

p
( � �)2 + 4x ��/⇢+  � �

2 �
and ⌧̄ =

1

�
+
 

�

�
⌧ � 1

�

�
. (17)

Numerical predictions from Thm. 5.1 can be obtained by first solving the self-consistent equation for
x by fixed-point iteration, x 7! 1��⌧

!+I1,1
, and then plugging the result into the remaining terms. Fig. 1

shows excellent agreement between these asymptotic predictions and finite-size simulations.

At times we will find it convenient to consider the ridgeless limit of Thm. 5.1. By carefully expanding
x and ⌧ for small �, it is straightforward to obtain the following corollary.
Corollary 5.1. In the setting of Thm. 5.1, as the ridge regularization constant � ! 0, Eµ = Bµ+Vµ

with Bµ given in Eq. (15) and Vµ given by

Vµ =
 

|��  |x(�
2
"
+ I1,1)(! + I⇤

1,1) +

8
<

:
x
⇣
1� x(!��2

")
1�x2I2,2

⌘
I⇤
2,2 � �  

x
2
 I2,2

��x2 I2,2

�
! + �I⇤

1,2

�
� <  

, (18)

where x is the unique positive real root of x = min(1,�/ )
!+I1,1

.
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Taking �(x) = x and  ! 0 in Cor. 5.1 yields an expression for the test error of ridgeless linear
regression that agrees with [24] and with the asymptotic form of Prop. 3.1 (see Sec. A4.2).

5.2 Harder shifts increase the bias and test error

The bias and variance in Thm. 5.1 depend on the covariate shift exclusively through I⇤
a,b

— all other
terms such as x, ⌧ , ⌧̄ , and Ia,b only depend on the marginal of � under µ. The functionals I⇤

a,b

generalize the simple ratio of overlap coefficients to eigenvalues, Eµ[r/�], that characterizes the error
for linear regression (indeed, I⇤

0,0 = �Eµ[r/�]). In contrast, the error in the random feature setting is
a combination of multiple such terms. Nevertheless, Def. 4.1 enables comparisons of the individual
I⇤
a,b

functionals, which provide sufficient conditions to order the error and bias.
Proposition 5.1. Consider two LJSDs such that µ1  µ2 (see Def. 4.1). Then, in the setting of
Thm. 5.1, Bµ1  Bµ2 and, if �2

"
 !, Eµ1  Eµ2 .

Prop. 5.1 shows that Def. 4.1 provides an essentially model-independent condition to determine
the impact of covariate shift on the test error4. Interestingly, both the bias (which arises from
both regularization and model misspecification) and the total error (which has additional variance
contributions from the randomness induced by W , X , and ✏) respond to shifts in tandem in the
regime of small label noise. (For large label noise, the variance can dominate the error and cause
violations of monotonicity; see Sec. 5.5.) Prop. 5.1 is illustrated for the (↵, ✓)-diatomic LJSD in
Fig. 1: following the vertical lines upward in (a), (b), or the x-axis rightward in (e) yields easier shifts
and a corresponding decrease in the bias and total error.

5.3 The benefit of overparameterization

While Prop. 5.1 shows that harder shifts increase the error, it is natural to wonder whether this increase
can be mitigated by judicious model selection. In practice, empirical investigations have shown that
the performance of large, overparameterized models tends to deteriorate less under distribution shift
than their smaller counterparts [26]. We obtain a number of theoretical results that formally prove the
benefit of overparameterization in our random feature setting.

First, we show that the bias decreases (or stays constant) when additional random features are added,
which increases the model capacity and accords with the intuition of the bias as a measure of the
model’s ability to fit the data.
Proposition 5.2. In the setting of Thm. 5.1, the bias Bµ is a nonincreasing function of the overpa-
rameterization ratio �/ .

In contrast to the bias, which is monotonic for all overparameterization ratios, the variance can
exhibit nonmonotonic behavior in the underparameterized regime. On the other hand, the following
proposition shows that in the overparameterized regime, the variance is also nonincreasing. Note that
our proof requires the setting of ridgeless regression (� = 0), but numerical investigation suggests
this condition may not be necessary (see Fig. 1).
Proposition 5.3. In the setting of Cor. 5.1 and in the overparameterized regime (i.e.  < �), the
variance Vµ is a nonincreasing function of the overparameterization ratio �/ .

The explosion of variance at the interpolation threshold and then its subsequent decay have been
demonstrated in previous exact asymptotic studies of random feature regression in the absence of
covariate shift, in stark contrast to what classical theory would suggest [2, 41]. Prop. 5.3 confirms the
existence of analogous behavior under covariate shift.

Taken together, Props. 5.2 and 5.3 imply that some of the benefits of overparameterization extend
to models evaluated out-of-distribution. An additional benefit is that overparameterized models are
more robust: the difference in error between unshifted and shifted test distributions is smaller for
larger models. A formal statement of this enhanced robustness is given in the following result.
Proposition 5.4. Consider two LJSDs such that µ1  µ2 (see Def. 4.1). Then, in the setting of
Cor. 5.1 and in the overparameterized regime (i.e.  < �), the generalization gap Eµ2 � Eµ1 is a
nonincreasing function of the overparameterization ratio �/ .

4The weak model-dependence arising from the condition �2
" < ! can instead be regarded as a small

label-noise condition that can always be satisfied for ! > 0, which is true for any nonlinear � (see Sec. A1).
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Figure 2: Linear relationship between in-distribution and out-of-distribution generalization error.
(a) Asymptotic predictions for shifted versus unshifted error for models with varying degrees of
overparameterization �/ > 1, obtained via Cor. 5.1 for the (3, ✓)-diatomic LJSD (Eq. (9)) with
� = n0/m = 0.5, � = ReLU, �2

"
= 0.01 and two different values of the shift-power ✓. Markers

represent simulations for n0 = 512. The negated errors are plotted so that performance improves left
to right and bottom to top, in order to match the behavior of the accuracy metric. (b) Reproduction
of the empirical results of [56, 63], showing the relationship between the classification accuracy of
various models on the original ImageNet test set and two shifted ImageNet datasets: a “hard" dataset
with greyscale corruptions, Grey, and an “easy" dataset with high inter-annotator agreement, TopImgs.
In both (a) and (b), the slope is greater than one for the hard shift and less than one for the easy shift,
in accordance with Prop. 5.5.

In Fig. 1, Props. 5.2, 5.3 and 5.4 are illustrated. Following the horizontal lines rightward in (a), (b),
and (c) or the x-axis rightward in (d) and (f) leads to models with more parameters. The monotonicity
of the bias across the whole range of parameterization is evident, as is the necessity of considering
the monotonicity of the variance and generalization gap only when � >  .

5.4 Linear trends between in-distribution and out-of-distribution generalization

We have discussed how overparameterization yields improvements on both unshifted and shifted test
distributions, which hints that these two quantities are positively correlated. Indeed, recent work has
suggested increasing model size as a path to increased robustness [26]. Additional empirical studies
have further refined this observation by discovering a linear relationship between the performance
of models of varying complexity on unshifted and shifted data [56, 63]. In the context of ridgeless
random feature regression, we provide a formal proof of this linear relationship.
Proposition 5.5. In the setting of Cor. 5.1 and in the overparameterized regime (i.e.  < �),

Eµ = E0 +
⇣! + I⇤

1,1

! + I1,1

⌘

| {z }
SLOPE

Eµ; , (19)

parametrically in the overparameterization ratio �/ , where E0 and SLOPE are constants indepen-
dent of �/ , and Eµ; is the error on the unshifted distribution. Moreover, SLOPE � 1 when µ is
hard and SLOPE  1 when µ is easy.

Eq. (19) implies a parametrically linear relationship between Eµ and Eµ; by varying �/ . Prop. 5.5
also makes the nontrivial prediction that an improvement on the unshifted distribution leads to a
relatively greater improvement on the shifted distribution when the shift is hard, and to a relatively
smaller improvement when the shift is easy. This prediction is corroborated qualitatively in the data
from [55, 56, 43]. We plot this linear behavior in Fig. 2, where (a) shows the random feature model
and (b) shows an example of data from [56, 63]. The striking similarity in these plots is evident.

5.5 Importance of assumptions

Props. 5.1, 5.2, 5.3, 5.4 and 5.5 rely on a number of assumptions and conditions; here we show the
necessity of some of these prerequisites for our results.
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Figure 3: Relaxing the assumptions and conditions can lead to counterexamples to the propositions.
(a) Asymptotic predictions (solid lines) and simulations with n0 = 4096 (markers) for the total error,
bias, and variance for the (4, ✓)-diatomic LJSD with � = 4,  = 0.25, � = 10�4, and � = ReLU
(implying ! = 1 � 2

⇡
⇡ 0.36) as a function of increasing shift power ✓. When �2

"
< ! (dashed

curves), the bias and total error are nonincreasing, as predicted by Prop. 5.1, though the variance
is not. When �2

"
> ! (solid curves), the total error is no longer nonincreasing. (b) Asymptotic

predictions (solid lines) and simulations with n0 = 256 (markers) for the total error with � = 0.5,
� = 0.1, � = ReLU and �2

"
= 0.01 as a function of the overparameterization ratio �/ for four

different LJSDs µ1, . . . , µ4, chosen such that the only comparable pairs of LJSDs under the partial
order in Def. 4.1 are µ1 � µ4 and µ2 � µ4, and the strict ordering of the error for those pairs is
seen for all values of �/ . The orange (µ2) and green (µ3) curves cross one another, illustrating how
nonmonotonicity of overlap ratios in Def. 4.1 can induce model-dependence in the ordering of the
error. (c) Asymptotic predictions (solid lines) and simulations for n0 = 512 (markers) for shifted
versus unshifted error for models with varying values of the overparameterization ratio �/ , obtained
via Thm. 5.1 for the (3,�1/2)-diatomic LJSD with � = 0.5, � = ReLU, �2

"
= 0.01, and � = 0.005.

While the relationship is nearly linear in the overparameterized regime, it is markedly nonlinear in
the underparameterized regime, highlighting the importance of overparameterization in Prop. 5.5.

Prop. 5.1 relies on a small label-noise condition (�2
"
 !) to ensure that the total error is ordered

with respect to shift strength. The reason this condition is necessary is that the variance can actually
increase as shifts become easier. While Fig. 1 presented a configuration for which the bias, variance,
and error all decrease for easier shifts, Fig. 3(a) shows that a decrease is not guaranteed for the
variance, and that it can increase even under the small label-noise condition. Moreover, while the
bias continues to decrease for large label noise (�2

✏
> !), the variance can become so large that bias

can no longer offset it, causing the error itself to increase, as seen in Fig. 3(a).

The strict ordering of overlap coefficients in Def. 4.1 are also necessary to guarantee a complete
decoupling of the model and the shift strength. In the absence of these conditions, Fig. 3(b) shows
how even a single out-of-order overlap coefficient induces a violation of the monotonicity with respect
to shift strength suggested by Prop. 5.1 (this example is detailed further in Sec. A8).

Finally, we note that the exact linear relationship between in-distribution and out-of-distribution
generalization characterized by Prop. 5.5 in Eq. (19) relies crucially on the overparameterization
condition,  < �, as evidenced in Fig. 3(c), which shows marked nonlinearity in the underparameter-
ized regime. This observation is perhaps unsurprising, as severely underparameterized models tend
towards chance predictions, which produce comparable errors on shifted and unshifted data. Indeed,
similar nonlinear behavior is seen in the low-accuracy regime for realistic models [56, Figure 17].

6 Conclusion

We have presented an exact, asymptotic calculation of the test error, bias, and variance for random
feature kernel regression in the presence of covariate shift. After defining a partial order over covariate
shifts (motivated by the setting of linear regression), we have proved that harder shifts imply increased
error. Our results capture many empirical phenomena such as the fact that overparameterization is
beneficial even under covariate shift and that a linear relationship exists between the generalization
error on shifted and unshifted data. Future directions include extending our results to the non-
asymptotic regime, accommodating feature learning and more general neural network models, and
investigating the impact of covariate shift for other loss functions.
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