
Drop-DTW: Aligning Common Signal Between
Sequences While Dropping Outliers

(Supplementary Material)

Nikita Dvornik 1,2 Isma Hadji 1 Konstantinos G. Derpanis 1 Animesh Garg 2 Allan D. Jepson 1

1Samsung AI Centre Toronto
2University of Toronto, Vector Institute

{isma.hadji, allan.jepson}@samsung.com
{n.dvornik, k.derpanis}@partner.samsung.com

garg@cs.toronto.edu

1 Summary

Our supplemental is organized as follows. Sec. 2.1 provides the details of the full version of our
Drop-DTW algorithm that allows for dropping outliers from both sequences during alignment.
Sec. 2.2 provides implementation details for the the asymmetric match cost. Sec. 2.3 describes
the regularization loss used for the multi-step localization application (Sec. 4.2 in the main paper).
Finally, Sec. 3 provides additional details for our experimental setups.

2 Technical approach details

In this section, we provide additional details of our Drop-DTW algorithm and its components.

2.1 Drop-DTW algorithm

Algorithm 1 presents the full version of Drop-DTW. This version allows to drop outlier elements
from both sequences, X and Z. In Algorithm 1, the operation ⊕ between a set and a scalar
increases every element of the set by the scalar, i.e., {si}Ni ⊕ c = {si + c}Ni . The main idea of
Algorithm 1 is to simultaneously solve four dynamic programs (and fill their corresponding tables),
i.e., Dzx, Dz−, D−x, and D−−:

• Dzx
i,j corresponds to the optimal cost of a feasible prefix path that matches (z1, . . . , zi)

and (x1, . . . , xj) with Drop-DTW, given that this feasible prefix path ends with zi and xj
matched to each other.

• Dz−
i,j represents the optimal matching cost for a prefix path ending with element xj dropped

from the matching, and zi matched to some previous element xk, k < j.

• D−xi,j corresponds to dropping zi while matching xj .

• D−−i,j is for prefix paths ending by dropping both xj and zi.

The optimal alignment cost of matching (z1, . . . , zi) and (x1, . . . , xj) with Drop-DTW is
then the minimum over the paths with the different types of endpoints, i.e., Di,j =
min{Dzx

i,j , D
−x
i,j , D

z−
i,j , D

−−
i,j }.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Algorithm 1 Subsequence alignment with Drop-DTW.

1: Inputs: C ∈ RK×N (pairwise match cost matrix), dz , dx (drop costs for elements in X and Z respectively).
2: . initializing DP tables for storing the optimal alignment path costs with different ends match conditions
3: Dzx

0,0 = 0;Dzx
i,0 =∞;Dzx

0,j =∞; i ∈ JKK, j ∈ JNK . matching ends in X and Z

4: Dz−
0,0 = 0;Dz−

i,0 =∞;Dz−
0,j =

∑j
k=1 d

x
k; i ∈ JKK, j ∈ JNK . dropping X’s end, but matching Z’s end

5: D−x
0,0 = 0;D−x

i,0 =
∑i

k=1 d
z
k;D

z−
0,j =∞; i ∈ JKK, j ∈ JNK . dropping Z’s end, but matching X’s end

6: D−−
0,0 = 0;D−−

i,0 = Dx−
i,0 ;D

−−
0,j = D−z

0,j ; i ∈ JKK, j ∈ JNK . dropping ends in Z and X
7:
8: for i = 1, . . . ,K do . iterating over elements in Z
9: for j = 1, . . . , N do . iterating over elements in X

10: . grouping costs into neighboring sets for convenience
11: diag_cells = {Dzx

i−1,j−1, D
z−
i−1,j−1, D

−x
i−1,j−1, D

−−
i−1,j−1}

12: left_cells_with_z = {Dzx
i,j−1, D

z−
i,j−1}

13: top_cells_with_x = {Dzx
i−1,j , D

−x
i−1,j}

14: left_cells_without_z = {D−x
i,j−1, D

−−
i,j−1}

15: top_cells_without_x = {Dz−
i−1,j , D

−−
i−1,j}

16: . dynamic programming update on all tables
17: Dzx

i,j = Ci,j +min{diag_cells∪ left_cells_with_z∪ top_cells_with_x} . consider matching zi to xj

18: Dz−
i,j = dxj +min{left_cells_with_z} . consider dropping xj

19: D−x
i,j = dzi +min{top_cells_with_x} . consider dropping zi

20: D−−
i,j =min{top_cells_without_x⊕ dzi ∪ left_cells_without_z⊕ dxj } . consider dropping xj and zi

21: Di,j = min{Dzx
i,j , D

z−
i,j , D

−x
i,j , D

−−
i,j } . select the optimal action

22: end for
23: end for
24: M∗ = traceback(D) . compute the optimal alignment by tracing back the minimum cost path
25: Output: DK,N , M∗

2.2 Asymmetric match costs

In cases where there is asymmetry between input sequences X and Z ingested by Drop-DTW, e.g.,
X is a video with outliers and Z is a sequence of (outlier-free) step labels contained in a video, we
define an asymmetric match cost in Eq. 4 of the main paper. Expanding the softmax in Eq. 4, the
asymmetric cost can be written as follows:

Ca
i,j = − log

(
exp(z>i xj)∑

zk∈Z exp(z>k xj)

)
. (1)

Note that our implementation slighly differs from the above formulation. Precisely, to avoid “over-
smoothing” the softmax, we perform the summation in the denominator in Eq. 1 over the unique
elements in Z only. This is implemented by performing the summation in the denominator over a
different set of elements zk ∈ Z+, where Z+ is obtained from Z by removing duplicate elements.

2.3 Training regularization for multi-step localization

In our experiments, we consider the Drop-DTW loss (i.e., Eq. 8 in the main paper) for video sequence
labeling (i.e., Sec. 4.2 in the main paper), where a video sequence is aligned to a sequence of (discrete)
labels from a finite set. An issue with this setting is that the alignments for minimizing the loss are
prone to limiting correspondences to the most frequently occurring labels in the dataset.

To address this degeneracy, we augment our Drop-DTW loss with the following regularizer that
promotes more uniform matching between the elements of the video sequence, X ∈ RN×d, and the
sequence of discrete labels, Z ∈ RK×d:

Lclust = ||I − X̂Z>||2, (2)

2

where I ∈ RK×K is the identity matrix and X̂ = (x̂1, . . . , x̂K) ∈ RK×d. Each element x̂i in X̂ is
defined according to

x̂i =

N∑
j=1

xj · softmax(Xzi/γ). (3)

In other words, x̂i in Eq. 3 defines attention-based pooling of sequence x, relative to an element zi.
Minimizing Lclust pushes every element in Z to have a unique match in X , which prevents overfitting
to frequent labels in Z and encourages the clustering of the embeddings xi around the appropriate
label embeddings zi.

3 Experiments details

3.1 Controlled synthetic experiments

In the main paper, we performed a controlled experiment using a synthetic dataset that we generated.
Here, we provide a detailed description of this dataset and additional details of our retrieval experi-
ments. In addition, we use this dataset here to further show the usage of Drop-DTW for subsequence
localization in such controlled settings.

Synthetic dataset. We start from the MNIST dataset [1] and use it to generate videos of digits
moving around an empty canvas, cf. [2], with just one digit per canvas. In particular, we place
28 × 28 MNIST images on a 64 × 64 black canvas, where an image can move along one of eight
pre-defined trajectories. The trajectories are: (a) figure “8”, (b) figure “∞”, (c) circle “©”, all
clockwise; trajectories (d), (e), (f) are obtained from (a), (b), and (c) but moving counter-clockwise;
and finally (i) and (j) are the square diagonals (“/” and “\”).

To synthesize a moving digit video, s, we perform the following four steps:

1. Choose a digit, d, from [0, . . . , 9] and a trajectory, t, from [a, . . . , j].

2. Sample a random image I of digit d from MNIST.

3. Choose a random video length. T ∈ [30, . . . , 50], and sample T equally-spaced 2D points
[p1, . . . , pT] along the trajectory t.

4. Synthesize each frame, si, in the output video, s, by placing the digit image I onto the
canvas at location pi.

Note that since each video length, T , is randomly selected, the moving speed of the digits vary across
the generated videos.

For each digit-trajectory pair, we follow the steps described above and generate two videos: (i) the
digit executes a full trajectory and (ii) the digit performs a portion of the trajectory. We term videos
falling under these two categories, TMNIST-full and TMNIST-part, respectively, where TMNIST
stands for Trajectory-MNIST. Each dataset contains 80 (10 digits × 8 trajectories) video clips in total.
Please refer to the supplemental video for sample videos from our dataset as well as illustrations of
use cases in the retrieval and localization scenarios.

Encoding TMNIST. We independently encode the frames of each video in the TMNIST datasets
using a shallow 2D ConvNet. In particular, we use a four-layer ConvNet architecture. Each layer
consists of the following building blocks: conv3× 3→ bn→ relu→ maxpool2→ dropout. The last
layer eschews the local max pooling block in favor of a global average pooling followed by a linear
layer. Going through the various layers of the network an input image of size 28× 28× 3 undergoes
the following transformations: (28× 28× 3)→ (14× 14× 64)→ (7× 7× 128)→ (3× 3× 64)
→ (3× 3× 32)→ (32)→ (10). This network is trained on the MNIST dataset on the task of digit
recognition, thereby yielding a 99.53% accuracy.

In our experiments, the frame encodings are based on the last convolutional layer of the network,
such that the shape of each frame encoding is 3× 3× 32.

3

t

t

t

t GT Ours GT Ours

Sequence with 2 eventsFull signal

Noisysignal

Event sequence (x2)

(a) (b) (c)

Figure 1: Drop-DTW for retrieval and localization on TMNIST. We consider queries, Z, from TMNIST-
part with interspersed noise, for indexing into TMNIST-full. We show that Drop-DTW is more robust to
interspersed noise. (a) We consider queries, Z, from TMNIST-part with interspersed noise, for indexing into
TMNIST-full. Drop-DTW is more robust to interspersed noise than other alignment algorithms. (b) An example
query-signal correspondence matrix illustrates outlier removal, where red rows (cols) depict dropped frames in
Z (X , resp.), and green (yellow) arrows denote correct (incorrect) query outlier identification. (c) Replicating
the query and dataset signal in time demonstrates temporal localization by Drop-DTW despite signal repetitions
and interspersed outliers (see main text).

TMNIST for retrieval. In this experiment (i.e., Sec 4.1 in the main paper), we use videos from
TMNIST-part as queries and look for the most similar videos in TMNIST-full. To demonstrate
Drop-DTW’s robustness to noise we introduce noise to the query videos. In particular, we randomly
blur p% of the frames in the query. This blur is achieved by convolving the randomly selected frames
with a Gaussian kernel of radius two.

TMNIST for localization. To demonstrate Drop-DTW’s ability to identify start and end times we
consider test sequences, X , formed by concatenating M clips from TMNIST-part, where exactly
N < M of these clips are from a selected digit-trajectory class. An example of a test sequence X
is obtained by concatenating the sequences: [0, b]→ [3, c]→ [8, a]→ [3, c]→ [6, j], where each
subsequence represents a [digit, trajectory] pair. Given a target sequence Z (e.g., [3, c]), the task
is to find all time intervals corresponding to the event [3, c] in sequence X . For this purpose, we
consider queries of the form Ẑ = [Z(1), . . . , Z(N)], where each of the Z(n)’s are instances of this
same digit-trajectory class (i.e., [3, c]) in TMNIST-full.

Ideally, aligning Ẑ and X should put a subsequence of each of the Z(n)’s in correspondence with
a matching subsequence in X (see Fig. 1 (c)). By construction, there should be N such matches,
interspersed with outliers. Here, we use N = 2, M ∈ {5, . . . , 7}, and randomly generate 1000 such
sequences, X .

We use Drop-DTW to align the generated pairs, Ẑ and X , and select the longest N contiguously
matched subsequences. We recover start and end times as the endpoints of these N longest matched
intervals. We find the localization accuracy on this data is 97.1± 0.28% and IoU is 91.2± 0.71%
(see metrics definition in Sec. 4.2 of the main paper). These results demonstrate the efficacy of
Drop-DTW for localizing events in long untrimmed videos. Note that we do not compare our method
to any baseline as Drop-DTW is the only alignment-based method capable of solving this task.

3.2 Complete ablation study in instructional video step localization

Role of the regularization loss. Here, we investigate the role of each component of the proposed
loss for step localization on CrossTask [3], COIN [4] and YouCook2 [5] dataset. We train the video
embeddings with various alignment losses, with or without regularization, and compare with the
pre-trained embeddings. At inference time, we use the learned embeddings to calculate pairwise
similarities between all video clips and steps. From these similarities we obtain match and drop costs
that are then used to assign a step label to each video clip.

As seen in Table 1, using the clustering loss alone on top of the pre-trained embeddings provides
a strong baseline, as it effectively uses an unordered set of steps to learn the video representations.
Interestingly, combining SmoothDTW with Lclust to introduce order information in training does not
improve (and can decrease) performance. We conjecture that the outliers present in the sequences can
negatively impact the training signal. In contrast, training with Drop-DTW yields a significant boost

4

Table 1: Ablation study of training and inference methods for step localization on CrossTask [3],
COIN [4] and (right) YouCook2 [5]. The first column describes the loss function(s) used for training, while
the first row gives the dataset. The second row specifies the measured metric (higher is better), and the rest of
the table reports the results. Here, CT (in row 1), corresponds to the evaluation algorithm provided by CrossTask.
In column 1, ∗ indicates our re-implementation.

Method CrossTask COIN YouCook2
Recall Acc. IoU Recall Acc. IoU Recall Acc. IoU

MIL-NCE∗ [6] 39.1 66.9 20.9 33.0 50.2 23.3 70.7 63.7 43.7
SmoothDTW [7] 29.6 48.5 9.0 29.1 38.8 17.8 70.2 61.1 39.7
Drop-DTW 33.8 56.6 14.2 30.6 43.7 20.1 71.5 63.4 41.6
Lclust 43.4 70.2 29.8 37.7 53.6 27.6 75.8 66.3 47.3
SmoothDTW + Lclust 43.1 70.2 30.5 37.7 52.7 27.7 75.3 66.0 47.5
Drop-DTW + Lclust 48.2 73.5 34.4 40.8 54.8 29.5 77.4 68.4 49.4

Table 2: Ablation study on the role of the min operator used in our Drop-DTW algorithm.
CrossTask

Recall Acc. IoU
SoftMin [8] 45.9 71.8 32.9
Hard min 47.8 72.2 34.3

SmoothMin [7] 48.2 73.5 34.4

in performance on all the metrics. This suggests that filtering out the background is key to training
with step order supervision on instructional videos.

Role of the min operator. In the main paper, we use the SmoothMin approximation of the min
operator proposed in [7] to enable differentiability. This is not a key component of our contribution
and other differentiable min operators such as SoftMin [8] and the (hard) min operator can be used
as well. Corresponding results, shown in Table 2, highlight the stability of Drop-DTW across min
operators.

Role of the percentile choice in the drop cost. When training representations with Drop-DTW,
the matching costs obtained by the model evolve during the training. To have the drop cost change
accordingly, we define it as a percentile of the matching costs, in Eq. 5 of the main paper. Here, we
provide results of setting the drop cost to various percentile values. We also include comparison to
setting the drop cost as learned component as defined in Eq. 6 of the main paper.

The results provided in Table 3, demonstrate the robustness of the proposed Drop-DTW algorithm
for various choices of the percentile. Interestingly, the learned drop cost yields the best overall
performance, which demonstrates the adaptability of the Drop-DTW algorithm.

3.3 Drop-DTW for representation learning

As mentioned in the main paper, we use the PennAction dataset [9] to evaluate Drop-DTW for
representation learning. To evaluate the robustness to outliers, we contaminate PennAction sequences
with p% interspersed outlier frames. Here, we give more details on the contamination and alignment
procedures.

Table 3: Ablation study on the role of the percentile used in the drop cost definition of Drop-DTW.
CrossTask

Recall Acc IoU
p = 0.1 47.1 72.5 34.9
p = 0.3 48.2 73.5 34.4
p = 0.5 46.2 71.5 32.0
p = 0.7 45.3 71.4 32.0
p = 0.9 44.6 71.7 31.0

learned drop-cost 49.1 71.5 34.5

5

Outliers

Figure 2: Illustration of the PennAction outlier contamination process. Sequence X (top) depicts a clean
baseball pitch sequence, while sequence Ŷ (bottom) has outlier frames from a baseball swing interspersed within
the second baseball pitch sequence Y .

PennAction contamination. At training time, a batch contains a set of paired sequences. Given
two such sequences, X and Y , of the same action (e.g., baseball pitch), we extract, N = 20, frames
from both sequences. To ensure that the extracted frames cover the entire duration of both sequences,
we rely on strided sampling. We then select p% outlier frames from another action (e.g., baseball
swing) and we randomly intersperse them within sequence Y , thereby yielding a sequence, Ŷ ,
containing outlier elements. We otherwise leave sequence X untouched. This process is illustrated in
Fig. 2. Under these settings, Drop-DTW is expected to learn strong representations that rely on the
common signal between X and Ŷ , while ignoring the interspersed outliers. The results reported in
Fig. 5 in the main paper support this intuition and speak decisively in favor of Drop-DTW.

3.4 Drop-DTW for audio-visual localization

We report results on the task of audio-visual localization in the main paper. Here, we provide further
details on the training procedure. Given an audio-visual pair, (X,Z), from the AVE dataset [10], we
start by splitting each modality into consecutive one second long segments and encode each segment
using the same backbones used in the original paper [10] for each modality. We then calculate a
pairwise cost matrix between the sequences of the two modalities, using the symmetric match cost
defined in Eq. 4 in the main paper. Next, we use a DTW-based approach to obtain the optimal match
cost. In the case of Drop-DTW, the optimal match cost corresponds to DK,N in Algorithm 1 and
we use 70%-percentile drop costs defined in Eq. 5 of the main paper. To train the networks for
cross-modal localization we use a margin loss defined as:

Lmarg(X,Z, Ẑ) = max(D(X,Z)K,N −D(X, Ẑ)K,N + β, 0), (4)

where (X,Z) represent an audio-visual (visual-audio) pair from the same sequence, whereas the
visual (audio) signal Ẑ is from a different sequence. β is set to 0.5 in all our experiments.

Once we have learned representations using Eq. 4, we strictly follow the experimental protocol from
[10].

3.5 Additional qualitative results

In Sec. 4.2 of the main paper, we demonstrate the ability of Drop-DTW to tackle multi-step local-
ization and compare it to alternative alignment-based approaches. In Fig. 4 of the main paper, we
provide a qualitative comparison between various alignment-based approaches when each algorithm
is used both at training and inference time. Here, we provide more such qualitative results in Fig. 3.
Collectively, these results demonstrate Drop-DTW’s unique capability to locate subsequences with
interspersed outliers. Moreover, we show that Drop-DTW is versatile to also handle situations with
no interspersed outliers (e.g., see the Make French Toast example in Fig. 3). In addition, in Fig. 4,
we provide qualitative results showing the advantage of using Drop-DTW at inference time even
on representations learned with other alignment-based approaches. From these last results we show

6

Make Jello Shots

Pour water Pour jello powder Stir mixture Pour mixture into cup

Making Latte

Add coffee Pour water Pour expresso Pour milk

Make Taco Salad

Add taco Add letuce Add meat Add cheese Stir

Make French Strawberry Cake

Pour egg Add sugar Add flour Add butter Whisk mixture
Put dough into form Cut strawberries Add strawberries to cake

Make Kimchi Fried Rice

Add onion Add rice Add ham Add kimchi Pour sesame oil Stir mixture

Make Meringue

Pour egg Add sugar Whisk mixture Spread mixture Put into oven

Make Bread and Butter Pickles

Pour vinegar Add sugar Add spices Seal jar Put jar in water

Make French Toast

Put bread in pan Flip bread
Pour milk Whisk mixture Pour egg Dip bread in mixture

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

Figure 3: Step localization with DTW variants used for training and inference. In each panel, rows two
to four show step assignment results when the same alignment method is used for training and inference.
Drop-DTW allows to identify interspersed unlabelled clips and much more closely approximates the ground
truth.

that Drop-DTW is a valuable inference time tool for subsequence localization. A visual demo of the
subsequence localization application is provided in the supplemental video.

7

Make Bread and Butter Pickles

Cut cucumber Add salt Add vinegar Add sugar Add spices
Put vegetable in water Pack cucumber in jar Seal jar Put jar in water

Make Taco Salad

Add lettuce Add meat Add tomato Add cheese Stir Add tortilla

Jack Up a Car

Raise Jack Lower Jack

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

Add sugar Pour lemon juice Pour water Stir mixture Add ice Pour lemonade

Make Lemonade

Build Simple Floating Shelf

Cut shelves Assemble shelves Sand shelves Paint shelves

Grill Stake

Season steak Put steak on grill Close lid Open lid Flip steak
Take steak from grill Top stake Cut stake

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

GT

Drop-DTW

OTAM

DTW

Figure 4: Step localization with DTW variants used for training only, while always using Drop-DTW for
inference. In each panel, rows two to four show in each sub figure show step assignment results when different
alignment methods are used for training but Drop-DTW is used for inference in all cases. In the top part of the
figure (highlighted in green) we illustrate scenarios where using Drop-DTW both during training and inference is
more beneficial, while the two bottom examples (highlighted in red) do not show clear advantage of Drop-DTW
at training time but clearly show the benefit of using it at inference time in all cases. Qualitative results in this
figure correspond to quantitative results in Table 2 of the main paper.

8

References
[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,”

Proceedings of the IEEE, 1998.

[2] N. Srivastava, E. Mansimov, and R. Salakhudinov, “Unsupervised learning of video representations using
LSTMs,” in International Conference on Machine Learning (ICML), 2015.

[3] D. Zhukov, J.-B. Alayrac, R. G. Cinbis, D. Fouhey, I. Laptev, and J. Sivic, “Cross-task weakly supervised
learning from instructional videos,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

[4] Y. Tang, D. Ding, Y. Rao, Y. Zheng, D. Zhang, L. Zhao, J. Lu, and J. Zhou, “COIN: A large-scale dataset
for comprehensive instructional video analysis,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

[5] L. Zhou, C. Xu, and J. J. Corso, “Towards automatic learning of procedures from web instructional videos,”
in AAAI Conference on Artificial Intelligence, 2018.

[6] A. Miech, J.-B. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisserman, “End-to-End Learning of
Visual Representations from Uncurated Instructional Videos,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

[7] I. Hadji, K. G. Derpanis, and A. D. Jepson, “Representation learning via global temporal alignment and
cycle-consistency,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2021.

[8] M. Cuturi and M. Blondel, “Soft-DTW: A differentiable loss function for time-series,” in International
Conference on Machine Learning (ICML), 2017.

[9] W. Zhang, M. Zhu, and K. G. Derpanis, “From actemes to action: A strongly-supervised representation
for detailed action understanding,” in Proceedings of the International Conference on Computer Vision
(ICCV), 2013.

[10] Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event localization in unconstrained videos,” in
Proceedings of the European Conference on Computer Vision (ECCV), 2018.

9

	Summary
	Technical approach details
	Drop-DTW algorithm
	Asymmetric match costs
	Training regularization for multi-step localization

	Experiments details
	Controlled synthetic experiments
	Complete ablation study in instructional video step localization
	Drop-DTW for representation learning
	Drop-DTW for audio-visual localization
	Additional qualitative results

