
A Appendix

A.1 Illustration of group actions

This section is intended to provide a visual, more intuitive understanding of the different group
actions on the tensors of our network. We begin with a visualization of the group action for the input
space. We exemplify it over the sequence GGACT, whose reverse complement is AGTCC. The sequence
is one hot encoded as explained in the main text and the group action over Z2 consist in flipping the
tensor along the spatial axis and swapping the channels pairwise.
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Now we illustrate the actions of other representations, on an example tensor
[
1 2 3
4 5 6

]
with two

channels (of type a or b) and three positions; this could typically be the representation of an input
sequence of length 3 in an intermediate layer of dimention 2. Choosing the canonical representations
of type (I, 2, 0), (I, 0, 2) and (I, 1, 1) respectively, we get the following group actions (for clarity we
add the channel type, a or b, near each matrix row):

[
1 2 3
4 5 6

] [
3 2 1
6 5 4

]
a
a

a
a

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
−3 −2 −1
−6 −5 −4

]
b
b

b
b

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
3 2 1
−6 −5 −4

]
a
b

a
b

π(−1)

π(−1) ◦ π(−1) = I

Finally, when using different values for P, we can get other group actions. As mentioned in the

main text, by choosing (Preg, 1, 1), where Preg =

[
1 1
1 −1

]
, we get the regular representation that

flips the input channel. We also provide an example of the group action for a general P matrix,
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by choosing (Pgeneral, 1, 1), where Pgeneral =

[
1 3
1 −1

]
, we get a representation on the fibers

ρgeneral =

[
−0.5 1.5
0.5 0.5

]

[
1 2 3
4 5 6

] [
6 5 4
3 2 1

]
Reg Reg

π(−1)

π(−1) ◦ π(−1) = I

[
1 2 3
4 5 6

] [
5.5 6.5 7.5
2.5 3.5 4.5

]
General General

π(−1)

π(−1) ◦ π(−1) = I

Over the course of these examples, we have limited ourselves to the case where the input tensor had
only three nucleotides and two channels, but this is coincidental. The representation with arbitrary P
can mix an arbitrary number of channels together with the group action.

A.2 Proof of Theorem 1

Proof. The irreducible representations (irreps) of the 2-elements group Z2 are the 1-dimensional
trivial and sign representations, given respectively by ρ1(s) = 1 and ρ1(s) = s. Any representation
ρn can be decomposed as a direct sum of irreps, and since each irrep is 1-dimensional this means
that there exists an invertible matrix P such that Pρn(s)P−1 is diagonal, with diagonal terms either
equal to 1 or equal to s. If we denote by an (resp. bn) the number of diagonal terms equal to 1 (resp.
s), then Theorem 1 follows.

A.3 Proof of Theorem 2

Proof. Cohen et al. [11, Theorem 3.3] gives a general result about linear equivariant mapping. We
first show that this result can be applied here, to show that these linear mappings are exactly the ones
written as (2) and (3). For sake of clarity, we then provide a fully self-contained proof of the same
result.

Let us first show that (2) and (3) correspond to a particular case of Cohen et al. [11, Theorem 3.3].
Under the notations of [11], our group is G = Z o Z2, a locally compact, semi-direct product group.
We choose H = H1 = H2 = Z2, making the coset space G/H = Z. Since our group is a semi direct
product group, we have h1(x, s) = s. The spaces Fn that we have considered are signals in RD over
the coset space, acted upon by the representation induced by ρ. Equivalently, they are sections of the
associated vector bundle for the trivial case of a product group. Therefore, these Fn exactly coincide
with the setting of Cohen et al. [11, Theorem 3.3] and {φ : Fn → Fn+1|πn+1φ = φπn} is exactly
H. Then, by [11, Theorem 3.3], φ : Fn → Fn+1 is equivariant if and only if it can be written as a
convolution:

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) , (2)

where the kernel κ : Z→ RDn+1×Dn satisfies:

∀x ∈ Z s ∈ Z2, , κ(sx) = ρn+1(s)κ(x)ρn(s−1) . (6)

Using that for s ∈ Z2, s
−1 = s, and the triviality of this equation for s = 1, we get that (6) is

equivalent to (3)
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For sake of clarity and completeness, we now provide a more explicit and self-contained proof for (2)
and (3), that follows the one of [40, Theorem 2] in our specific setting. We first notice that any linear
mapping φ;Fn → Fn+1 can be written as

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

k(x, y)f(y) ,

for some function k : Z2 → Rdn+1×dn . For any g = ts ∈ G, the action of G on Fn+1 gives:

∀(f, x) ∈ Fn × Z , πn+1(g)φ(f)(x) = ρn+1(s)φ(f)(s(x− t))

= ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) . (7)

Similarly, the action of G on Fn followed by φ gives:

∀(f, x) ∈ Fn × Z , φ(πn(g)f)(x) =
∑
y∈Z

k(x, y)πn(g)f(y)

=
∑
y∈Z

k(x, y)ρn(s)f(s(y − t))

=
∑
y∈Z

k(x, sy + t)ρn(s)f(y)

(8)

where we made the change of variable y 7→ sy+ t to get the last equality. φ is equivariant if and only
if, for any g ∈ G, φ ◦ πn(g) = πn+1(g) ◦ φ, which from (7) and (8) is equivalent to:

∀(f, x) ∈ Fn × Z , ρn+1(s)
∑
y∈Z

k(s(x− t), y)f(y) =
∑
y∈Z

k(x, sy + t)ρn(s)f(y) . (9)

For any y0 ∈ Z and v ∈ RDn , let us apply this equality to the function f ∈ Fn given by f(y0) = v
and f(y) = 0 for y 6= y0:

∀(x, y0, v) ∈ Z× Z× RDn , ρn+1(s)k(s(x− t), y0)v = k(x, sy0 + t)ρn(s)v .

Since this must hold for any v ∈ RDn this necessarily implies:

∀(x, y0) ∈ Z2 , ρn+1(s)k(s(x− t), y0) = k(x, sy0 + t)ρn(s) .

With the change of variable y = s(y0 − t), this is equivalent to:

∀(x, y) ∈ Z2 , ρn+1(s)k(s(x− t), s(y − t)) = k(x, y)ρn(s) ,

which itself is equivalent to

∀(x, y) ∈ Z2 , k(s(x− t), s(y − t)) = ρn+1(s)k(x, y)ρn(s) , (10)

where we used the fact that ρn+1(s)2 = ρn+1(s2) = I for any s ∈ Z2. This must hold in particular
for s = 1 and t = x, which gives:

∀(x, y) ∈ Z2 , k(0, y − x) = k(x, y) ,

i.e., k is necessarily translation invariant in the sense that there must exist a function κ : Z →
RDn+1×Dn such that

∀(x, y) ∈ Z2 , k(x, y) = κ(y − x) .

From (10) we see that κ must satisfy

∀(x, y) ∈ Z2 , κ(s(y − x)) = ρn+1(s)κ(y − x)ρn(s) ,

which boils down to the following constraint, after observing that the constraint is always true for
s = 1 and is therefore only nontrivial for s = −1:

∀x ∈ Z , κ(−x) = ρn+1(−1)κ(x)ρn(−1) . (11)

At this point, we have therefore shown that an equivariant linear function must have an expansion of
the form

∀(f, x) ∈ Fn × Z , φ(f)(x) =
∑
y∈Z

κ(y − x)f(y) ,
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where κ must satisfy (11). Conversely, such a linear layer trivially satisfies (9), and is therefore
equivariant. This proves (2) and (3).

To prove (4), we simply rewrite (3) using Theorem 1:

∀x ∈ Z , κ(−x) = Pn+1Diag(Ian+1
,−Ibn+1

)P−1n+1κ(x)PnDiag(Ian ,−Ibn)P−1n . (12)

Thus writing the matrix K = P−1n+1κ(x)Pn by blocs of sizes an+1 × an, an+1 × bn, bn+1 × an and
bn+1 × bn, we have :

(12) ⇐⇒ K(−x) = Diag(Ian+1 ,−Ibn+1)K(x)Diag(Ian ,−Ibn)

⇐⇒
[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

]
This gives us the equivalence (3) ⇐⇒ (12) ⇐⇒ (4).

A.4 Resolution of the constraint for other basis

To go from an arbitrary representation (P, a, b) to another, we can write an odd/even kernel and
change of basis. One may also solve the constraints (3) for specific representations, and save the
need of multiplication by Pn+1 and P−1n in (4). In this section, we solve the constraint in other basis,
to go from one kind of representation (irrep or regular) to another. We just substitute the correct
representation and see what constrained kernel it gives. The irrep and regular representations are in a
basis such that they write as :

ρirrep =

[
Ia 0
0 −Ib

]
, ρreg =


0 0 . . . 1
...

...
0 1 . . . 0
1 0 . . . 0

 .
We get the following table of constraints :

Fn
Fn+1 ’irrep’ ’regular’

’irrep’
[
α(−x) β(−x)
γ(−x) δ(−x)

]
=

[
α(x) −β(x)
−γ(x) δ(x)

]
[κj,a(−x), κj,b(−x)] = [κn−j,a(x),−κn−j,b(x)]

’regular’
[
κa,j(−x)
κb,j(−x)

]
=

[
κa,n−j(x)
−κb,n−j(x)

]
κi,j(−x) = −κn−i,n−j(x) [34]

A.5 Proof of Theorem 3

With a slight abuse of notations, in this section we denote the matrix ρ(−1) simply by ρ ∈ RD×D,
and for any θ : R→ R we define θ̃(x) := θ(x)− θ(0). We start with three technical lemmas, before
proving Theorem 3.
Lemma 4. Let h : R→ R be a continuous function with left and right derivatives at 0. If there exists
A ∈ R with |A| > 1 such that

∀x ∈ R , h(x) = Ah(A−1x) , (13)

then h is a leaky ReLu function, i.e., there exists (α−, α+) ∈ R2 such that

∀x ∈ R , h(x) =

{
α−x if x ≤ 0 ,

α+x if x ≥ 0 .

In addition, if A < −1, then α− = α+, i.e., h is linear.

Proof. Equation (13) implies h(0) = 0 and

∀x ∈ R∗ ,
h(x)

x
=
h(A−1x)

A−1x
,
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which by simple induction gives more generally:

∀(x, n) ∈ R∗ × N ,
h(x)

x
=
h(A−nx)

A−nx
. (14)

The right-hand side of (14) for n = 2k converges to h′sign(x)(0) when k → +∞, which by unicity
of the limit must be equal to the left-hand side. As a result, for any x ∈ R, h(x) = h′sign(x)(0)x,
i.e., h is a leaky ReLu function with αs = h′s(0) for s ∈ {−,+}. If in addition A < −1, then (14)
for n = 2k + 1 converges to h′−sign(x)(0) when k → +∞. By unicity of the limit, this implies
h′−(0) = h′+(0), i.e., α− = α+.

Lemma 5. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists (i, j) ∈
[1, D]2 such that ρij /∈ {−1, 0, 1}, then necessarily θ̃ is a leaky ReLu function.

Proof. For any (i, j), applying the equivariance constraint θ(ρx)i = ρθ(x)i to the vector x = aej ,
for any a ∈ R, gives the equation:

∀a ∈ R , θ(aρij) = ρijθ(a) + (
∑
k 6=j

ρik)θ(0) .

If |ρij | > 1, we can rewrite it as

∀a ∈ R , θ(a) = ρijθ(aρ
−1
ij ) + (

∑
k 6=j

ρik)θ(0) ,

and if 0 < |ρij | < 1 we can rewrite it as

∀a ∈ R , θ(a) = ρ−1ij θ(aρij)− ρ
−1
ij (
∑
k 6=j

ρik)θ(0) .

In both cases, this is an equation of the form

∀a ∈ R , θ(a) = Aθ(A−1a) +B ,

where |A| > 1. Subtracting to this equation the same equation written for a = 0 gives

∀a ∈ R , θ̃(a) = Aθ̃(A−1a) . (15)

By Lemma 4, θ̃ is a leaky ReLu function.

Lemma 6. Under the assumptions of Theorem 3, if θ̄F is equivariant and if there exists at least one
row in ρ with at least two nonzero entry, then necessarily θ is an affine function.

Proof. Let us suppose that ρ contains at least a row i with two nonzero entries, say ρij 6= 0 and
ρik 6= 0. Then taking x = xjej + xkek with xj , xk ∈ R, the equivariance constraint for the i-th
dimension gives

∀xj , xk ∈ R , θ(ρijxj + ρikxk) = ρijθ(xj) + ρikθ(xk) + Cθ(0) ,

with C =
∑
p/∈{j,k} ρip. Subtracting to this equation the same equation written for xj = xk = 0

allows us to remove the constant term and get

∀xj , xk ∈ R , θ̃(ρijxj + ρikxk) = ρij θ̃(xj) + ρikθ̃(xk) . (16)

We now prove that θ̃ is necessarily a leaky ReLu function, i.e., that there exist (α+, α−) ∈ R2

such that θ̃(x) = αsign(x)x, with potentially α+ 6= α−. By Lemma 5 this is true if |ρij | 6= 1 or
|ρik| 6= 1, so we focus on the case |ρij | = |ρik| = 1, which we decompose in two subcases. First, if
ρij = ρik = s with s ∈ {−1, 1}, then taking xj = xk = a in (16) gives θ̃(2sa) = 2sθ̃(a), for any
a ∈ R. Second, if ρij = −ρik = 1 (resp. ρij = −ρik = 1), then taking xj = 2a and xk = a (resp.
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xj = a and xk = 2a) gives θ̃(2a) = 2θ̃(a). In both subcases, by Lemma 4, θ̃ must be a leaky ReLu
function.

Knowing that θ̃ is a leaky ReLu function with coefficients α+ and α−, in order to prove that θ
is necessarily an affine function (i.e., that θ̃ is linear), we need to show that α+ = α−. For that
purpose, let us first suppose that ρij and ρik are both positive or both negative. Then there exists a
pair (xj , xk) ∈ R2 such that xj > 0, xk < 0 and ρijxj + ρikxk < 0. Similarly, if ρij and ρik are of
different signs, say without loss of generality ρij < 0 and ρik > 0, then any pair (xj , xk) ∈ R2 such
that xj > 0, xk < 0 satisfies ρijxj + ρikxk < 0. In both cases, using the fact that θ̃ is linear on R+

and on R−, (16) gives

α−(ρijxj + ρikxk) = α+ρijxj + α−ρikxk ,

⇐⇒ α−ρijxj = α+ρijxj
⇐⇒ α− = α+ .

We are now ready to prove Theorem 3.

Proof of Theorem 3. To characterize the functions θ and representations ρ such that θ̄F is equivariant,
we proceed by a disjunction of cases on θ, depending on whether it is affine.

If θ is affine, say θ(x) = αx+ β, then θ̄F is equivariant if and only if, for any x ∈ RD, θ̄RD (ρx) =
ρθ̄RD (x) . This is equivalent to

∀(i, x) ∈ [1, d]× RD ,
D∑
j=1

ρi,jθ(xj) = θ

 D∑
j=1

ρi,jxj


⇐⇒ ∀(i, x) ∈ [1, d]× RD ,

D∑
j=1

ρi,j(αxj + β) = α

 D∑
j=1

ρi,jxj

+ β

⇐⇒ ∀i ∈ [1, d] , β

 D∑
j=1

ρi,j − 1

 = 0 .

This shows that if θ is affine, then θ̄F is equivariant if and only β = 0, i.e., θ is linear (case 1 of
Theorem 3), or ρ1 = 1 (case 2 of Theorem 3).

If θ is not affine and θ̄F is equivariant, then by Lemma 6 we know that ρ can have at most one
nonzero entry per row. Since ρ is invertible, it must have at least one nonzero entry per row, so we
conclude that if contains exactly one nonzero entry per row, hence a total of D nonzero entries. Being
invertible, it must also contain at least one nonzero entry per column, so we conclude that it contains
also exactly one nonzero entry per column. Using the fact that ρ2 = I , we can further clarify how
nonzero entries must be organized:

• For a nonzero entry ρii 6= 0 on the diagonal, we must have ρ2ii = 1, i.e., ρii ∈ {−1,+1}.

• For an off-diagonal nonzero entry ρij 6= 0 with i 6= j, we must have ρijρji = 1, i.e.,
ρji = ρ−1ij .

Splitting the nonzero entries by sign, this implies that there exists a permutation matrix Π such that

ρ̂ := Π−1ρ(−1)Π =

a⊕
i=1

(
0 λi
λ−1i 0

)
⊕

b⊕
i=1

(
0 −µj
−µ−1j 0

)
⊕ (1)⊕c ⊕ (−1)⊕d , (17)

for some (a, b, c, d) ∈ N4 such that a+ b+ c+ d = D and (λ, µ) ∈ Ra+ × Rb+. For any i ∈ [1, D],
let us now denote by τ(i) the column corresponding to the nonzero entry of the i-th row of ρ̂, i.e.,
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the only index such that ρ̂iτ(i) 6= 0. Then the action of ρ̂ on a vector v ∈ RD has the simple form
[ρ̂v]i = ρ̂iτ(i)vτ(i). By writing the equivariance property ρ ◦ θ̄F = θ̄F ◦ ρ coordinate by coordinate,
we can therefore say that θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , θ(ρ̂iτ(i)x) = ρ̂iτ(i)θ(x) . (18)

Let us now consider two possible cases:

• If there exists i ∈ [1, D] such that |ρ̂iτ(i)| 6= 1, then by Lemma 5 θ̃ is a leaky ReLu function,
i.e., there exist (α+, α−, β) ∈ R3 such that ∀x ∈ R , θ(x) = αsign(x)x + β. In that case,
by (18), θ̄F is equivariant if and only if:

∀(i, x) ∈ [1, D]× R , αsign(ρ̂iτ(i)x)ρ̂iτ(i)x+ β = ρ̂iτ(i)
(
αsign(x)x+ β

)
,

⇐⇒ ∀i ∈ [1, D] ,


αsign(ρ̂iτ(i)) = α+ ,

αsign(−ρ̂iτ(i)) = α− ,

β = ρ̂iτ(i)β ,

⇐⇒

{
∀i ∈ [1, D] , αsign(ρ̂iτ(i)) = α+ ,

β = 0 ,

(19)

where the first equivalence comes from identifying the coefficients of the linear equation
in x on R− and R+, and the second equivalence comes from the observation that the two
conditions in α in the first equivalence are themselves equivalent to each other, so we can
keep only one of them, and that the condition on β is equivalent to β = 0 since we assume
the existence of an i ∈ [1, D] such that ρ̂iτ(i) 6= 1. Since we assume that θ is not affine, we
can not have α− = α+, which by (19) rules out the possibility of having negative entries
in ρ̂, i.e., necessarily b = d = 0 in (17). If that is not the case, then the condition on α in
(19) is automatically met for all i ∈ [1, D], so we have that θ̄F is equivariant if and only if
β = 0, i.e., if and only if θ is a leaky ReLu function. This is the second statement in Case
3 of Theorem 3, when we further notice that when b = 0 the only entry in ρ̂ that can have
been different from -1 and 1 is a λi in (17).

• If for all i ∈ [1, D], |ρ̂iτ(i)| = 1, then (17) simplifies as

ρ̂ =

a⊕
i=1

(
0 1
1 0

)
⊕

b⊕
i=1

(
0 −1
−1 0

)
⊕ (1)⊕c ⊕ (−1)⊕d .

In that case, the equivariance condition (18) is particularly simple, and true for any θ for
positive values. For each i such that ρ̂iτ(i) = −1 it reads ∀x ∈ R,−θ(x) = θ(−x), and is
therefore true if and only if θ is odd. Noticing that the latter constraint occurs if and only if
b+ d > 0 finally leads to the first and third statements in Case 3 of Theorem 3.

A.6 Additional result

A.6.1 Effect of data augmentation and size for non-equivariant models

Given a non-equivariant model, a simple way to let it "learn" to be equivariant is to train it with
data augmentation, where for each sequence in the training set we add its reverse complement to the
training set. This doubles the size of the training set, which increases the training time. If we compare
such a non-equivariant model with an equivariant model with the same number of channels in each
layers, then it has about twice the same number of free parameters to train, and we therefore call it
"big"; as an alternative, one may want to restrict the number of channels in each layer to enforce the
same number of parameters as the equivariant model. To assess the benefits of data augmentation
and number of channels, we plot in Figure 6 the performance of a standard, non-equivariant model
with or without data augmentation, and with the same number of channels or half of it, on the binary
classification tasks. We see that the number of channels has no significant impact on the performance,
but that data augmentation has a significant positive impact. In the main text, we therefore restrict
ourselves to the standard model with data augmentation as non-equivariant baseline model.
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Figure 6: Binary task performance of a standard, non-equivariant model trained with ("Aug") or
without ("NoAug") data augmentation, and with more ("Big") or less ("Standard") channels.

A.6.2 Comparison of learning curves

Because equivariant model are supposed to converge faster, we looked into the learning curves of
our models, i.e., how the test performance increases as a function of the number of epochs during
training. However, we do not see a major difference in the learning dynamics between the equivariant
and non equivariant models.
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Figure 7: AuROC performance of the four different models on the three binary classification problems
CTCF, MAX and SPI1, as well as their average over the course of learning.
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