
A More Preliminaries

For some parameters n1, n2, . . . we will say that a quantity q poly(n1, n2, . . .) if and only if there
exists constants c0 > 0, c1 > 0, c2 > 0, . . . such that q c0n

c1
1 nc2

2 If these constant depend
on another parameter ` > 0 which is also a constant, then we will denote this by poly

`
(n1, n2, . . .).

We will say that an probabilistic event occurs with high probability if and only if it occurs with
probability 1� (mdB)�!(1) i.e., the failure probability is smaller that any inverse polynomial in the
parameters m, d,B. Finally, we will use sign variables of the form ⇠i 2 {1,�1}; they will typically
capture an ambiguity in the sign of the parameters of the ith unit.

A.1 Hermite Polynomials

Definition A.1. Let D(k)
t

be the total differential operator taken k times with respect to t. For
a function g : Rd ! R, D(k)

t
g(t)|t=t0 2 (Rd)⌦k, where the ↵’th element of D(k)

t
g(t), for ↵ =

(i1, i2, . . . , ik), is d

dti1
... d

dtik
g(t) with ↵ 2 [d]k being a multi-index. Note that the above is invariant

to permutations, i.e., for any permutation ↵0 of the indices in ↵, the ↵0th element of D(k)
t

g(t) is the
same as the ↵th element.

Definition A.2. Let x 2 Rd, �(x) = exp(�kxk2

2), the (probabilist’s) k’th d-dimensional Hermite
polynomial Hek(x) 2 (Rd)⌦k is given by

Hek(x) =
(�1)k

�(x)
·D(k)

x
�(x) (7)

A particularly useful fact for 1-dimensional Hermite polynomials is their relation with derivatives of
a standard univariate Gaussian function.
Fact A.3. The k’th order derivative of �(x) can be written in terms of 1-dimensional Hermite
polynomials as

dk

dxk
�(x) = (�1)k ·Hek(x) · �(x) = Hek(�x)�(x) (8)

We will utilize this fact to express the Hermite coefficients of f(x) = aT�(WTx+ b).

A.2 Tensor Decomposition

The tensor product u⌦ v⌦w 2 Rd1 ⌦Rd2 ⌦Rd3 of vectors u 2 Rd1 , v 2 Rd2 , w 2 Rd3 is a rank-1
tensor. Similarly, we will use u⌦` 2 (Rd)⌦` to denote the tensor product of u with itself ` times.
An order-t tensor T 2 Rd1 ⌦ Rd2 ⌦ · · ·⌦ Rdt is represented using a t-way array Rd1⇥d2⇥···⇥dt that
has t modes corresponding to the t different indices. Given two matrices U, V with k columns each
given by U = (ui : i 2 [k]) and V = (vi : i 2 [k]), the Khatri-Rao product M = U � V is a matrix
formed by the ith column being ui ⌦ vi. We will also use U�2 = U � U (and similarly for higher
orders). A claim about preserving the full-column-rank property (and analogously minimum singular
value) under the Khatri-Rao product is included below.

Flattening or Reshaping: Given an order-t tensor T , for t1, t2, t3 � 0 such that t1 + t2 + t3 = t
define T 0 = flatten(T, t1, t2, t3) as the order-3 tensor T 0 2 Rd

t1⇥d
t2⇥d

t3 , obtained by flattening and
combining the first t1 modes, the next t2 and last t3 modes respectively. When t3 = 0, the output is a
matrix in Rd

t1⇥d
t2 .

Tensor decompositions of order 3 and above, unlike matrix decompositions (which are of order
2) are known to be unique under mild conditions. While tensor decompositions are NP-hard in
the worst-case, polynomial time algorithms for tensor decompositions are known under certain
non-degeneracy conditions (see e.g., [JGKA19, Vij20]). In particular, Jennrich’s algorithm [Har70]
provides polynomial time guarantees for recovering all the rank-1 terms of a decomposition of a
tensor T =

P
k

i=1 ui ⌦ vi ⌦ wi, when the {ui : i 2 [k]} are linearly independent, the {vi : i 2 [k]}
are linearly independent, and no two of the vectors {wi : i 2 [k]} are parallel. This algorithm and

13

its guarantee can also be made robust to some noise (of an inverse polynomial magnitude), when
measured in Frobenius norm. In this paper, the following claims are especially vital to formulate our
main results.
Claim A.4 (Implication of Lemma A.4 of [BCV14]5). Let U 2 Rd1⇥k, V 2 Rd2⇥k, and suppose
the smallest column length mini2[k]kvik2 � . Then the Khatri-Rao product U � V has rank k and
satisfies sk(U � V) � · sk(U)/

p
2k.

A robust guarantee we will use for Jennrich’s algorithm [Har70] is given below (see also [GVX14,
Moi18] for robust analysis).

Theorem A.5 (Theorem 2.3 of [BCMV14]). Suppose "A.5 > 0 we are given tensor eT = T + E 2
Rm⇥n⇥p, where T has a decomposition T =

P
k

i=1 ui ⌦ vi ⌦ wi satisfying the following conditions:

1. Matrices U = (ui : i 2 [k]), V = (vi : i 2 [k]) have condition number (ratio of the
maximum singular value �1 to the least singular value �k) at most ,

2. For all i 6= j, the submatrix W{i,j} has s2(W{i,j}) � �.

3. Each entry of E is bounded by ⌘A.5(",,max{n,m, p}, �) = poly(")

poly(,max{n,m,p}, 1
�
)
.

Then there exists a polynomial time algorithm that on input eT returns a decomposition {(eui, evi, ewi) :
i 2 [k]} s.t. there is a permutation p : [k] ! [k] with

8i 2 [k], keui ⌦ evi ⌦ ewi � up(i) ⌦ vp(i) ⌦ wp(i)kF "A.5. (9)

B Expressions for the Hermite Coefficients

Lemma 3.5 The k’th Hermite expansion of f(x) = aT�(W>x+ b), f̂k, when k = 0, 1, is

f̂0 =
mX

i=1

ai
h
bi�(bi) +

exp(� b
2
i
2)p

2⇡

i
, f̂1 =

mX

i=1

ai�(bi)wi (10)

when k � 2, the coefficients are

f̂k =
mX

i=1

(�1)k · ai ·Hek�2(bi) ·
exp(�b

2
i

2)
p
2⇡

· w⌦k

i
(11)

where the expectation is taken over x ⇠ N (0, Id) and f̂k is a k’th-order tensor.

Proof. Note that Hermite polynomials can be written in terms of their generating function [O’D14]

Hek(x) = D(k)
t

exp(tTx� ktk2/2)|t=0 (12)

Hence we can write f̂k as

f̂k = E[f(x)Hek(x)] =
mX

i=1

ai

Z

w
>
i x+bi�0

(wT
i
x+ bi) ·D(k)

t
exp(tTx� ktk2

2
) dµ|t=0 (13)

where dµ = exp(�kxk2
/2)

(
p
2⇡)d

dx is the Gaussian probability measure. Moving dµ into the exponential
term, we get

f̂k =
mX

i=1

ai
(
p
2⇡)d

Z

w
>
i x+bi�0

(wT
i
x+ bi) ·D(k)

t
exp(�kxk2

2
+ tTx� ktk2

2
) dx|t=0 (14)

5In fact one can show that a stronger statement that a certain quantity called Kruskal-rank increases, see
[BCV14].

14

=
mX

i=1

ai
(
p
2⇡)d

Z

w
>
i x+bi�0

(wT
i
x+ bi) ·D(k)

t
exp(�kx� tk2

2
) dx|t=0 (15)

Since (w>
i
x+ bi) exp(�kx�tk2

2) is continuous in all x 2 Rd and t 2 Rd, by Leibniz’s integral rule
we can take the differential operator out of the integral, yielding

= D(k)
t

h mX

i=1

ai
(
p
2⇡)d

Z

w
>
i x+bi�0

(wT
i
x+ bi) · exp(�

kx� tk2

2
) dx

i

t=0
(16)

Denote

Ii(t) =
1

(
p
2⇡)d

Z

w
>
i x+bi�0

(wT
i
x+ bi) · exp(�

kx� tk2

2
) dx (17)

then

f̂k = D(k)
t

mX

i=1

aiIi(t)|t=0 (18)

Now, let yi = wT
i
x and twi = tTwi. To evaluate Ii(t) in terms of yi, it suffices to only consider the

projection of t onto wi, twi with the remaining parts being integrated out. Hence, we can rewrite
Ii(t) as

Ii(t) =
1

(
p
2⇡)d

Z

x02Rd�1

exp(�kx0 � t0k2

2
)dx0

Z 1

yi=�bi

(yi + bi) · exp(�
|yi � twi |2

2
)dyi (19)

=
1p
2⇡

Z 1

yi=�bi

(yi + bi) · exp(�
|yi � twi |2

2
)dyi (20)

= (twi + bi)�(twi + bi) +
exp(� (twi+bi)

2

2)
p
2⇡

(21)

where �(z) is the standard Gaussian c.d.f. of z. We then have

f̂k =
mX

i=1

ai ·D(k)
t

h
(twi + bi)�(twi + bi) +

exp(� (twi+bi)
2

2)
p
2⇡

i

t=0
(22)

Therefore we have f̂0 and f̂1 as

f̂0 =
mX

i=1

ai
h
bi�(bi) +

exp(� b
2
i
2)p

2⇡

i
, f̂1 =

mX

i=1

ai�(bi)wi (23)

Since we are taking the derivative with respect to t, for some function g(twi), by the chain rule we
will have

D(k)
t

g =
dkg

dtk
wi

· w⌦k

i
(24)

Finally, recall Fact A.3, the derivatives of a Gaussian p.d.f. can be expressed in terms of Hermite
polynomials, hence for k � 2

f̂k =
mX

i=1

ai ·
dk�2

dtk�2
wi

exp(� (bi+twi)
2

2)
p
2⇡

· w⌦k

i
|twi=0 (25)

=
mX

i=1

(�1)k�2 · ai ·Hek�2(bi + twi) ·
exp(� (bi+twi)

2

2)
p
2⇡

· w⌦k

i
|twi=0 (26)

=
mX

i=1

(�1)k · ai ·Hek�2(bi) ·
exp(�b

2
i

2)
p
2⇡

· w⌦k

i
(27)

which proves the lemma.

15

Proposition B.1. Let ef(x) = ea>�(fW>x+eb) be the model trained using samples generated by the
ground-truth ReLU network f(x) = a>�(W>x+ b). Then the statistical risk with respect to the `2
loss function can be expressed as follows

L(ea,eb,fW) =
X

k2N

1

k!

���Tk � f̂k
���
2

F

where T0 =
mX

i=1

eai(ebi�(ebi) +
exp(�eb2

i
/2)p

2⇡
), and T1 =

mX

i=1

eai�(ebi) ewi

8k � 2, Tk =
mX

i=1

(�1)k · eai ·Hek�2(ebi) ·
exp(�ebi

2
/2)p

2⇡
· ew⌦k

i

Proof. Let ↵ ./ ↵0 denote ↵ being a permutation of ↵0. Since ./ is an equivalence relation, we can
partition [d]⇤ into equivalence classes (⇤ is the Kleene star operator) such that for some ↵ 2 [d]⇤,
[↵] = {↵0 2 [d]⇤ | ↵ ./ ↵0}. Let C be a subset of [d]⇤ such that no pair of ↵,↵0 2 C is in the same
equivalence class. We can then directly decompose the statistical risk as

E
h
| ef(x)� f(x)|2

i
= E

h���
X

↵2C

T↵He↵(x)

c2
↵

�
X

↵2C

f̂↵He↵(x)

c2
↵

���
2i

(28)

where c2
↵

= E[He↵(x)2]. Note that we omit k here and directly write the Hermite polynomial
obtained by differentiating with respect to x↵1 , ..., x↵k as He↵(x) 2 R. The above equation can thus
be further simplified as

E
h X

↵2C

⇣ (T↵ � f̂↵)He↵(x)

c2
↵

⌘2
+

X

↵ 6=↵
0

↵,↵
02C

⇣ (T↵ � f̂↵)He↵(x)

c2
↵

⌘⇣ (T↵0 � f̂↵0)He↵0(x)

c2
↵0

⌘i
(29)

=
X

↵2C

(T↵ � f̂↵)2

c2
↵

E
hHe↵(x)2

c2
↵

i
=

X

↵2C

(T↵ � f̂↵)2

c2
↵

(30)

since if both ↵,↵0 2 C and ↵ 6= ↵0, E[He↵(x)He↵0(x)] = 0. Next, we rewrite the expression as
X

k2N

X

↵2C

|↵|=k

(T↵ � f̂↵)2

c2
↵

=
X

k2N

1

k!

X

↵2C

|↵|=k

k!

c2
↵

(T↵ � f̂↵)
2 =

X

k2N

1

k!

���Tk � f̂k
���
2

F

(31)

The last equality is due to the fact that c2
↵
=

Q
d

i=1 ni!, where ni is the number of times that i occurs
in the multi-index ↵, and therefore k!/c2

↵
is the number of possible permutations of the elements in

↵ with |↵| = k subjecting to 1 occurs n1 times, 2 occurs n2 times, ..., d occurs nd times. Thus the
proposition follows.

C Proofs in Section 4

Lemma 4.3 (Separation of Roots) For all k 2 N, x 2 R, max{|Hek(x)|, |Hek+1(x)|} �
p

k!/2.

Proof. First, 8k 2 N, by Turán’s inequality [Tur50] we have

He2
k+1(x)�Hek(x)Hek+2(x) = k! ·

kX

i=0

Hei(x)2

i!
> 0 (32)

Set " =
p
k!/2 and assume for contradiction that |Hek+1(x)|, |Hek+2(x)| < ". The LHS of (32) is

at most "2 + "|Hek(x)|, and the RHS of (32) is at least

k! · (1 + x2 + ...+
Hek(x)2

k!
) > k! · (1 + Hek(x)2

k!
) (33)

16

Therefore, if |Hek(x)| = t, combining both sides we get "2 + "t � k! + t2. This implies on the one
hand that "t � k!/2, and on the other hand that "t � t2. However for our choices of " =

p
k!/2, no

value of t is feasible. This yields the required contradiction for the first claim.

Claim 4.4 Let `1, `2 � ` and T 2 Rd
`1⇥d

`2⇥d
`3 have a decomposition T =

P
m

i=1 ↵iw
⌦`1
i

⌦
w⌦`2

i
⌦ w⌦`3

i
, with {w⌦`

i
: i 2 [m]} being linearly independent. Consider matrix M =

flatten(T, `1, `2 + `3, 0) 2 Rd
`1⇥d

`2+`3 , and let r := rank(M). Then Jennrich’s algorithm ap-
plied with rank r runs in poly

`1+`2+`3
(m, d) time recovers (w.p. 1) the rank-1 terms corresponding

to {i 2 [m] : |↵i| > 0}. Moreover for each i with |↵i| > 0, we have w̃i = ⇠iwi for some
⇠i 2 {+1,�1}.

Proof. Let Q = {i 2 [m] : |↵i| > 0}. Firstly r = rank(M) = |Q|, since M has a decomposition

M =
X

i2Q

↵i

�
w⌦`1

i

��
w⌦`2+`3

i

�>
= M1diag(↵Q)M

>
2

where M1,M2, diag(↵Q) all have full column rank |Q|. Secondly, from assumption (ii) of Theo-
rem 4.2 and Claim A.4 applied with `1, `2 � `, we have that {w⌦`

0

i
: i 2 [m]} are linearly independent

for every `0 � `. Hence the the factor matrices U = (w⌦`1
i

: i 2 Q) and V = (w⌦`2
i

: i 2 Q) also
have full column rank. Similarly from (iii) no two vectors in {↵iw

⌦`3
i

: i 2 Q} are parallel. Hence,
they satisfy the conditions of Jennrich’s algorithm. Since there is no error in the tensor, Jennrich’s
algorithm (Theorem A.5) succeeds with probability 1 (see [Vij20]). Finally since each rank-1 term is
recovered exactly when ↵i 6= 0, the vector in Rd obtained from the term will correspond to either wi

or �wi as required.

Lemma 4.5 Suppose k 2 N, k � 2. Suppose for some unknowns �, z 2 R with � 6= 0, we are
given values of �j = (�1)j⇠j�Hej(z) 8j 2 {k, k + 1, k + 2, k + 3} for some ⇠ 2 {+1,�1}. Then
z,� are uniquely determined by

For q := argmax
j2{k+1,k+2}

|�j |, ⇠z = ��q+1 + q · �q�1

�q
, � = (�1)q

�q
Heq(⇠z)

(34)

Proof. We use the following fact about Hermite polynomials:

Her+1(z) = zHer(z)� r ·Her�1(z). (35)

From Lemma 4.3, we know that max{|Hek+1(z)|, |Hek+2(z)|} > 0 and hence �q 6= 0. Substituting
in the recurrence (35) with r = q,

z =
Heq+1(z) + q ·Heq�1(z)

Heq(z)
=
�Heq+1(z) + q · �Heq�1(z)

�Heq(z)
= �⇠

⇣�q+1 + q · �q�1

�q

⌘
,

where we used the fact that the Hermite polynomials are odd functions for odd q and even polynomials
for even q. The � value is also recovered since �q = (�1)q�(⇠qHeq(z)) = (�1)q� ·Heq(⇠z).

Claim 4.6 Given { ewi = ⇠iwi : i 2 [m]} where ⇠i 2 {+1, 1} 8i 2 [m], Step 5 of Alg. 1 recovers
{(ai, ⇠ibi, ⇠iwi) : i 2 [m]}.

Proof. We first prove for ` � 2. For each of the j 2 {`, `+1, `+2, `+2}, we have from Lemma 3.5
and the Hermite polynomials Hej being odd functions for odd j and even functions for even j,

f̂j =
mX

i=1

(�1)j ·ai ··
Hej�2(bi) exp(�b2

i
/2)p

2⇡
·w⌦j

i
=

mX

i=1

(�1)j ·ai ·
Hej�2(⇠ibi) exp(�b2

i
/2)p

2⇡
· ew⌦j

i
.

17

Moreover the vectors {⇠j
i
w⌦j

i
: i 2 [m]} are linearly independent by assumption (and from Claim A.4

for j > `). Hence the linear system for each j has a unique solution

8` j `+ 3, 8i 2 [m], we have ⇣j(i) = ai ·
(�1)jp

2⇡
exp(�b2

i
/2) Hej�2(⇠ibi).

Lemma 4.5 applied with � = 1p
2⇡

aie�b
2
i /2 and �j�2 = (�1)jHej�2(⇠ibi) (note � 6= 0) proves that

Alg. 2 recovers ai, ⇠ibi.

For ` = 1, we note 8z 2 R, He0(z) = 1, and He1(z) = z. From Lemma 3.5, we see that one set of
solutions to the linear system is

8i 2 [m], ⇣2(i) = ai
exp(�b2

i
/2)p

2⇡
, and ⇣3(i) = �ai⇠ibi ·

exp(�b2
i
/2)p

2⇡
.

Moreover the vectors {⇠iwi : i 2 [m]} are linearly independent. Hence, ⇣2, ⇣3 are the unique
solutions to the system. Hence Algorithm 2 recovers ai, ⇠ibi as claimed.

Fact 4.7 (Lemma A.4 of [BCMV14]) For two matrices U, V with m columns, krank(U � V) =
min(krank(U) + krank(V)� 1,m).

Proof. Let U = W> (with ith column wi). Note that since no two columns are parallel, krank(U) �
2. By applying the above fact on matrix M = U�m with ith column w⌦m

i
, we get that krank(M) =

m, as required. Hence, Theorem 4.2 can be applied to recover for all i 2 [m], all the unknown ai,
and up to ambiguities in signs given by (unknown) ⇠i 2 {1,�1} the bi and wi as well (we recover
⇠ibi, ⇠iwi).

For the second half of the claim, let ⇠i 2 {1,�1} 8i 2 [m] be any combination of signs. Consider
the solution a0

i
= ai, w0

i
= ⇠iwi, b0i = ⇠ibi, and let g(x) represent the corresponding ReLU function

given by these parameters. Note that the Hermite polynomial Het(⇠z) = ⇠tHet(z) for all ⇠ 2 {±1}
and z 2 R . Hence, the Hermite coefficients of order at least 2 are equal for f and g i.e., for all t � 2

ĝt =
mX

i=1

(�1)tai Het�2(⇠ibi) ·
e�b

2
i /2

p
2⇡

· (⇠iwi)
⌦t =

mX

i=1

(�1)tai Het�2(bi) ·
e�b

2
i /2

p
2⇡

· w⌦t

i
= f̂t.

Condition 2 also implies that zeroth and first Hermite coefficients of f, g are also equal. All the
Hermite coefficients are hence equal (and the functions are squared-integrable w.r.t. the Gaussian
measure for bounded ai). Thus the two functions f and g being identical follows since Hermite
polynomials form a complete orthogonal system.

Claim 4.8 Suppose w1, . . . , wm are linearly dependent. Then there exists a1, . . . , am (not all 0)
and signs ⇠1, ⇠2, . . . , ⇠m 2 {±1} with not all +1 such that the ReLU networks f and g defined as

f(x) :=
mX

i=1

ai�(w
>
i
x), g(x) :=

mX

i=1

ai�(⇠iw
>
i
x) satisfy f(x) = g(x) 8x 2 Rd.

Proof. Since {wi : i 2 [m]} are linearly dependent, there exists (�i : i 2 [m]) which are not all 0
such that

P
n

i=1 �iwi = 0. Define ai = �i for each i 2 [m], and let ⇠i = �1 if �i 6= 0 and ⇠i = 1
otherwise. Let f(x) =

P
m

i=1 ai�(w
>
i
x) and g(x) =

P
m

i=1 ai�(⇠iw
>
i
x).

From Lemma 3.5, it is easy to verify that all the even Hermite coefficients are equal, and the odd
Hermite coefficients for ` � 3 are all 0 since bi = 0. Moreover the ` = 1 order Hermite coefficients
are equal since

mX

i=1

aiwi �
mX

i=1

ai⇠iwi =
mX

i=1

ai(1� ⇠i)wi =
mX

i=1

2�iwi = 0.

All the Hermite coefficients of f and g are equal (and the functions are also squared-integrable w.r.t.
the Gaussian measure when the ai are bounded). As the Hermite polynomials form a complete
orthogonal basis, the two ReLU network functions f(x) and g(x) are also equal. This concludes the
proof.

18

D Robust Analysis for general `

The main algorithm in the robust setting is Algorithm 4 described below, which approximately
recovers the parameters for the activation units (up to signs) that do not have large positive bias. The
guarantees are given in the following Theorem D.1.
Theorem D.1. Suppose ` 2 N be a constant, and " > 0. If we are given N i.i.d. samples as described
above from a ReLU network f(x) = a>�(W>x+ b) that is B-bounded Then there are constants
c = c(`) > 0, c0 > 0, signs ⇠i 2 {±1} 8i 2 [m] and a permutation ⇡ : [m] ! [m] such that
Algorithm 4 given N � poly

`
(m, d, 1/", 1/sm(W�`), B) runs in poly

`
(N,m, d) time and with high

probability outputs {eai,ebi, ewi : i 2 [m0]} such that for all i 2 [m] with |bi| < c
p

log(1/(" ·mdB))

we have that kwi � ⇠⇡(i) ew⇡(i)k2 + |ai � ea⇡(i)|+ |bi � ⇠⇡(i)eb⇡(i)| ".

In fact, the analysis just assumes that kTk � f̂kkF are upper bounded up to an amount that is inverse
polynomial in the different parameters (this could also include other sources of error) to approximate
the 2-layer ReLU network that approximates f up to desired inverse polynomial error ".

Algorithm 4: for order `: recover {ai}, and (up to signs) {bi, wi} given estimates
{T0, . . . , T2`+2}.

Input: Estimates T0, . . . , T2`+2 for f̂0, f̂1, . . . , f̂2`+2;
Parameters: ⌘0, ⌘1, ⌘2, ⌘3 > 0.;
1. Let order-3 tensors T 0 = flatten(T2`+1, `, `, 1) 2 Rd

`⇥d
`⇥d and let

T 00 = flatten(T2`+2, `, `, 2) 2 Rd
`⇥d

`⇥d
2

.
2. Set k0 = maxrm sr(flatten(T2`+1, `, `+ 1, 0)) > ⌘1. Run Jennrich’s algorithm on T 0 to

recover rank-1 terms {↵0
i
u⌦`

i
⌦ u⌦`

i
⌦ ui | i 2 [k0]}, where 8i 2 [k0], ui 2 Sd�1 and ↵0

i
2 R.

3. Set k00 = maxrm sr(flatten(T2`+2, `, `+ 2, 0)) > ⌘1. Run Jennrich’s algorithm on T 00 to
recover rank-1 terms {↵00

i
v⌦`

i
⌦ v⌦`

i
⌦ v⌦2

i
| i 2 [k00]}, where 8i 2 [k00], vi 2 Sd�1 and

↵00
i
2 R.

4. Remove all the rank-1 terms in steps 2 and 3 with Frobenius norm < ⌘2 i.e., ↵00
i

or ↵0
i
< ⌘2.

Also remove all duplicates from {u1, u2, . . . , uk0} [{v1, v2, . . . , vk00} even up to signs i.e.,
remove iteratively from the above set vectors v if either of +v,�v are within ⌘3 in `2 distance
of the other vectors in the set, to get ew1, ew2, . . . , ewm0 .

5. Run the subroutine RECOVERSCALARS(`, { ewi : i 2 [m0]}, T`, T`+1, T`+2, T`+3) (i.e., Alg. 2)
to get {eai,ebi : i 2 [m0]}.

Result: Output { ewi,eai,ebi : 1 i m0}.

The following algorithm (Algorithm 5) shows how to find a depth-2 ReLU network that fits the
data i.e., achieves arbitrarily small L2 error. The algorithm uses Algorithm 4 as a black-box to first
approximately recover the unknown parameters of the activation units (with not very large bias) up to
signs, and then setup an appropriate linear regression problem to find a network that fits the data.

The error parameters ⌘0, ⌘1, ⌘2, ⌘3 can be set with appropriate polynomial dependencies on
", d`,m,B, sm(W�`) to obtain the recovery guarantees in Theorem D.1 and Theorem 3.2.

In this section, we prove Algorithm 4 and its algorithmic guarantee in Theorem D.1 (and Theorems 3.1
and 3.2).

We break down the proof into multiple parts.

D.1 Estimating the Hermite coefficients

First, we derive concentration bounds on ⇠k, which will be followed by error bounds of the recovered
parameters ea,eb,fW in terms of ⇠k. To obtain the desired concentration bound, we first introduce an
auxiliary claim we will make use of in the following analysis.
Claim D.2. For a1, a2, ..., an 2 R and p 2 N, |

P
i2[n] ai|2p n2p maxi2[n] |ai|2p

n2p
P

i2[n] |ai|2p

19

Algorithm 5: Outputs a function g(x) that approximates the target network f(x) in mean squared
error.
Input: N i.i.d. samples of the form (xi, yi);
Parameters: ", ⌘0, ⌘1, ⌘2, ⌘3 > 0.;
1. Construct estimates T0, . . . , T2`+2 for f̂0, f̂1, . . . , f̂2`+2 using the first N

2 samples.
2. Let S = {(w̃i, ãi, b̃i)} be the output of Algorithm 4 on inputs T0, . . . , T2`+2 when run with

parameters ⌘0, ⌘1, ⌘2, ⌘3 > 0.
3. For each (xi, yi) and i 2 [N/2 + 1, N] construct the feature mapping
�(xi) = (Z(xi), Z 0(xi)) as described in the proof of Lemma D.12.

4. Set ⌧ = 20m(8|S|+ d)B
q

log(mdB|S|
"

) and find, via projected gradient descent, a vector �̂
such that

L̂⌧ (�̂) min
�:k�k

p
8|S|+m(1+B)

L̂⌧ (�) +
"2

100
.

Here L̂⌧ (�) is defined as

L̂⌧ (�) =
2

N

NX

i=N
2 +1

(yi � �>�(xi))
21

�
k�(xi)k < ⌧

�
.

Result: The function g(x) = �̂>�(x).

Proof. By triangle inequality,

|
X

i2[n]

ai|
X

i2[n]

|ai| nmax
i2[n]

|ai| n
X

i2[n]

|ai|) |
X

i2[n]

ai|2p n2p max
i2[n]

|ai|2p n2p
X

i2[n]

|ai|2p

Equipped with the essential claim, we are now ready to prove Lemma D.3.
Lemma D.3. For any ⌘ > 0, if Tk is estimated from N � ckdkm2B4poly(log(mdB/⌘))/⌘2

samples, then for some constant ck > 0 that depends only on k, we have with probability at least
1� (mdB)� log(md),

kTk � f̂kkF ⌘. (36)

Proof. Consider p 2 N, and a sum SY =
P

N

j=1 Yj of independent zero-mean r.v.s with
1
N

P
N

j=1 E[Y
2p
j

] A2p and 1
N

P
N

j=1 E[Y 2
j
] A2. Then by Rosenthal’s inequality (and Markov’s

inequality)

E
h⇣ NX

j=1

Yj

⌘2pi
 2p log(p)+2p+p

2

·max{NA2p, (NA2)
p} (37)

And, P
h���

1

N

NX

j=1

Yj

��� > ⌘
i
 2p log(p)+2p+p

2

·max
n A2p

N2p�1⌘2p
,
⇣ A2

N⌘2

⌘po
. (38)

Consider a fixed ↵ 2 [d]k (an index of the tensor corresponding to the kth Hermite coefficient);
|↵| = k. Given samples {(x(j), f(x(j)) : j 2 [N]}, the random variables of interest are Zj , Yj are

Zj =
mX

i=1

ai�(w
>
i
x(j) + bi)He↵(x

(j)), and Yj := Zj � E[Zj].

We will apply the above concentration inequality with the random variables Yj . We need bounds for
E[Y 2

j
] and E[Y 2p

j
]. For convenience let Z :=

P
m

i=1 ai�(w
>
i
x + bi)He↵(x), and Y := Z � E[Z].

20

Note that by applying Claim D.2, we can bound these quantities as

E[Y 2p] = E[(Z � E[Z])2p] 22p(E[Z2p] + E[Z]2p), where

|E[Z]| =
���

mX

i=1

aiHek�2(bi) ·
exp(�b2

i
/2)p

2⇡
·

kY

t=1

wi(↵(t))
��� mB

p
k!,

E[Z2p] = E
h⇣ mX

i=1

ai�(w
>
i
x+ bi)

⌘2p
He↵(x)

2p
i
,

On the other hand, from Hölder’s inequality, we have (
P

m

i=1 |ci||zi|)2p (kckq
⇤

q⇤)
2p/q⇤ ·kzk2p2p where

q⇤ is the dual norm of 2p i.e., 2p/q⇤ = 2p� 1. Hence, again combined with Claim D.2, we have

E[Z2p] E
h⇣ mX

i=1

aq
⇤

i

⌘2p/q⇤⇣ mX

i=1

�(w>
i
x+ bi)

2p
⌘
He↵(x)

2p
i
 (m2p�1B2p)

mX

i=1

E
h
(w>

i
x+ bi)

2pHe↵(x)
2p
i

 (22pm2p�1B2p)
mX

i=1

E
h
((w>

i
x)2p + b2p

i
)He↵(x)

2p
i

 (2mB)2p
mX

i=1

⇣
E
h
(w>

i
x)2pHe↵(x)

2p
i
+B2p E

h
He↵(x)

2p
i⌘

We note that w>
i
x is a standard Gaussian since kwik2 = 1.

Now, let He↵(x) involve different indices of x up to k1, k2, . . . , kd times. Note that
P

t2[d] kt
|↵| = k. Using properties of Hermite polynomials, we can bound E[He↵(x)2p] as

E[He↵(x)
2p] = E

h⇣ X
P

t2[d] ktk

ck1...kd

Y

t2[d]

xkt
t

⌘2pi

✓
d+ k

d

◆2p

maxP
t2[d] ktk

c2p
k1...kd

E
h Y

t2[d]

x2pkt
t

i

✓
d+ k

d

◆2p

(2pk � 1)!!(k!)2p

⇣✓d+ k

d

◆
· k!

⌘2p
(2pk)pk = C2p

1 · (2pk)pk

by setting C1 =
�
d+k

d

�
· k! and repetitively applying Claim D.2. A similar argument also holds for

E[(w>
i
x)2pHe↵(x)2p] by Cauchy–Schwarz inequality

E[(w>
i
x)2pHe↵(x)

2p]
q
E[(w>

i
x)4p]E[He↵(x)4p]

q
E[(w>

i
x)4p]

✓
d+ k

d

◆2p

(k!)2p(4pk)pk

⇣p

4p ·
✓
d+ k

d

◆
· k!

⌘2p
(4pk)pk = (2k+2p)p · C2p

1 · (2pk)pk

since w>
i
x follows a standard Gaussian distribution. Hence we have

E[Z2p] C2p
1 (2mB)2p(2pk)pk((2k+2p)p +B2p)m

A2p = E[Y 2p] 22p
⇣
(2mBC1)

2p(2pk)pk((2k+2p)p +B2p)m+ (mB
p
k!)2p

⌘

=) A2p (C2(pk)
k/2mB2)2p

where C2 = 8C2k
1 . Note that p = 1 also gives the required bounds for E[Y 2].

21

Now, setting p := 1
2 (log(1/⌘) + log(mdB)), and applying Rosenthal’s inequality (37) with N =

c
0(k)
⌘2 m2B4poly(log(mdB/⌘)), we have for an appropriate constant c0(k) > 0

P
h���

1

N

NX

j=1

Yj

��� > ⌘
i
 2p log(p)+2p+p

2

·max
n A2p

N2p�1⌘2p
,
⇣ A2

N⌘2

⌘po

 2p log(p)+2p+p
2

·max
n (C2mB2)2p(pk)pk

N2p�1⌘2p
,
⇣ (C2mB2kk/2)2

N⌘2

⌘po

⇣ 1

mdB

⌘log(mdB)+log(1/⌘)
,

as required. Finally by setting ⌘ = ⌘0/
p
dk and a union bound over all entries, we get that w.h.p.,

kTk � f̂kkF ⌘0, as required.

D.2 Recovering the parameters under errors

Suppose " > 0 is the desired recovery error. The m hidden units are split into groups

G =
n
i 2 [m] | |bi| < c`

s

log
⇣ 1

"mdBsm(W�`)

⌘o
, and P = {1, 2, . . . ,m} \G. (39)

where c` is an appropriate constant that depends only on the constant ` > 0. Note that under the
assumption that sm(W�`) � 1/poly(m, d,B) in Theorem D.1, this reduces to

G =
n
i 2 [m] | |bi| < c0

`

p
log(1/"mdB)

o
.

We aim to recover all of the parameters of the units corresponding to G. For the terms in P , we will
learn a linear function that approximates the total contribution from all the terms in P .

D.2.1 Recovery of weight vectors wi for the terms in G

We first state the following important lemma showing that Jennrich’s algorithm run with an appropriate
choice of rank k will recover each large term up to a sign ambiguity.
Lemma D.4. Suppose "2 2 (0, 1

4), and `1, `2 � `, `3 > 0 be constants for some fixed
`, and T = flatten(f̂`1+`2+`3 , `1, `2, `3) have decomposition T =

P
m

i=1 �i(ui ⌦ vi ⌦
zi) with �i 2 R and unit vectors ui = w⌦`1

i
2 Rd

`1 , vi = w⌦`2
i

2 Rd
`2 , zi =

w⌦`3
i

2 Rd
`3 . There exists ⌘1 = poly("2, sm(W�`))/poly(m, d,B) > 0 and "1 :=

max{2"2, 1/poly(1/"2, 1/sm(W�`), d`1+`2+`3 , B)} such that if

kT � eTkF ⌘01 := min
n
poly("2, sm(W�`))/poly(m, d,B, 1/⌘1),

⌘1
2

o
, (40)

then Jennrich’s algorithm runs with rank k0 := argmax
rm

sr(flatten(eT , `1, `2 + `3, 0)) > ⌘1
and w.h.p. outputs6 {e�i, ewi}i2[k0] such that there exists a permutation ⇡ : [m] ! [m] and signs
⇠i 2 {1,�1} 8i 2 [m] satisfying:

(i) 8i 2 [m], |�i � e�⇡(i)| "22, and (41)

(ii) 8i 2 [m], s.t. |�i| > "1, we have kw⌦t

i
� ⇠t

⇡(i) ew
⌦t

⇡(i)k2 "2, 8t 2 [2`]. (42)

Before we proceed to the proof of this lemma, we first state and prove a couple of simple claims. We
use the following simple claim about the assumptions of the theorem implying lower bounds on the
least singular value of the submatrices given by two columns of W .

6Note that one can also choose to pad the output with zeros to output m sets of parameters instead of k0 if
required.

22

Claim D.5. Suppose the matrix Mj 2 Rd
j⇥2 formed by columns u⌦j and v⌦j for u, v 2 Sd�1.

Suppose s2(M`) � , then s2(M1) � /
p
2`.

Proof. Suppose v = ↵u+
p
1� ↵2u? for some u? 2 Sd�1 that is perpendicular to u. It is easy to

see that
hv⌦`, u⌦`i = ↵`.

For two unit vectors u, v, the least singular value of the matrix given by them as columns is

min
x,y2R

x
2+y

2=1

kxu+ yvk2 = min
x,y2R

x
2+y

2=1

p
x2 + y2 + 2xyhu, vi = min

x,y2R
x
2+y

2=1

p
1 + 2xyhu, vi =

p
1� |hu, vi|.

Hence, 2 = 1� ↵` =) s2
�
[u v]

�
=

p
1� ↵ =

q
1� (1� 2)1/` � p

2`
.

We use the following simple claim shows that if we obtain a rank-1 term which is close, then the
corresponding vectors are also close.
Claim D.6. For any " > 0, ` 2 N with ` � 2, suppose ↵,� > 0, and u, v 2 Sd�1 satisfy
k↵u⌦` � �v⌦`kF ", for some " 2 [0,↵/2). Then there exists ⇠ 2 {+1,�1} such that for any
t 2 {1, 2, . . . , `}, ku⌦t � ⇠tv⌦tkF

p
2"/↵. Also |↵� �| 3".

We remark that if ` is odd, we can additionally conclude that ⇠ = +1, but this is not used in the
arguments, so we skip its proof.

Proof. Suppose A1 = u⌦t, B1 = v⌦t and A2 = u⌦`�t, B2 = v⌦`�t. Note that they all have unit
norm. Let ⌘ = min{kA1 � B1kF , kA1 + B1kF }. Then A1 =

p
1� ⌘2/2B1 +

⌘p
2
B?

1 for some
B?

1 with unit norm orthogonal to B1. We have

↵u⌦` � �v⌦` = ↵A1 ⌦A2 � �B1 ⌦B2 = ↵
q
1� ⌘

2

2 B1 ⌦A2 + ↵ · ⌘p
2
B?

1 ⌦A2 � �B1 ⌦B2

Hence "2 = k↵u⌦` � �v⌦`k2
F
� ↵2⌘2

2
kB?

1 ⌦A2k2F � ↵2⌘2

2
(since B1 ? B?

1).

Hence ⌘2 2"2/↵2. For even t, it is easy to see that ku⌦t � v⌦tkF ku⌦t + v⌦tkF ; hence
ku⌦t � v⌦tkF

p
2"/↵. For odd t, it could be either ku⌦t � v⌦tkF = ⌘ or ku⌦t � v⌦tkF = ⌘;

moreover the sign (in front of v⌦t) is coordinated across the different t since ku⌦t�v⌦tk2
F
+ku⌦t�

v⌦tk2
F
= 2. Hence for an appropriate sign ⇠ 2 {+1, 1} we have ku⌦t � ⇠tv⌦tkF = ⌘.

Finally, to give an upper bound on |↵� �|, we use the conclusion from the above bound with t = 1,
to argue that for some v? 2 Sd�1 that is orthogonal to v

"2 �
���↵

�q
1� ⌘

2

2 · v + ⌘p
2
v?

�⌦` � �v⌦`

���
2

F

=
���↵
�
1� ⌘2

2

�`/2 � �
���
2
+ ↵2

⇣
1�

�
1� ⌘2

2

�`⌘
.

Since ⌘2 2 (0, 1), we can use a simple linear approximation to claim that t⌘2/4 |1�(1�⌘2/2)t|
t⌘2 for any t > 0. Hence, we get that

"2 � (|↵� �|� |↵|`⌘2)2 + ↵2
�
1
4`⌘

2
�
.

Hence |↵� �| "+ |↵|
p
`⌘, and |↵|

p
`⌘ 2".

Hence the claim follows.

We now proceed to the proof of Lemma D.4.

23

Proof of Lemma D.4. The proof proceeds by first identifying a tensor eT which we show satisfies
all the conditions for Jennrich’s robust algorithmic guarantee (Theorem A.5) with rank k0, which
corresponds to the k0-th largest |�i|. Note that the recovery error in the rank-1 terms may be larger
than some of the k0 terms of eT (for example if there is not much separation between the k0 largest
and (k0 + 1)th largest of the {|�i|}). Therefore, we argue that if |�i| is sufficiently large, it will be
recovered up to small error.

We start with some notation. Suppose smin := sm(W�`). Let fM = flatten(eT , `1, `2 + `3, 0) and
M = flatten(T, `1, `2+`3, 0). Set U = W�`1 , V = W�`2 , Y = diag(�)Z = diag(�)W�`3 . Recall
that k0 := argmax

rm
sr(fM) > ⌘1. Note that M = Udiag(�)(V � Y)>, where � = (�1, . . . ,�m).

We remark that by Claim A.4

sm(U) � sm(W�`)

(2m)`1�`
� smin

(2m)`1
, and similarly sm(V) � smin

(2m)`2
, sm(V � Z) � smin

(2m)`2+`3
.

(43)

We first argue that there are at least k0 values of |�i| that are non-negligible. Since kT � eTkF
⌘01 < ⌘1/2, we have from Weyl’s inequality that sk0(M) > ⌘1/2. Let S ⇢ [m] denote the indices
corresponding to the largest k0 values of |�i| (this is for analysis). The rank-1 terms restricted to S
will constitute the “ground-truth” decomposition eT . We first observe that

min
i2S

|�i| >
⌘1
2m

, and (44)

8i 2 [m] s.t. |�i| �
⌘1(2m)`1+`2+`3

s2min

, we have i 2 S. (45)

To see why (44) holds, note that

⌘1
2

< sk0(M) = sk0

⇣
Udiag(�)(V � Y)>

⌘
 sk0(diag(�)) · s1(U) · s1(V � Y) m ·min

i2S

|�i|,

where we used the fact that all the columns of U and V � Z are unit vectors. To show (45), suppose
we assume for contradiction that |�i| > 2(2m)`1+`2+`3⌘1/s2min, but i /2 S. Let S0 = S [{i}. Then
we can see that at least k0 + 1 singular values of fM are greater than ⌘1 since by Weyl’s inequality,

sk0+1(fM) � sk0+1(M)� ⌘01 = sk0+1

⇣
Udiag(�)(V �W)>

⌘
⌘01

� sm(U) · sk0+1(diag(�)) · sm(V �W) � smin

(2m)`1
· |�i| ·

smin

(2m)`2

� 2⌘1 � ⌘01 > ⌘1.

Hence (44) and (45) are both true.

We now argue that we satisfy the requirements of Theorem A.5 (the robust guarantee). Let US , VS

and YS denote the restriction of the factor matrices U, V, Y to the columns corresponding to S. Then
by Claim A.4

sk0(U) � sm(U) � sm(W�`)

(2m)`1�`
� smin

(2m)`1
, and sk0(U) � sm(U) � sm(W�`)

(2m)`2�`
� smin

(2m)`2
.

Moreover for any two columns i, j 2 S, we have that the restriction of Z to these two columns Y{i,j}
satisfies

s2(Y{i,j}) � min{|�i|, |�j |} · s2(W{i,j}) �
⌘1 · sminp
2` ·m

.

Moreover the maximum singular values of the factor matrices U, V are all upper bounded by
p
m.

24

Finally, suppose TS =
P

i2S
�iui ⌦ vi ⌦ zi, then the error between the input tensor and TS

k eT � TSkF k eT � TkF + kT � TSkF ⌘01 +
���
X

i/2S

�iui ⌦ vi ⌦ zi
���
F

= ⌘01 +
���flatten

⇣X

i/2S

�iui ⌦ vi ⌦ zi, `1, `2 + `3, 0
⌘���

F

 ⌘01 +
p
ms1

⇣
flatten

�X

i/2S

�iui ⌦ vi ⌦ zi, `1, `2 + `3, 0
�⌘

 ⌘01 +
p
m⌘1 (

p
m+ 1)⌘1.

Now applying Theorem A.5 with "A.5 = "22, and setting ⌘01 such that ⌘01 = min
n
⌘A.5

�
"A.5 =

"22, =
p
m(2m)`1+`2

smin
, d`1+`2+`3 , � = ⌘1·sminp

2`·m

�
/(
p
m+1), ⌘1/2

o
, we have that the rank-1 terms can

be recovered up to accuracy "22 (up to renaming the indices i 2 [m]):

8i 2 S, k�iui ⌦ vi ⌦ zi � e�ieui ⌦ evi ⌦ ezikF "22. (46)

From Claim D.6 , 8i 2 S, kwi � ⇠i ewik2 "22
|�i|

, (47)

for appropriate signs ⇠i 2 {+1,�1}. We remark that the choice of ⌘01 is consistent with both Theorem
A.5 and this lemma, since in our case poly

`
(m)/smin and 1/� poly

`
(m, 1/⌘1)/smin. If

smin > 0 becomes too small, we will directly set ⌘01 as ⌘1/2 instead.

Note that from (46) and triangle inequality, we already have for i 2 S

|�i � e�i| =
���k�iui ⌦ vi ⌦ zikF � ke�ieui ⌦ evi ⌦ ezikF

��� k�iui ⌦ vi ⌦ zi � e�ieui ⌦ evi ⌦ ezikF "22.

(For terms not in S, the output e�i = 0 and |�i| < ⌘1/(2m), hence it is still satisfied). For any i 2 [m]
s.t., |�i| > "1, we have from (45) that i 2 S; hence

For all i s.t. |�i| > "1, kwi � ⇠i ewik2 "22
"1

 "2,

as long as |"1| �
p
"2. A similar proof also holds for kw⌦t

i
� ⇠t

i
ew⌦t

i
kF by using Claim A.4 with

general t � 1 in (47). This completes the proof.

A direct application of Lemma D.4 establishes the following claim, showing that we can recover all
the weight vectors wi for each term i 2 G up to a sign ambiguity.

Lemma D.7. For any "2 > 0, there exists an ⌘02 = poly("2,sm(W�`))
poly`(m,d,B) > 0 such that if the estimates

kTk � f̂kkF ⌘02 for all k 2 {0, 1, . . . , 2`+ 2}, then steps 1-4 of Algorithm 4 finds a set { ewi : i 2
[m0]} such that there exists a one-to-one map ⇡ : [m0] ! [m] satisfying (i) every i 2 G has a pre-
image in ⇡ (i.e., every term in G is recovered), and for appropriate signs {⇠i 2 {1,�1} : i 2 [m0]},

8i 2 [m0], 8t 2 [2`], k⇠t
i
ew⌦t

i
� w⌦t

⇡(i)kF "2. (48)

In particular 8i 2 [m0], we have k⇠i ewi � w⇡(i)k2 "2.

The stronger guarantee for all t 2 [2`] will be useful in bounding the recovery error of the ai, bi in
later steps.

Proof of Lemma D.7. The proof uses the robust guarantees of Jennrich’s algorithm in Lemma D.4
along with the crucial property of separation of roots in Lemma 4.3.

Set "01 := "1/
p
k!/2 and "1 = poly("2,m, d, sm(W�`)) be given by Lemma D.4. Similarly ⌘02 is

specified by the requirement of Lemma D.4. Set also ⌘2 = 4"1.

25

Consider a ewi output by the algorithm in step 4; and suppose w.l.o.g. it was output in step 2. Then we
have that |e�i| � ⌘2. Further, |e�i � �i| "22 < ⌘2/4. Hence, for every term i 2 [m0] that is output
after step 4, we have |�i| > ⌘2/2 � "1.

We first argue that every term in G is one of the m0 terms output by the algorithm in step 4. Consider
the decompositions of the two tensors obtained from the Hermite coefficients of f i.e.,

f̂2`+1 =
mX

i=1

(�ai) ·He2`�1(bi) ·
1p
2⇡

exp(�b2
i
/2) · w⌦2`+1

i
=

mX

i=1

�i(w
⌦`

i
)⌦ (w⌦`

i
)⌦ wi

(49)

f̂2`+2 =
mX

i=1

ai ·He2`(bi) ·
1p
2⇡

exp(�b2
i
/2) · w⌦2`+2

i
=

mX

i=1

�0
i
(w⌦`

i
)⌦ (w⌦`

i
)⌦ w⌦2

i
. (50)

Note that from Lemma 4.3 we have that for every x 2 R, at least one of |He2`+2(x)|, |He2`+1(x)| is
at least

p
k!/2. Moveover since i 2 G for our choice of ck in (39), we have that e�b

2
i /2/

p
2⇡ > "01.

Hence for each i 2 G, we have that max{|�i|, |�0i|} > "1.

Finally, we now prove that when |�i| � "1, the corresponding wi is recovered up to error "2. From
Lemma D.4, if ewi is the vector output by one of the decompositions for wi, we have for all t 2 [2`]
that kw⌦t

i
� ⇠t

i
ew⌦t

i
kF "2 for some sign ⇠i 2 {1,�1} as required. Moreover since ⌘2 := "1/2

and the error in each rank-1 term is at most "A.5 < ⌘1/2, we have that none of these terms are
removed as duplicates of other terms. On the other hand, since ⌘3 := 2"2, we have that duplicates are
correctly removed. Hence we have that for every i 2 [m0], kw⌦t

i
� ⇠t

i
ew⌦t

i
kF " for appropriate

signs ⇠i 2 {±1}.

D.2.2 Recovering error for the parameters ai, bi for terms i 2 G.

The following lemmas now proves the recovery for each i 2 G, the ai (no sign ambiguity) and the bi
up to the same sign ambiguity as in wi (and in fact, this holds for all the terms output in steps 1-5 of
Algorithm 4).

Before we start the proof of the main lemmas, we first show a key property of Hermite polynomials
we will utilize later.
Claim D.8. 8x 2 R, |Hek(x)| exp(�x2/2)

p
k!

Proof. We utilize Cramér’s inequality for Hermite functions that for all x 2 R, | k(x)| ⇡�1/4,
where k(x) is the k’th Hermite function given by

| k(x)| = (2kk!
p
⇡)�1/2 exp(�x2/2)|Hk(x)|

with Hk(x) denoting the k’th physicist’s Hermite polynomial7. Now, substituting x with x/
p
2 yields

| k(
xp
2
)| = (k!

p
⇡)�1/2 exp(�x2/4)|Hek(x)| ⇡�1/4

=) exp(�x2/2)|Hek(x)|
p
k! exp(�x2/4)

p
k!

With this claim, we are now ready to proceed.

Lemma D.9. For " > 0 in the definition of G in (39), there exists ⌘03 = poly(",sm(W⌦`))
poly`(m,d,B) > 0, and

"03 = poly(",sm(W⌦`))
poly`(m,d,B) > 0 such that for some ⇠i 2 {±1} 8i 2 [m0]

if kTk � f̂kkF ⌘03 8k 2`+ 2, and k ew⌦t

i
� ⇠tw⌦t

i
kF "03, 8i 2 [m0], 8` t `+ 3.

then steps 5-6 of the algorithm finds (eai,ebi : i 2 [m0]) such that

|eai � ai| ", and |ebi � ⇠ibi| ". (51)
7The physicist’s Hermite polynomials are defined as Hk(x) =

(�1)k

exp(�x2)
· dk

dxk exp(�x
2)

26

Note that in Lemma D.7 we showed that G is contained in the m0 terms output in steps 1-4 (and
hence step 5 as well).

The above uses the following two lemmas which gives a robust version of Lemma 4.5 when there are
errors in the estimates. We remark that � = ↵e�z

2
/2 in the notation of Lemma 4.5.

Lemma D.10 (Robust version of Lemma 4.5 for k � 2). Suppose k 2 N, k � 2, B � 1, and
↵, z 2 R be unknown parameters. There exists a constant ck = c(k) � 1 such that for any " 2 (0, 1

4)

satisfying (i) |↵| 2 [1
B
, B] and |z| B, and (ii) |z| < 2

p
log(ck/"1/4(1 +B)3)) , if we are given

values �k, �k+1, �k+2, �k+3 s.t. for some ⇠ 2 {±1},

����j � ↵ · (�1)jp
2⇡

e�z
2
/2Hej(⇠z)

��� "0 =
"4

2(1 +B)2
8j 2 {k, k + 1, k + 2, k + 3},

then the estimates ez, e↵ obtained as:

ez = ��q+1 + q · �q�1

�q
where q := argmax

j2{k+1,k+2}
|�j |, and e↵ = (�1)q

p
2⇡�q

e�
ez2
2 Heq(ez)

satisfy
��ez � ⇠z

�� "|z|
B + 1

 ", and
��e↵� ↵

�� ". (52)

Proof. Set "0 := "4/(2(1 + B)2), and let � := ↵e�z
2
/2/

p
2⇡. Under our assumptions |�| >

ck("0)1/4(1 +B)2. We use the following fact about Hermite polynomials:

Her+1(z) = zHer(z)� r ·Her�1(z). (53)

For convenience, for a scalar quantity v we denote by v = a ± " iff |v � a| ". Recall that
q = argmax

j2{k+1,k+2} |�j |. Since �
p
k!/2 > 4"0 by the conditions, we have that |�q| > �

p
k!/2.

Setting r = q in (53) and dividing by Heq(z) we get using its odd or even function property
depending on parity of q,

⇠z = ⇠ · Heq+1(z) + qHeq�1(z)

Heq(z)
=
�Heq+1(⇠z) + q · �Heq�1(⇠z)

�Heq(⇠z)

= � (�q+1 ± "0) + q(�q�1 ± "0)

�q ± "0
= ��q+1 + q�q�1

�q(1± "
0

�q
)

± (k + 3)"0

�q(1± "
0

�q
)

= ��q+1 + q · �q�1

�q
·
⇣
1± 2"0

|�q|

⌘
± (k + 3)"0

�q(1± "
0

|�q|)

= ez(1±
p
"0)±

p
"0, since �

p
k!/2 � 2(k + 3)

p
"0.

Let g(z) = e�z
2
/2Heq(z)/

p
2⇡. Hermite polynomials satisfy He0

q
(x) = qHeq�1(x). Hence

g0(z) = e�z
2
/2
�
qHeq�1(z)� zHeq(z)

�
/
p
2⇡ = �e�z

2
/2Heq+1(z)p

2⇡
,

by applying (53). Also, by Claim D.8, maxz0 |g0(z0)| maxz0 e�z
02
/2|Heq+1(z0)|/

p
2⇡ (q+1)!.

Hence,

|g(ez)� g(⇠z)| max
z02[z,ez][z02[ez,z]

|g0(z)||ez � ⇠z| 4(q + 1)!(1 +B)
p
"0

27

Plugging these error bounds into ↵, and using Heq(⇠z) = ⇠qHeq(x) we have

e↵ =
�q
g(ez) =

↵⇠q · e
�z2/2
p
2⇡

Heq(z)± "0

e
�z2/2

Heq(⇠z)p
2⇡

± |g(ez)� g(⇠z)|

=
↵g(z)± "0

g(z)± 4(q + 1)!(1 +B)
p
"0

= ↵
⇣
1± 8(q + 1)!(1 +B)

p
"0

|g(z)|

⌘
± 2"0

|g(z)|

|g(z)| = |�Heq(z)|
|↵| � |�|

p
k!

2B
> ck(1 +B)2("0)1/4

Hence
��e↵� ↵

�� 8|↵|⇥ (q + 1)!(1 +B)
p
"0

ck(1 +B)2("0)1/4
+

2"0

ck(1 +B)2"01/4
 ("0)1/4 ",

because of our choice of ck = 16(k + 3)!.

The simpler variant of the above lemma (Lemma D.10) for k = 1 which is used in the full-rank
setting, follows a very similar analysis and is stated below.

Lemma D.11 (Robust version of Lemma 4.5 for k = 1). Suppose B � 1, and ↵, z 2 R be unknowns.
There exists a constant c � 1 such that for any " 2 (0, 1

4) satisfying (i) |↵| 2 [1
B
, B] and |z| B,

and (ii) |z| < 2
p
log(c/"1/4(1 +B)3)), if we are given values �0, �1 s.t. for some ⇠ 2 {±1},

����j � ↵ · (�1)jp
2⇡

e�z
2
/2Hej(⇠z)

��� "0 =
"4

2(1 +B)2
8j 2 {0, 1},

then the estimates ez, e↵ obtained as:

ez = ��1
�0

, and e↵ =

p
2⇡�0

e�
ez2
2

satisfy
��ez � ⇠z

�� "|z|
B + 1

 ", and
��e↵� ↵

�� ". (54)

Note that He0(z) = 1 and He1(z) = z to see the similarities between Lemma D.10 and Lemma D.11

Proof. Set "0 := "4/(2(1 + B)2), and let � := ↵e�z
2
/2/

p
2⇡. Under our assumptions |�| >

c("0)1/4(1 +B)2. For convenience we denote for a scalar v, v = a± " iff |v � a| ".

Since � > 4"0 by the conditions, we have that |�0| > �. Recall that He0(z) = 1 and He1(z) = z.
Hence,

⇠z = ⇠ · He1(z)

He0(z)
=
�He1(⇠z)

�He0(z)

= � (�1 ± "0)

�0 ± "0
= � �1 ± "0

�0(1± "
0

�0
)
= ��1

�0
·
⇣
1± 2"0

|�0|

⌘
± "0

�0(1± "
0

|�0|)

= ez(1±
p
"0)±

p
"0, since � � 8

p
"0.

To argue about |e↵ � ↵|, let g(z) = e�z
2
/2/

p
2⇡. Its derivative g0(z) satisfies by Claim D.8,

maxz0 |g0(z0)| maxz0 |z0|e�z
02
/2/

p
2⇡ 1. Hence,

|g(ez)� g(⇠z)| max
z02[z,ez][z02[ez,z]

|g0(z)||ez � ⇠z| 4(1 +B)
p
"0

28

Plugging these error bounds into ↵ we have

e↵ =
�0
g(ez) =

↵ · e
�z2/2
p
2⇡

± "0

e
�z2/2
p
2⇡

± |g(ez)� g(⇠z)|

=
↵g(z)± "0

g(z)± 4(1 +B)
p
"0

= ↵
⇣
1± 8(1 +B)

p
"0

g(z)

⌘
± 2"0

g(z)

g(z) =
�

↵
� |�|

B
> c(1 +B)2("0)1/4

Hence
��e↵� ↵

�� 8|↵|⇥ (1 +B)
p
"0

c(1 +B)2("0)1/4
+

2"0

c(1 +B)2"01/4
 ("0)1/4 ",

because of our choice of c = 16.

We now prove Lemma D.9.

Proof of Lemma D.9. Set "3 = "4sm(W⌦`/(16m3/2(1 + B)2). For each of the j 2 {`, ` + 1, ` +
2, `+ 2}, we have from Lemma 3.5 that

f̂j =
mX

i=1

(�1)j · ai ·Hej�2(bi) ·
exp(�b

2
i

2)
p
2⇡

· w⌦j

i
.

Moreover kTj � f̂jkF ⌘03. Also for the terms i /2 G, we have for each ` j ` + 3, the
corresponding term

���ai ·
exp(�b2

i
/2)

2⇡
·Hej�2(bi)

��� B · ("mdB)c
2
`/2 <

"3
2m

.

Hence
���Tj �

X

i2G

(�1)j · ai ·Hej�2(bi) ·
exp(�b

2
i

2)
p
2⇡

· w⌦j

i

���
F

 "03 +m · "3
2m

 "3,

where the first line follows from our choice of "3 and our choice of c`.

Let m0 := |G|. Next we establish that the linear system is well-conditioned for each ` j `+ 3.
For any signs ⇠i 2 {±1} 8i 2 [m], the matrix formed by the vectors {⇠`

i
w⌦`

i
: i 2 G} has

non-negligible least singular value. Moreover from Claim A.4 (applied three times), we have for
` j ` + 3, we have the matrix formed by columns {⇠j

i
w⌦j

i
: i 2 G} has least singular value

sm0
�
(w⌦j

i
: i 2 G)

�
� sm(W⌦`)/(2m)3/2. Suppose Mj , fMj 2 Rd

j⇥m
0

be the matrices with the
ith columns (⇠iwi)⌦j and ew⌦j

i
respectively for i 2 G. Then by Weyl’s inequality, we have

sm0(fMj) � sm0(Mj)� kfMj �MjkF � sm(W⌦`)

(2m)3/2
�
X

i2G

k ew⌦j

i
� ⇠iw

⌦j

i
kF

� sm(W⌦`)

(2m)3/2
�m · "03 � sm(W⌦`)

4m3/2
, since "3 <

sm(W⌦`)

4m2
.

The target solution to the linear system for each ` j `+ 3

8i 2 G, ⇣⇤
j
(i) := ai · (�1)j⇠j

i
·
exp(�b

2
i

2)
p
2⇡

Hej�2(bi).

29

Note that since for any j, sup
z2R e�z

2
/2Hej(z) c0

j
for some bounded constant c0

j
< 1. Now a

standard error analysis of the linear system yields (see e.g., [Bha97]) we have for all ` j `+ 3,

k⇣j � ⇣⇤
j
k2

⇣
sm0(fMj)

⌘�1⇣
"3 + kMj � fMjkF k⇣⇤j k2

⌘

 4m3/2

sm(W⌦`)

�
"3 + c0

j
·B ·

p
m0"03

�
.

Hence, 8i 2 G,
��⇣j(i)� ⇣⇤

j
(i)

�� 8m3/2

sm(W⌦`)
· "3 "4

2(1 +B)2
.

since "03 1
2 (c

0
`+3B

p
m)"3, and for our choice of ".

Finally we can now apply Lemma D.10 for ` � 2 or Lemma D.11 for ` = 1 for each of the i 2 G
separately with �j = ⇣j(i) (note that the error is at most "0 as in Lemmas D.10 and D.11). The
output is eai = ↵,ebi = z and conclude that |eai � ai| ", and |ebi � ⇠ibi| ".

D.3 Learning Guarantees via Linear Regression

In the previous sections we designed algorithms based on tensor decompositions that, given i.i.d.
samples from a network f(x) =

P
m

i=1 ai�(w
>
i
x + bi), can recover approximations (up to signs)

for “good units”, i.e, G = {i 2 [m] : |bi| < O
�q

log(1
"mdB

)
�
}. In this section we will show

how to use these approximations to perform improper learning of the target network f(x) via a
simple linear regression subroutine. Our algorithm will output a functions of the form g(x) =P

m
0

i=1 a
0
i
�(w0>

i
x+ b0

i
) + w00>x+ C, where m0 8m. In particular we will prove the following.

Lemma D.12. Let " > 0 and f(x) =
P

m

i=1 ai�(w
>
i
x+ bi) be an unknown target network. Let S

be a given set of tuples of the form (ewi,ebi,eai) with kw̃ik = 1, such that for each i 2 G, there exists
j 2 S, and ⇠j1 , ⇠j2 , ⇠j3 2 {�1,+1}, such that kwi � ⇠j1 ewjk O("

mdB
), |bi � ⇠j2ebj | O("

mdB
),

and |ai � ⇠j3eaj | O("

mdB
). Then for any � 2 (0, 1), given N = poly(m, d,B, 1

"
, log(1

�
)) i.i.d.

samples of the form (x, y = f(x)) where x ⇠ N(0, I), there exists an algorithm (Algorithm 5) that
runs time polynomial in N and with probability at least 1 � � outputs a network g(x) of the form
g(x) =

P
m

0

i=1 a
0
i
�(w0>

i
x+ b0

i
) + w00>x+ C, where m0 8|S|, such that

Ex⇠N (0,Id⇥d)

�
f(x)� g(x)

�2 "2.

Furthermore, when ⇠j1 = ⇠j2 and ⇠j3 = +1 for all j 2 S (i.e., the sign ambiguity of wi and bi are
the same, and there is no ambiguity in the sign of ai for all i 2 G), then the number of hidden units
in g(x) is at most |S|+ 2.

While the above lemma is more general, when it is applied in the context of Theorem 3.2 it satisfies
the conditions of the “furthermore” portion of the lemma. Our algorithm for recovering g(x) will set
up a linear regression instance in an appropriate feature space. In order to do this we will need the
lemma stated below that shows that there is a good linear approximation for the units not in G, i.e.,
P = [m] \G.
Lemma D.13 (Approximating fP). Let c > 2 be a fixed constant. Consider fP (x) =
P

m

i=1 ai�(w
>
i
x + bi)1

�
|bi| � c

q
log(1

"mdB
)
�
. Then there exists a function gP (x) = �>

P
x + CP

where k�P k mB and |CP | mB2 such that for a constant c0 > 0 that depends on c,

Ex⇠N (0,I)[fP (x)� gP (x)]
2 = c0"2.

Before proceeding to the proof of the main lemmas, we first establish an auxiliary claim that we will
utilize. The following claim shows how one can combine some of the activation units output by the
regression step to get a ReLU network with at most |G|+ 2 units.
Claim D.14. Given a function g(x) of the form

g(x) = v>x+ c+
X

i2m0

↵i�(w
>
i
x+ bi) + ↵0

i
�(�w>

i
x� bi), (55)

30

then g(x) can be expressed as a ReLU network with at most m0 + 2 activation units as

g(x) = �0�(w0
>x+ b0)� �0�(�w>

0 x� b0) +
m

0X

i=1

�i�(w
>
i
x+ bi), (56)

where for each i 2 [m0], �i = ↵i + ↵0
i

and w0 2 Sd�1, b0 2 R,�0 2 R chosen to satisfy
�0w0 = v �

P
m

0

i=1 ↵
0
i
wi and �b0 = c�

P
m

0

i�1 ↵
0
i
bi.

Proof. First we note that for any z 2 R, �(z) = 1
2 (|z|+ z) and �(�z) = 1

2 (|z|� z). Hence we have

��(z) + �0�(�z) = 1
2 (� + �0)|z|+ 1

2 (� � �0)z, and z = �(z)� �(�z). (57)

Hence the terms are consolidated by replacing terms of the form �(w>
i
x+ bi) and �(�w>

i
x� bi)

by one ReLU unit so that the coefficient of |w>
i
x + bi| match, along with a linear term. All the

linear terms are themselves consolidated together, and replaced by a sum of two ReLU units. Now,
substituing the setting of �i w0, b0 in (56) and simplifying, we have

�0�(w0
>x+ b0)� �0�(�w>

0 x� b0) +
m

0X

i=1

�i�(w
>
i
x+ bi)

=�0(w
>
0 x+ b0) +

m
0X

i=1

(↵i + ↵0
i
) · 1

2

�
|w>

i
x+ bi|+ (w>

i
x+ bi)

�

=v>x+ c+
m

0X

i=1

1

2
(↵i + ↵0

i
)|w>

i
x+ bi|+

1

2
(↵i � ↵0

i
)(w>

i
x+ bi)

=v>x+ c+
m

0X

i=1

↵i�(w
>
i
x+ bi) + ↵0

i
�(�w>

i
x� bi) = g(x),

where the last line follows from (57) and (55).

We are now ready to prove the main lemmas. We first establish the main result assuming the lemma
above and provide a proof of the lemma at the end of the subsection.

Proof of Lemma D.12. In order to find the approximate network g(x) we will set up a linear regres-
sion problem in an appropriate feature space. We begin by describing the construction of the feature
space and showing that there does indeed exist a linear function in the space that approximates f(x).
We first focus on the terms in the set G, i.e.,

fG(x) =
X

i2G

ai�(w
>
i
x+ bi).

In order to approximate fG(x) we create for each (ewj ,ebj ,eaj) 2 S, eight features Zj,1, . . . , Zj,8

where each feature is of the form ⇠j3eaj�(⇠j1 ew>
j
x + ⇠j2ebj) for ⇠j1 , ⇠j2 , ⇠j3 2 {�1,+1}. Consider

a particular i 2 G. Since the set S consists of a good approximation (ewj ,ebj ,eaj) for the unit i, it is
easy to see that one of the eight features corresponding to Zj,: approximates the ith unit well (by
matching the signs appropriately). In other words we have that there exists r 2 [8] such that

|Zj,r � ai�(w
>
i
x+ bi)| = |a0

j
�(w0

j

>
x+ b0j)� ai�(w

>
i
· x+ bi)| (58)

 |(a0
j
� ai)�(w

>
i
x+ bi)|+ |a0

j

�
�(w0>

j
x+ b0

j
)� �(w>

i
x+ bi)

�
| (59)

 O
⇣ "

mdB

⌘
(B + kxk) +O

⇣ "

mdB

⌘
+O

⇣ "

mdB

⌘
kxk. (60)

Noting that E[kxk2] = d we get that there exists a vector �⇤
1 with k�⇤

1k2
p
8|S| in the feature

space Z(x) defined as above such that

E
⇥
f1(x)� �⇤

1
>Z(x)

⇤2 "2

100
. (61)

31

To approximate terms not in G, i.e., fP (x) =
P

i/2G
ai�(w>

i
x+ bi), we use Lemma D.13 to get that

there exists a vector �⇤
2 with k�⇤

2k m(1 +B) in the Z 0 = (x, 1) feature space such that

E
⇥
fP (x)� �⇤

2
>Z 0(x)

⇤2 "2

100
. (62)

Combining the above and noting that y = f(x) = fG(x) + fP (x), we get that there exists a vector
�⇤ in the �(x) = (Z(x), Z 0(x)) feature space with k�⇤k

p
8|S|+m(1 +B)such that

E
⇥
y � �⇤>�(x)

⇤2 "2

20
. (63)

In order to approximate �⇤ we solve a truncated least squares problem. In particular, define the
truncated squared loss L⌧ (�) = E[(y � �>�(x))21(k�(x)k < ⌧)]. Furthermore we define the
empirical counter part L̂⌧ (�) based on N i.i.d. samples drawn from the distribution of �(x). For an
appropriate value of ⌧ we will output �̂ such that

L̂⌧ (�̂) min
�:k�k

p
8|S|+m(1+B)

L̂⌧ (�) +
"2

100
. (64)

In particular we will set ⌧ = 20m(8|S|+d)B
q
log(mdB|S|

"
). Notice that the empirical truncated loss

above is convex and for the chosen value of ⌧ , has gradients bounded in norm by poly(m, d,B, |S|, 1
"
).

Hence we can use the projected gradient descent algorithm [BBV04] to obtain a �̂ that achieves the
above guarantee in N · poly(m, d,B, |S|, 1

"
) time. Furthermore using standard uniform convergence

bounds for bounded loss functions [MRT18] we get that if N = poly(m, d,B, |S|, 1
"
, log(1

�
)) then

with probability at least 1� � we have

L⌧ (�̂) min
�:k�k

p
8|S|+m(1+B)

L⌧ (�) +
"2

50
(65)

 L⌧ (�) +
"2

50
. (66)

Finally, it remains to relate the truncated loss L⌧ (�) to the true loss L(�) = E[y � �>�(x)]2. We
have that for any � such that k�k2

p
8|S|+m(1 +B),

|L⌧ (�)� L(�)| = E[(y � �>�(x))21(k�(x)k � ⌧)]. (67)

Next notice that if k�(x)k � 2j⌧ then we must have that either |ãj�(w̃>
j

· x + b̃j)| � 2j⌧
8|S|+d

or that for some i 2 [d], |xi| � 2j⌧
8|S|+d

. For our choice of ⌧ , this probability is bounded by

(8|S|+ d)e�22j⌦(log(mdB|S|
")). Hence we get that

|L⌧ (�)� L(�)| = E[(y � �>�(x))21(k�(x) � ⌧k)] (68)

=
1X

j=0

E[(y � �>�(x))21(k�(x)k 2 [2j⌧, 2j+1⌧))] (69)

1X

j=0

O(22jm2(8|S|+ d)2⌧2)(8|S|+ d)e�22j⌦(log(mdB|S|
")) (70)

 "2

50
. (71)

Hence, the output network g(x) = �̂ · �(x) =
P

m
0

i=1 a
0
i
�(w0>

i
x + b0

i
) + w00>x + C satisfies with

probability at least 1� � that

Ex⇠N (0,Id⇥d)

�
f(x)� g(x)

�2 "2.

Notice that since a linear function can be simulated via two ReLU units (see Claim D.14), our output
function g(x) is indeed a depth-2 neural network with m0 + 2 8m hidden units.

32

Furthermore, while the statement of Lemma D.12 assumes that the signs of units in G are completely
unknown, the output of the tensor decomposition procedure from Theorem 3.2 in fact recovers,
for each i 2 G, the signs of ai exactly and the signs of the corresponding (wi, bi) are either both
correct or both incorrect. Hence when applying Lemma D.12 to our application we only need
to create two features for each unit in G. In other words we can output a network of the form
g(x) = w

00>
x + C +

P
m

0

i=1 a
0
i
�(w0>

i
x + b0

i
) + a00

i
�(�w0>

i
x � b0

i
), where m0 m. Finally, from

Claim D.14, the above network can be written as a depth-2 network with ReLU activations and at
most m+ 2 hidden units.

We end the subsection with the proof of Lemma D.13.

Proof of Lemma D.13. Consider a particular unit i such that bi > c
q
log(1

"mdB
). Then notice that

zi = w>
i
x + bi ⇠ N (bi, 1). By using standard properties of the Gaussian cdf, we get that by

approximating �(zi) by the linear term zi we incur the error

Ezi⇠N (bi,1)(zi � �(zi))
2 =

1p
2⇡

Z 0

�1
z2
i
e�(zi�bi)

2
/2dzi (72)

 O(b2
i
)e�b

2
i /2 O

⇣ "2

m2

⌘
. (73)

Similarly for a unit with bi < �c
q

log(1
"mdB

), by approximating �(zi) with the constant zero
function we incur the error

Ezi⇠N (bi,1)(�(zi))
2 =

1p
2⇡

Z 1

0
z2
i
e�(zi�bi)

2
/2dzi (74)

 O(b2
i
)e�b

2
i /2 O

⇣ "2

m2

⌘
. (75)

Hence, each unit i 2 P with zi = w>
i
x+ bi has a good linear approximation ezi = ew>

i
x+ebi of low

error. Combining the above we get that

Ex⇠N (0,Id⇥d)

⇣X

i2P

ai(zi � ezi)
⌘2

 c0"2, (76)

for a constant c0 that depends on c. Furthermore it is easy to see that the linear approxima-
tion

P
i2P

aiezi is of the form �>
P
x + CP where k�P k

P
i2P

|ai|kwik mB and |CP | P
i2P

|aibi| mB2.

D.4 Wrapping up the proofs

With the lemmas above, we can now complete the proof of Theorem 3.1, Theorem D.1 and Theo-
rem 3.2.

Proof of Theorem D.1 We first set the parameters according to the polynomial bounds from the
different lemmas in this section.

For the final error " in approximating f , we will set "0 := "/(4mB). Also set "03, ⌘03 according to
Lemma D.9 with the " in Lemma D.9 set to "0. Then set "2 = "03, and also set "1 =

p
"2. Now we

can set the algorithm parameters ⌘3 := 2"2, and ⌘2 := 4"1, and ⌘0 = min{⌘03, ⌘02}, where ⌘02 is given
by Lemma D.7. Moreover ⌘1 (and ⌘01) are set according to Lemma D.4.

First by using Lemma D.3 we see that with poly
`
(d,m,B, 1/sm(W�`), 1/") we can estimate all

the Hermite coefficients up to 2` + 2 up to ⌘0 error in Frobenius norm. Then, for our setting of
parameters we have from Lemma D.7 that for every ewi for i 2 [m0] output by steps 1-4 of Algorithm
4, we have that there exists a wi (up to relabeling i) such that kw⌦t

i
� ew⌦t

i
kF "2 = "03 < "0. Then

we can apply Lemma D.9 to conclude that for all such terms i 2 [m0] that are output we get estimates
eai,ebi with |eai � ai|+ |ebi � bi| "0. Moreover using Lemma D.7 and Lemma D.9 also show that
every i 2 G is also one of the m0 terms that are output. Hence for each i 2 eG, we have recovered
each parameter up to error "0. This completes the proof.

33

Proof of the full-rank setting: Theorem 3.1 The guarantees for Theorem 3.1 hold for the following
Algorithm 6, which is a robust variant of Algorithm 1 in the special case of ` = 1. It first uses
Algorithm 4 to approximately recover for each i 2 [m], the ai, and up to an ambiguity in a sign
(captured by unknown ⇠i 2 {1,�1}) close estimates of wi and bi. Then it runs Algorithm 3 to
disambiguate the sign by recovering ⇠i.

Algorithm 6: Robust full-rank algorithm: recover {ai, bi, wi} given estimates {T0, T1, . . . , T4}.
Input: Estimates T0, T1, T2, T3, T4;
Parameters: ⌘0, ⌘1, ⌘2, ⌘3 > 0.;
1. Run Algorithm 4 on parameters (⌘0, ⌘1, ⌘2, ⌘3) with inputs T0, T1, T2, T3, T4 to receive results
(ewi,eai,ebi)i2[m]. Note that ebi, ewi are only recovered up to signs.

2. Run Algorithm 3 (FIXSIGNS) on parameters m,T1 and (eai,ebi, ewi : i 2 [m]) to recover
(eai,ebi, ewi : i 2 [m]).

Result: Output { ewi,eai,ebi : 1 i m}.

Proof of Theorem 3.1. We first set the parameters of Algorithm 6 as dictated by Theorem D.1 (and
its proof) in the special case of ` = 1. Let "0 > 0 be chosen so that

"0 <
min{�(�c

p
log(1/"mdB)), "} · sm(W)

8
p
mB2

,

and ⌘0 to be the smaller of "0/((1 + B)
p
m), and whatever is specified Theorem D.1 for " = "0.

Note that �(�c
p
log(1/("mdB)) � ⌦

�
("mdB)c

2
/2 min{1, "mdB}

�
.

We draw N = poly(d,m,B, 1/sm(W), 1/"0) i.i.d. samples and run Algorithm 4 with the parameters
⌘1, ⌘2, ⌘3 as described in the proof of Theorem D.1. From the assumptions of Theorem 3.1, we have
that each i 2 [m] belongs to the “good set” G as well. Hence, from the guarantee of Theorem D.1 we
will obtain w.h.p. for each i 2 [m] estimates eai, ebi, ewi (up to relabeling the indices [m]) such that up
an unknown sign ⇠i 2 {1,�1} we have

|ai � eai|+ |ebi � ⇠ibi|+ k ewi � ⇠iwik2 "0 < ". (77)

Now consider the (ideal) linear system in the unknowns {zi : i 2 [m]} given by bf1 =P
m

i=1 zi(ai⇠iwi); it has d equations in m d unknowns. Let M := Wdiag((⇠iai : i 2 [m]))

be a d ⇥ m matrix representing the above linear system as Mz = bf1. From Lemma 3.5,
z⇤
i
= ⇠i�(bi) is a solution. Moreover M is well-conditioned: since |ai| 2 [1/B,B], we have

s1(M) Bs1(W) B
p
m, while sm(M) � sm(W)/B (from the assumption on W). Hence, this

is a well-conditioned linear system with a unique solution z⇤.

Algorithm 3 solves the linear system fMz = T1, where fM = fWdiag(ea); here each column of fM is
close to its corresponding column of M , while the sample estimate T1 for bf1 satisfies kT1� bf1k2 ⌘0.
Let ez be a solution to the system fMz = T1.

Observe that if kz � ezk1 kez � zk2 is at most mini |z⇤i |, then Algorithm 3 recovers the signs
correctly, since ez will not flip in sign. To calculate this perturbation first observe that ith column of
E = fM �M has length at most

keai⇠i ewi � aiwik2 |eai � ai|k⇠i ewik2 + aik⇠i ewi � wik2 "0 +B"0 "0(1 +B).

Hence kEk2 = s1(E) "0(1+B)
p
m. Moreover by Weyl’s inequality sm(fM) � sm(M)�kEk �

1
B
sm(W)�"0(1+B) � sm(W)/(2B) due to our choice of parameter "0. From standard perturbation

bounds for linear systems, we have

kez � z⇤k2
⇣
sm(fM)

⌘�1⇣
kT1 � bf1k2 + s1(M � fM)kz⇤k2

⌘

 2B

sm(W)

⇣
⌘0 + "0(1 +B)

p
m
⌘
 4"0B2m

sm(W)

 �(�c
p

log(1/("mdB))) 1

2
min
i2[m]

|z⇤
i
|

34

as required, due to our choice of "0. Hence the signs are also recovered accurately. This along with
(77) concludes the proof.

Proof of Theorem 3.2 In order to establish Theorem 3.2 we draw N =
poly

`
(d,m,B, 1/sm(W�`), 1/") i.i.d. samples and run Algorithm 5 with the parameters

⌘0, ⌘1, ⌘2, ⌘3 as described in the proof of Theorem D.1. From the guarantee of Theorem D.1 we will
obtain w.h.p., up to signs, approximations for all units in G up to an error of O("

mdB
). Furthermore,

given these approximations the guarantee of Lemma D.12 tells us that w.h.p. the function g(x)

output by Algorithm 5 will satisfy Ex⇠N (0,Id⇥d)

�
f(x)� g(x)

�2 "2.

E Smoothed Analysis

We use the smoothed analysis framework of Spielman and Teng [ST04], which is a beyond-worst-
case-analysis paradigm that has been used to explain the practical success of various algorithms.
In smoothed analysis, the performance of the algorithm is measured on a small random perturba-
tion of the input instance. We use the model studied in the context of parameter estimation and
tensor decomposition problems to obtain polynomial time guarantees under non-degeneracy condi-
tions [BCMV14, Vij20]. The smoothed analysis model for the depth-2 neural RELU network setting
is as follows:

1. An adversary chooses set of parameters a, b 2 Rm and W 2 Rd⇥m.

2. The weight matrix cW 2 Rd⇥m is obtained by a small random i.i.d. perturbation as
cWij = Wij + ⇠i,j 8i 2 [d], j 2 [m] where ⇠i,j ⇠ N(0, ⌧2/d). (Note that the average
squared pertubation in each column is ⌧2) 8.

3. Each sample (x, f(x)) is drawn i.i.d. with x ⇠ N(0, Id⇥d) and f(x) = a>�(cW>x+ b).

The goal is to design an algorithm that with high probability, estimates the parameters a, b,cW up
to some desired accuracy " in time poly(m, d, 1/", 1/⌧). We now prove the following corollary of
Theorem 3.2.

Corollary 3.3 Suppose ` 2 N and " > 0 are constants in the smoothed analysis model with smooth-
ing parameter ⌧ > 0, and also assume the ReLU network f(x) = a>�(cW>x+b) is B-bounded with
m 0.99

�
d+`�1

`

�
. Then there is an algorithm that given N � poly

`
(m, d, 1/", B, 1/⌧) samples

runs in poly(N,m, d) time and with high probability finds a ReLU network g(x) = a0>�(W 0>x+b0)
with at most m + 2 hidden units such that the L2 error Ex⇠N (0,Id⇥d)[(f(x) � g(x))2] "2. Fur-
thermore there are constants c, c0 > 0 and signs ⇠i 2 {±1} 8i 2 [m], such that in poly(N,m, d)

time, for all i 2 [m] with |bi| < c
p

log(1/(" ·mdB)), we can recover (eai, ewi,ebi), such that
|ai � eai|+ kwi � ⇠i ewik2 + |bi � ⇠iebi| < c0"/(mB).

Proof. The proof of the corollary follows by combining Theorem 3.2 with existing results on
smoothed analysis [BCPV19] on the least singular value sm(cW�`). We apply Theorem 2.1 of
[BCPV19] with ⇢ = ⌧ , U being the identity matrix to derive that for any � > 0 and m (1 �
�)
�
d+`�1

`

�
, we get with probability at least 1�m exp(�⌦`(�n)) that

sm(cW�`) � c`p
m

⇣⌧
d

⌘`

.

We then just apply Theorem 3.2 to conclude the proof.

8Think of ⌧ as a fairly small but inverse polynomial quantity 1/poly(n, d).

35

	Introduction
	Model Setup and Preliminaries

	Related Work
	Main Results
	Non-robust Algorithm and Analysis
	Robustness Analysis
	Conclusion
	Acknowledgement
	More Preliminaries
	Hermite Polynomials
	Tensor Decomposition

	Expressions for the Hermite Coefficients
	Proofs in Section 4
	Robust Analysis for general
	Estimating the Hermite coefficients
	Recovering the parameters under errors
	Recovery of weight vectors wi for the terms in G
	Recovering error for the parameters ai, bi for terms i G.

	Learning Guarantees via Linear Regression
	Wrapping up the proofs

	Smoothed Analysis

