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Abstract

We examine a flexible algorithmic framework for solving monotone variational
inequalities in the presence of randomness and uncertainty. The proposed tem-
plate encompasses a wide range of popular first-order methods, including dual
averaging, dual extrapolation and optimistic gradient algorithms – both adaptive
and non-adaptive. Our first result is that the algorithm achieves the optimal rates
of convergence for cocoercive problems when the profile of the randomness is
known to the optimizer: O(1/

√
T ) for absolute noise profiles, and O(1/T ) for

relative ones. Subsequently, we drop all prior knowledge requirements (the ab-
solute/relative variance of the randomness affecting the problem, the operator’s
cocoercivity constant, etc.), and we analyze an adaptive instance of the method that
gracefully interpolates between the above rates – i.e., it achieves O(1/

√
T ) and

(1/T ) in the absolute and relative cases, respectively. To our knowledge, this is the
first universality result of its kind in the literature and, somewhat surprisingly, it
shows that an extra-gradient proxy step is not required to achieve optimal rates.

1 Introduction

This paper focuses on solving variational inequality problems of the form

Find x∗ ∈ Rd such that 〈A(x∗), x− x∗〉 ≥ 0 for all x ∈ Rd, (VI)

where A : Rd → Rd is a monotone cocoercive operator, i.e.,

〈A(y)−A(x), y − x〉 ≥ β‖A(y)−A(x)‖2 for some β > 0 and all x, y ∈ Rd. (CC)

The study of variational inequalities is a classical topic in optimization that provides a powerful
and elegant unifying framework for a broad spectrum of “convex-structured” problems – including
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convex minimization, saddle-point problems, and games [6, 15]. In particular, such problems have
recently attracted considerable attention in the fields of machine learning (ML) and data science
because of their potential applications to generative adversarial networks [18], multi-agent and
robust reinforcement learning [44], auction theory [51], and many other areas of interest where the
minimization of a single empirical loss function does not suffice.

The golden standard for solving (VI) is provided by first-order methods: these methods can be
run with computationally cheap updates that only require (noisy) access to A, so they are ideal for
problems with very high dimensionality and moderate-to-low precision needs (as is typically the case
in ML). More precisely, when A is monotone cocoercive as above, the min-max optimal convergence
rate for solving (VI) is O(1/T ) after T oracle calls, and it is achieved by the extra-gradient / mirror-
prox algorithm [28, 37] with Polyak-Rupert averaging [46]. However, this method requires access to
a perfect oracle; if the method is run with an imperfect, stochastic first-order oracle, its convergence
rate drops to O(1/

√
T ) [26], and this rate cannot be improved without additional assumptions [39].

One case where the O(1/
√
T ) convergence rate can be improved is when the underlying operator is

strongly monotone – i.e., the RHS of (CC) is replaced by α‖y − x‖2 for some α > 0. In this case,
we can obtain a fast O(1/T ) rate with a rapidly decreasing step-size [19]; however, this acceleration
requires knowledge of the strong monotonicity modulus, and there is no known way to adapt to it. In
particular, if a stochastic method that has been fine-tuned for strongly monotone operators is run on a
merely monotone problem, its rate of convergence suffers a catastrophic drop to O(1/ log T ).

These considerations naturally lead to two key research questions:

1. Are there any conditions for the method’s oracle that would close the stochastic-deterministic
convergence gap outlined above?

2. Is it possible to design a class of methods that are capable of adapting to the quality of the oracle,
and that achieve order-optimal rates without prior knowledge of the problem’s parameters?

Our contributions in the context of related work. Our goal in this paper is to provide a range of
positive answers to the above questions, both in terms of the required oracle conditions, as well as
methods that are able to gracefully interpolate between an O(1/T ) and an O(1/

√
T ) rate depending

on the setting at hand.

With regard to the first question, our point of departure is the “relative noise” framework of Polyak
[45], in which the variance of the oracle is upper bounded by the square norm of the operator
at the queried point. This noise model is particularly relevant in coordinate descent methods for
unconstrained problems as well as applications to control theory and signal processing where the
operator is calculated based on actual, physical measurements that are only accurate up to a percentage
of their true value. In recent applications to ML, this noise model has also been studied in the context
of overparametrization [42], representation learning [56], and multi-agent learning [31]. Finally,
this oracle model has also been studied under the umbrella of multiplicative noise [24] or growth
conditions [8, 49, 52, 54], and it is known to improve the convergence rate of stochastic gradient
algorithms with non-adaptive step-sizes, even in non-smooth problems [16].

With regard to the second question, we introduce a flexible first-order algorithmic template that
includes as special cases the dual averaging [41], dual extrapolation [40] and optimistic gradient
methods [47, 48], and which accounts for both adaptive and non-adaptive variants thereof. Our
contributions can then be summarized as follows:

1. For oracles with bounded variance, we show that the proposed methods achieve an O(1/
√
T ) rate

of convergence if run with a non-adaptive, decreasing step-size.

2. In the relative noise model, this rate improves to O(1/T ), and it is achieved with a constant
step-size that does need to be tuned as a function of T .

3. Finally, we provide an adaptive step-size rule that allows the method to achieve a fast, O(1/T )

rate under relative noise, and an order-optimal O(1/
√
T ) rate in the absolute noise case.

Importantly, our work shows that an extra-gradient mechanism is not required to obtain a fastO(1/T )
rate, as this can be achieved by vanilla dual-averaging methods with a constant step-size. This is an
elegant consequence of the interplay between cocoercivity and the relative noise model; to the best of
our knowledge, the only other work considering these models in tandem is the very recent paper [31].
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Lipschitz Cocoercive + rel. noise

Vt Ergodic Last Iterate Ergodic Last Iterate

Adapt. dual averaging 0 1/
√
T [13] Unknown 1/T Asym.

Adapt. dual extrapolation AXt + rel.noise 1/
√
T [48] Unknown 1/T Asym.

Adapt. optimistic gradient AXt−1/2 + rel.noise 1/
√
T [14] Unknown 1/T Asym.

Table 1: The best known convergence rates in stochastic monotone VIs with our contributions highlighted in
gray. Adaptive refers to our particular adaptive step-size choice in (Adapt). We obtain various schemes with
particular choices of Vt. For the nomenclature, please refer to Section 3.2.

Our work closes several open threads in [31], which requires a vanishing relative noise level to obtain
faster convergence in models with relative noise. A summary of our results in the context of related
work can be found in Table 1, and we also elaborate on related work in greater detail in the paper’s
appendix.

2 Problem setup and preliminaries

Examples and motivation. Throughout the sequel, we will focus on solving the variational
inequality problem (VI). For completeness (and a certain degree of posterity), we briefly mention
some examples below, and we defer to [15, 50] for a panoramic survey of the field.

Example 1 (Convex Minimization). If A = ∇f for some convex function f , the solutions of (VI)
are precisely the minimizers of f .

Example 2 (Min-Max Problems). If A = (∇x1
L,−∇x2

L) for some convex-concave function
L(x1, x2), then the solutions of (VI) coincide with the (global) saddle points of L. More precisely,
x∗ = (x∗1, x

∗
2) is a solution of (VI) if and only if it holds that

L(x∗1, x2) ≤ L(x∗1, x
∗
2) ≤ L(x1, x

∗
2) for all x1 ∈ X1, x2 ∈ X2. (SP)

In this case, (VI) is sometimes referred to as the “vector field formulation” of (SP).

Example 3 (Monotone games). Going beyond the min-max setting, a continuous game in normal
form is defined as follows: First, consider a finite set of players N = {1, . . . , N}, each with their
own action space Xi = Rdi . During play, each player selects an action xi from Xi with the aim of
minimizing a loss `i(xi;x−i) determined by the ensemble x := (xi;x−i) := (x1, . . . , xN ) of all
players’ actions. In this context, a Nash equilibrium is any action profile x∗ ∈ X that is unilaterally
stable, i.e.,

`i(x
∗
i ;x
∗
−i) ≤ `i(xi;x∗−i) for all xi ∈ Xi and all i ∈ N . (NE)

The corresponding operator associated to the game isA(x) = (∇xi`i(xi;x−i))i∈N . IfA is monotone,
then the game is itself called monotone, and its Nash equilibria coincide with the solutions of (VI), cf.
[7, 15, 30, 33–36, 50] and references therein.

Regularity conditions. As we discussed in the introduction, our blanket regularity assumption for
(VI) is that the defining operator A is β-cocoercive in the sense of (CC); for a panoramic overview of
cocoercive operators we refer the reader to [6].

Some further comments for the cocoercivity condition are in order. First, one may easily observe that
if A is β-cocoercive, it is also 1/β-Lipschitz. The converse does not hold for the general setting of
operators; however, when A is the gradient of a smooth convex function, this is indeed the case [5].
Moreover, even though cocoercivity implies that A is monotone, it does not imply that it is strictly
monotone – a condition which is usually invoked to ensure the existence and uniqueness of solutions
to (VI). Therefore, to avoid pathologies, we make the following assumption for our setting:

Assumption 1. The set X ∗ = {x∗ ∈ Rd : x∗ is a solution of (VI)} is non-empty.

Together with cocoercivity, the existence of a solution will be our only blanket assumption in the
sequel.
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The gap function. With the above setup in hand, a widely used performance measure in order to
evaluate a candidate solution of (VI) is the so-called restricted gap function:

GapC(x̂) = sup
x∈C
〈A(x), x̂− x〉, (Gap)

where the "test domain" C is a non-empty compact subset of Rd. The motivation for this choice of
merit function is that it characterizes the solutions of the (VI) via its zeros. Formally, we have the
following:
Proposition 1. Let C be a non-empty convex subset of Rd. Then, the following holds

1. GapC(x̂) ≥ 0, whenever x̂ ∈ C

2. If GapC(x̂) = 0 and C contains a neighbourhood of x̂, then x̂ is a solution of (VI)

Proposition 1 is a generalization of an earlier characterization by Nesterov [40]; see also [2, 41] and
references therein. Moreover, it provides a formal justification for the use of GapC(x̂) as a merit
function for (VI). To streamline our presentation we defer the proof of the above proposition to the
appendix.

3 The method

3.1 Oracle structure and profiles of randomness

From an algorithmic point of view, in order to solve (VI) we will use iterative methods that require
access to a stochastic first-order oracle [39]. Formally, this is a black-box feedback mechanism
which, when called at x, returns a random dual vector g(x;ω) with ω drawn from some (complete)
probability space (Ω,F ,P). In practice, the oracle will be called repeatedly at a (possibly random)
sequence of points generated by the algorithm at play. Therefore, once the iterate of the method is
generated at each round, the oracle draws an i.i.d. sample ω ∈ Ω and returns a dual vector:

g(x;ω) = A(x) + U(x;ω) (1)
with U(x;ω) denoting the "measurement error".

In this general setting, we make the following statistical assumptions for the oracle:
Assumption 2 (Absolute noise). The oracle g(x;ω) enjoys the following properties:

1. Almost sure boundedness: There exists some strictly positive numbers M > 0 such that:
‖g(x;ω)‖∗ ≤M almost surely (2)

2. Unbiasedness: E [g(x;ω)] = A(x)

3. Bounded absolute variance: E
[
‖U(x;ω)‖2∗

]
≤ σ2

Such type of conditions for the oracle are standard, especially in the context of adaptive methods cf.
[1, 4, 27, 29]. Also, because the variance of the noise is independent of the value of the operator at
the queried point, this type of randomness in the oracle will be called absolute.

By contrast, following Polyak [45], the relative noise model is defined as follows:
Assumption 3 (Relative noise). The oracle g(x;ω) enjoys the following properties:

1. Almost sure boundedness: There exists some strictly positive numbers M > 0 such that:
‖g(x;ω)‖∗ ≤M almost surely

2. Unbiasedness: E [g(x;ω)] = A(x)

3. Bounded relative variance: There exists some positive c > 0 such that:
E
[
‖U(x;ω)‖2∗

]
≤ c‖A(x)‖2∗ (3)

Assumption 2 is standard for obtaining the typicalO(1/
√
T ) convergence rate for stochastic optimiza-

tion scenarios (see for example [26, 38] and references therein). That said, Assumption 3 will prove
itself as the crucial statistical condition that will allow us to recover the well known order-optimal
bound O(1/T ) for deterministic settings. For concreteness, we provide an example below:
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Example 4 (Random coordinate descent). Consider a smooth convex function f over Rd, as per
Example 1. Then the randomized coordinate descent (RCD) algorithm draws one coordinate it at
random at each stage, and calculates the partial derivative vi,t = ∂f/∂xit . Subsequently, the i-th
derivative is updated as Xi,t+1 = Xi,t − dγtvi,t.
This update rule can be written in abstract recursive form as x+ = x − g(x;ω) where gi(x;ω) =
d · ∂f/∂xi · ω and ω is drawn uniformly at random from the set of basis vectors {e1, . . . , ed} of
Rd. Clearly, E[g(x;ω)] = ∇f(x) by construction; moreover, since ∂f/∂xi = 0 at the minimum
points of f , we also have g(x∗;ω) = 0 whenever x∗ is a minimizer of f – i.e., the variance of
the estimator g(x;ω) vanishes at the minimum points of f . It is then straightforward to verify that
E[‖v̂(x)−∇f(x)‖2] = O(‖∇f(x)‖2), which is precisely the relative noise condition for A = ∇f .

3.2 The methods

We now present the generalized extra-gradient (GEG) family of algorithms. More precisely, given
two sequences of dual vectors Vt and Vt+1/2, (GEG) is given by the following recursive formula:

Xt+1/2 = Xt − γtVt
Yt+1 = Yt − Vt+1/2

Xt+1 = γt+1Yt+1

(GEG)

Heuristically, the machinery behind (GEG) suggests to first generate a leading state Xt+1/2 by taking
a step along Vt, then aggregate the vector Vt+1/2 observed at the leading state by incorporating
the second dual sequence Vt+1/2 and finally update the method by applying a dual averaging step
[41, 53]. This idea is well-known in the literature of extra-gradient methods [28, 37, 40]. However,
up to this point, we have not assumed anything particular for the sequences of Vt and Vt+1/2, except
that they are dual vectors (but not necessarily queries of a stochastic oracle). This generic choice is
the building block that will allow us to include various popular algorithmic schemes and provide a
unified framework fo their analysis.

To begin with, we provide the following examples that illustrate the fact that Dual Averaging, Dual
Extrapolation and Optimistic Dual Averaging can all be written in the form of (GEG) under different
choices of Vt and Vt+1/2.

Example 5. Stochastic Dual Averaging [41]: Consider the case Vt ≡ 0 and Vt+1/2 ≡ gt+1/2 =
A(Xt+1/2) + Ut+1/2. Then, this yields that Xt+1/2 = Xt and hence gt+1/2 = gt = Vt+1/2.
Therefore, (GEG) reduces to the dual averaging scheme:

Yt+1 = Yt − gt
Xt+1 = γt+1Yt+1

(DA)

Example 6. Stochastic Dual Extrapolation [40]: Consider the case now where Vt ≡ gt =
A(Xt)+Ut and Vt+1/2 ≡ gt+1/2 = A(Xt+1/2)+Ut+1/2 are noisy oracle queries atXt and Xt+1/2

respectively. Then (GEG) readily yields Nesterov’s dual extrapolation method [40]:

Xt+1/2 = Xt − γtgt
Yt+1 = Yt − gt+1/2

Xt+1 = γt+1Yt+1

(DE)

Example 7. Stochastic Optimistic Dual Averaging [21, 22, 47, 48]: Consider the case Vt ≡
gt−1/2 = A(Xt−1/2) + Ut−1/2 and Vt+1/2 ≡ gt+1/2 = A(Xt+1/2) + Ut+1/2 are the noisy oracle
feedback at Xt−1/2 and Xt+1/2 respectively. We then get the optimistic dual averaging method:

Xt+1/2 = Xt − γtgt−1/2
Yt+1 = Yt − gt+1/2

Xt+1 = γt+1Yt+1

(OptDA)

The next crucial step is to provide the key ingredient that will allow us to unify the approach for all
algorithms belonging to the family (GEG). This is done by a shared “energy” inequality satisfied by
all (GEG)-type schemes. Formally, this is described by the following proposition:
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Proposition 2. Assume that Xt, Xt+1/2 are the iterates of (GEG) run with a non-negative, non-
increasing step-size γt. Then, for all x ∈ Rd the following inequality holds:

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗−

1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2 (4)

Proving Proposition 2 requires tiresome computations, so we defer it to the paper’s supplement.
Instead, we conclude this section by illustrating the various method-specific template inequalities:

1. (Stochastic Dual Averaging): For Vt+1/2 = gt+1/2 and Vt = 0, then (4) becomes:

T∑
t=1

〈gt, Xt − x〉 ≤
‖x‖2

2γT+1
+

1

2

T∑
t=1

γt ‖Vt‖2∗ (5)

2. (Stochastic Dual Extrapolation): For Vt = gt for all t = 1, 2, . . . then (4) becomes:

T∑
t=1

〈
gt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥gt+1/2 − gt

∥∥2
∗ −

1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2
(6)

3. (Stochastic Optimistic Dual Averaging): For Vt = gt−1/2 and Vt+1/2 = gt+1/2 then (4) becomes:

T∑
t=1

〈
gt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥gt+1/2 − gt−1/2

∥∥2
∗−

1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2
(7)

4 Non-adaptive Analysis

In this section, we derive a series of tight convergence rates for (GEG) under both oracle/noise profiles
but with a non-adaptive step-size sequences. Due to space constraints, we defer the full analysis to
the appendix; however, we provide here a proof sketch of our main results via an appropriate “energy
inequality” in Proposition 2.

4.1 Absolute random noise

In the context of monotone VIs, assumptions induced by the random oracle model are common and
well-understood. Indeed, for the general case of bounded variance, i.e., E

[
Ut+1/2|Ft+1/2

]
≤ σ,

extra-gradient/mirror-prox is known to converge at a rate O(1/
√
T ) [25], with a decreasing step-size

of order O(1/
√
t).

For completeness, we analyze (GEG) under a random oracle profile, i.e., for Vt+1/2 = gt+1/2 ≡
g(Xt+1/2;ωt+1/2) satisfying Assumption 2 and Vt being an almost surely bounded sequence of dual
vectors. To that end, we employ a decreasing step-size choice, which is summarized in the next
theorem.

Theorem 1. Let Xt, Xt+1/2 be generated by (GEG) with a decreasing step-size γt = O(1/
√
t).

Then, for every compact neighborhood C ⊂ Rd of x∗, with X̄T = 1
T

∑T
t=1Xt+1/2, it holds that:

E
[
GapC

(
X̄T

)]
= O(1/

√
T ).

The arguments for the proof of Theorem 1 are standard and we defer them to the appendix due to
space constraints. Thanks to this result, we can now derive the respective method specific rates as
special instances. More precisely, we have the following proposition:

Proposition 3. Under Assumption 2 the iterates of (DA), (DE), (OptDA) enjoy the following rate:

E
[
GapC

(
X̄T

)]
= O(1/

√
T ) (8)
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4.2 Relative random noise

We now turn our attention to the relative random oracle framework, i.e. Vt+1/2 = gt+1/2 satisfying
Assumption 2 along with:

E
[
‖Vt‖2∗|Ft

]
≤ c‖A(Xt)‖2∗ for all t = 1, 1/2, . . . (9)

In particular, with a carefully chosen constant step-size, under the additional assumption of relative
variance, it is possible to achieve an accelerated rate ofO(1/T ). One needs to depart from the standard
approach to fully exploit the problem setting, i.e., cocoercivity and relative variance. Essentially, it
amounts to ensuring that

∑T
t=1 ‖At‖2∗ and

∑T
t=1 ‖At+1/2‖2∗ are summable. We present our result

under the respective setting with a proof sketch that highlights its main ingredients.
Theorem 2. Let Xt, Xt+1/2 be generated by (GEG) with a constant step-size that satisfies

min
{

(2L)−1, (4L2γ)−1
}
− 2γc > 0 with L = 1/β. (10)

Then, for every compact neighbourhood C ⊂ Rd of x∗, with X̄T = 1
T

∑T
t=1Xt+1/2, we have:

E
[
GapC

(
X̄T

)]
= E

[
sup
X∈C

〈
A(X), X̄T −X

〉]
= O(1/T )

Proof. With a constant step-size, Proposition 2 implies
T∑
t=1

〈
Vt+1/2, Xt+1/2 −X

〉
=
‖X‖2

2γ
+
γ

2

T∑
t=1

‖Vt+1/2 − Vt‖2 −
1

2γ

T∑
t=1

‖Xt −Xt+1/2‖2

We show that using smoothness and cocoercivity of the operator, along with the relative noise
condition,(

min
{

(2L)−1, (4L2γ)−1
}
− 2γc

) T∑
t=1

(
E
[
‖A(Xt)‖2

]
+ E

[
‖A(Xt+1/2)‖2

])
≤

E
[
‖X‖2

]
γ

If constant step-size γ satisfies Eq. (10), then there exists some strictly positive real number β, such
that E

[∑T
t=1

(
‖A(Xt)‖2 + ‖A(Xt+1/2)‖2

)]
≤ E

[
‖X‖2/βγ

]
< +∞, which concludes that both∑T

t=1 ‖At‖2∗ and
∑T
t=1 ‖At+1/2‖2∗ are summable. Using the same arguments as in the proof of

Theorem 1, we obtain an upper bound for the gap,

E
[
GapC(X̄T+1/2)

]
≤

D2

2γ + 2γc
∑T
t=1 E

[
‖A(Xt+1/2)‖2 + ‖A(Xt)‖2

]
+

√∑T
t=1 E

[∥∥Vt+1/2

∥∥2
∗

]
T

.

By relative variance and summability of operators,

E
[
GapC(X̄T+1/2)

]
= O(1/T )

�

Similar to the setting of absolutely random noise, Theorem 2 implies algorithm-specific convergence
bounds, which are presented below:
Proposition 4. Under Assumption 3 the iterates of (DA), (DE), (OptDA) enjoy the following rate:

E
[
GapC

(
X̄T

)]
= O(1/T ) (11)

An extra appealing feature of the above is that we are able to derive an asymptotic last iterate trajectory
result, i.e., the asymptotic convergence of the iterates themselves before any averaging occurs, almost
surely. More precisely, we have the following proposition:
Proposition 5. Under Assumption 3 the iterates of (DA), (DE), (OptDA) converge to a (VI) solution
x∗.

The proof Proposition 5 relies on the fact that the distance of the iterates towards any solution of (VI)
is decreasing almost surely along with the fact that the summability of ‖A(Xt)‖2∗ guarantees that
every limit point of the iterate is also a solution of (VI). To streamline our presentation, we defer the
detailed proof to the appendix.
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5 Adaptive Analysis

By the results of Section 4, one may easily observe the interplay between the O(1/
√
T ) to O(1/T )

convergence rates under different noise profiles and step-sizes policies. Therefore a natural question
that arises from this context is the following:

Can we derive a universal step-size policy that is able to optimally adjust the performance of (GEG)
without any prior knowledge of the oracle’s noise profile?

In what follows, this desired property is achieved by running (GEG) with the following adaptive
step-size:

γt =
1√

1 +
∑t−1
j=1‖Vj − Vj+1/2‖2∗

(Adapt)

The step-size (Adapt) is inspired by [48]; however, in our analysis, we provide a generalized point of
view which does not assume that Vt necessarily is the oracle query at the respective points as in [48].
This allows us to include in the (Adapt) formulation all the adaptive sttep-sizes typically used for the
archetypical schemes introduced in Section 3 . More precisely, we have:

1. Adaptive Stochastic Dual Averaging: For Vt ≡ 0 (Adapt) becomes the standard AdaNorm stepsize,
studied in various works [13, 32]:

γt =
1√

1 +
∑t−1
j=1‖gj‖2∗

(12)

2. Adaptive Stochastic Dual Extrapolation: For Vt = gt+1/2 (Adapt) becomes

γt =
1√

1 +
∑t−1
j=1‖gj − gj+1/2‖2∗

(13)

as used in, e.g., [3, 48, 51].
3. Adaptive Stochastic Optimistic Dual Averaging:. For Vt = gt−1/2 (Adapt) becomes the step-size

used in [21, 22]:

γt =
1√

1 +
∑t−1
j=1‖gj+1/2 − gj−1/2‖2∗

(14)

Section 4, heuristically suggests that the success of γt should hinge on a simultaneous performance as
1/
√
t for the absolute random oracle feedback and as a constant one. whenever the relative random

feedback kicks in. This important interpolation feature is what will show in thhe sequel.

5.1 Absolute random noise

We will first treat oracles subject to absolute random nooise. In this case, we have:
Theorem 3. Assume that Xt, Xt+1/2 are the iterates of (GEG) run with the step-size (Adapt). Then,
for every compact neighborhood C ⊂ Rd of a solution x∗ of (VI), we have:

E
[
GapC(XT )

]
= O(1/

√
T ) (15)

with XT = (1/T )
∑T
t=1Xt+1/2

As we argued above, the result of Theorem 3 is heuristically justified by the fact that the almost sure
boundedness conditions for the sequences:

‖Vt‖∗ ≤M almost surely for all t = 1, 1/2, . . . (16)

yields that γt = Ω(1/
√
t). In particular, Theorem 3 yields the following specific convergence

guarantees:
Proposition 6. Under Assumption 2 the iterates of (DA), (DE), (OptDA) enjoy the following:

E
[
GapC(XT )

]
= O(1/

√
T ) (17)
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5.2 Relative random noise

Under the relative random noise conditions, we can obtained the following improved rate O (1/T )

instead of the O(1/
√
T ) rate above. Formally, we have the following result:

Theorem 4. Assume that Xt, Xt+1/2 are the iterates of (GEG) run with the step-size (Adapt). Then,
for every compact neighborhood C ⊂ Rd of a solution x∗ of (VI), we have:

E
[
GapC(XT )

]
= O (1/T ) (18)

with XT = 1/T
∑T
t=1Xt+1/2

The crucial ingredient for the proof of Theorem 4 consists of showing that the adaptive step size
stabilizes to a positive constant γ∞ > 0. In order to obtain this, the first step is to show that the
template inequality of Proposition 2 yields

E
[

1

γ2T+1

]
≤

(
8c max

{
L, 2L2

}(‖x∗ − x1‖2
2

+ 2G2 + 1

)
+ 1

)
E
[

1

γT+1

]
(19)

Moreover, due to the definition of (Adapt) and Jensen’s inequality we have:

E
[

1

γT+1

]
= E


√√√√1 +

T∑
t=1

‖Vt − Vt+1/2‖2

 ≤
√√√√E

[
1 +

T∑
t=1

‖Vt − Vt+1/2‖2
]

=

√
E
[

1

γ2T+1

]
(20)

Therefore, after combining (19) and (20) we get that E
[

1
γ2
T+1

]
< +∞. This directly implies (by the

monotone convergence theorem) that:

1

γ2T+1

= 1 +

T∑
t=1

‖Vt − Vt+1/2‖2∗ < +∞ almost surely (21)

which in turn yields that
∑T
t=1‖Vt − Vt+1/2‖2∗ is summable almost surely. Therefore due to the

definition of γt we have almost surely the following:

γT+1 =
1√

1 +
∑T
t=1‖Vt − Vt+1/2‖2∗

→ 1√
1 +

∑+∞
t=1‖Vt − Vt+1/2‖2∗

= γ∞ > 0 (22)

Finally, we conclude by providing the following the respective method specific result. Formally, we
have:
Proposition 7. Under Assumption 3 the iterates of (DA), (DE), (OptDA) enjoy the following:

1. The convergence rate in terms of the restricted gap function for the time-average:

E
[
GapC(XT )

]
= O(1/T ) (23)

2. Their last iterate trajectory converges to a (VI) solution x∗ almost surely.

The last iterate convergence result of Proposition 7 refers to the asymptotic convergence of the actual
sequences of the methods-before any averaging takes place- and it hinges on the fact that the (random)
sequences ‖Vt − Vt+1/2‖2∗ and ‖A(Xt)‖2∗ are summable with probability 1. Having established this,
we show that Xt satisfies is a (stochastic) quasi-Fejér sequence [10] (with respect to the solution set
X ∗) along with the fact that every limit point of Xt belongs to X ∗. These two building blocks are
sufficient in order to derive the almost sure convergence of the iterate’s trajectory.

6 Numerical experiments

In this section we validate and explore the consequences of the theoretical results. We adopt the
experimental setting considered in [17] which is a particular instance of the Kelly auction with
N = 4. In its generality in a single resource Kelly auction, there are N players sharing a total

9



Figure 1: (left) Player utility using adaptive DualX for various relative noise levels. Even at relative high
levels of noise do we converge to the optimal depicted with (?). (center) Average iterate for deterministic,
absolute noise and relative noise using adaptive DualX. We observe the O(1/

√
T ) rate under absolute noise

whileO(1/T ) is achieved both in the noiseless setting and under relative noise. In addition, as expected, the last
iterate only converges under the deterministic and relative noise oracle (see Fig. H.2). (right) Average iterate
comparing various methods for σrel = 0.1. All methods shares convergence rate with adaptive methods being
slightly faster possibly because of difficulty of step-size tuning for non-adaptive methods. Error bars indicate
one standard deviation computed using 10 independent executions.

amount of Q ∈ R>0 resources. At every round, each bidder, p, submits a bid xp ∈ R≥0 and
receives proportional resources, ρp = Qxp

Z+
∑

p x
p , where Z is the auction entry price. The payoff

for player p is then given as up(xp;x−p) = Gpρp − xp, where Gp is the marginal gain in utility
for player p. One can easily verify that the vectorfield associated with the payoff functions is
cocoercive. In addition, the assumption of relative noise can be justified since each player can be seen
as performing a measurement when querying the payoff. In such settings, it is common to assume
that the error is proportional to the measured quantity and this uncertainty propagates to the gradient
information in the form of relative noise. Since players act without communication in this example, it
is particularly important that our results extends to single-call extragradient variants (see for instance
[48] for elaboration). However, note that our proposed adaptive step-size (Adapt) still relies on global
information of all players so our non-adaptive results for known problem constants is also important
for this example.

In order to simulate the presence of relative noise we add a term proportional to the norm of the
operator. In our notation we can thus capture both relative noise and absolute noise through the error
term Ut in the following way,

Ut = εrel‖A(Xt)‖+ εabs, (24)

where εrel ∼ N (0, σ2
rel) and εabs ∼ N (0, σ2

abs). To validate the convergence rate we compute the
optimal strategy in the deterministic setting (i.e. σrel = σabs = 0) using Mathematica.

In Fig. 1 we illustrate the behavior of the different instantiations of our algorithmic template under
different choices of σrel and σabs. To denote (DA), (DE) and (OptDA) we use DualAvg, DualX and
DualOpt respectively. In addition we include optimistic gradient (OG) from [12] for comparison. For
higher dimensional experiments see the appendix, where we additionally apply our adaptive method
to the non-convex problem of learning a covariance matrix [12, 20].

7 Concluding remarks

In this paper we provide rate interpolation guarantees for different noise profiles; namely that of
absolute and relative random noise. That being said our analysis crucially depends on the cocoercivity
of the associated operator that defines the respective (VI). It thus remains open whether it is possible
to achieve the same O(1/T ) rate for monotone (VI) by only assuming Lipschitz continuity of the
said operator and relative noise. Moreover, an additional interesting direction for future research is
investigate the impact of relative noise for adaptive accelerated methods and whether it is possible to
recover the iconic O(1/T 2) rate. We postpone these questions to the future.
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A Further related work

Due to space limitations for the main paper, we provide in this section a more detailed panorama of
the related work.

Adaptivity Adaptive schemes that achieve optimal rates even without knowing the noise constant
have been considered before in the min-max optimization setting [4]. However, [4] focuses on the
general case where only O(1/

√
T ) is possible. It is also worth pointing out that their step-size relies

on the gradient mapping since they consider constrained min-max problems, while ours is based on
the operator difference since we consider unconstrained VI problems.

In this sense, [4] is closer to the scheme in [3], where they focus on adapting to non-smooth/smooth
problems with unbounded domains in the deterministic setting. For the stochastic setting, there exists
results for a single-call method using the same adaptive step-size as ours [14]. This work allows us
to recover the O(T−1/2) convergence in the general case of Lipschitz operators for the particular
instantiation of our algorithmic template.
Variance reduction Another approach to treating the stochasticity is through variance reduction
techniques. There is a growing literature on this for variational inequalities [9, 23, 43, 55]. For infinite
monotone operators, one approach grows the size of the mini-batches [23], which can be prohibitively
expensive in large-scale settings. To this end, [43] exploits a finite sum structure and derive results
for strongly monotone operators. Since this approach required knowledge of the problem constant
the work, [9] instead relies on a locally strongly monotone structure, which is arguably more relevant
for non-monotone settings faced in practice. Despite this development variation reduction techniques
are known to be brittle to parameter choices possibly explaining their limited use in practice.
Relative noise The assumption of relative noise we rely on dates back to at least Polyak under
the name of relative random noise [45]. It is a common assumption in the optimization literature
but has gone under the guise of various names such as multiplicative noise [24]. In particular,
for minimization problem it is known as the growth condition [8, 49, 52, 54]. This has recently
gained interest [16] because of its relationship with the interpolation condition shown to hold for
overparameterized models in practice.
Relative noise in online learning In the online learning literature the same noise model that we
consider has been studied [31]. This particular noisy feedback model, as it is called in the community,
similarly allows them to get finite time last iterate convergence also in the unconstrained setting under
cocoercive with unknown constant but for a standard gradient update. However, crucially, they require
the relative noise factor to vanish. We get rid of this requirement by employing an extragradient
scheme with a different adaptivity, obtaining a O(1/T )-rate for the ergodic average iterate.

B Restricted gap function

In this appendix, we discuss the basic properties of the restricted merit function GapC introduced
in (Gap). For completeness, we provide the proof of Proposition 1,which itself is an extension of a
similar result by [40]:

Proof of Proposition 1. Let x∗ ∈ X be a solution of (VI) so 〈A(x∗), x − x∗〉 ≥ 0 for all x ∈ X .
Then, by monotonicity, we get:

〈A(x), x∗ − x〉 ≤ 〈A(x)−A(x∗), x∗ − x〉+ 〈A(x∗), x∗ − x〉
= −〈A(x∗)−A(x), x∗ − x〉 − 〈A(x∗), x− x∗〉 ≤ 0, (B.1)

so GapC(x
∗) ≤ 0. On the other hand, if x∗ ∈ C, we also get Gap(x∗) ≥ 〈A(x∗), x∗ − x∗〉 = 0, so

we conclude that GapC(x
∗) = 0.

For the converse statement, assume that GapC(x̂) = 0 for some x̂ ∈ C and suppose that C contains a
neighborhood of x̂ in X . First, we claim that the following inequality holds:

〈A(x), x− x̂〉 ≥ 0 for all x ∈ C. (B.2)

Indeed, assume to the contrary that there exists some x1 ∈ C such that

〈A(x1), x1 − x̂〉 < 0. (B.3)
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This would then give
0 = GapC(x̂) ≥ 〈A(x1), x̂− x1〉 > 0, (B.4)

which is a contradiction. Now, we further claim that x̂ is a solution of (VI),i.e.,:

〈A(x̂), x− x̂〉 ≥ 0 for all x ∈ X . (B.5)

If we suppose that there exists some z1 ∈ X such that 〈A(x̂), z1 − x̂〉 < 0, then, by the continuity of
A, there exists a neighborhood U ′ of x̂ in X such that

〈A(x), z1 − x〉 < 0 for all x ∈ U ′. (B.6)

Hence, assuming without loss of generality that U ′ ⊂ U ⊂ C (the latter assumption due to the
assumption that C contains a neighborhood of x̂), and taking λ > 0 sufficiently small so that
x = x̂ + λ(z1 − x̂) ∈ U ′, we get that 〈A(x), x − x̂〉 = λ〈A(x), z1 − x̂〉 < 0, in contradiction to
(B.2). We conclude that x̂ is a solution of (VI), as claimed. �

C Template inequalities

In this section we shall provide the proof of the template inequality of Proposition 2. As we already
argued in the main. this energy inequality will serve as a template for deriving the method specific
convergence rates in the sequel. Formally, we have. the following:
Proposition 2. Assume that Xt, Xt+1/2 are the iterates of (GEG) run with a non-negative, non-
increasing step-size γt. Then, for all x ∈ Rd the following inequality holds:

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ −

1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2
(C.1)

Proof. By the update rule for Xt+1 in (GEG) we get the following:〈
Vt+1/2, Xt+1 − x

〉
=

〈
1

γt
γtYt −

1

γt+1
γt+1Yt+1, Xt+1 − x

〉
=

〈
1

γt
γtYt −

1

γt
γt+1Yt+1, Xt+1 − x

〉
+

〈
1

γt
γt+1Yt+1 −

1

γt+1
γt+1Yt+1, Xt+1 − x

〉
=

1

γt
〈γtYt − γt+1Yt+1, Xt+1 − x〉+

(
1

γt+1
− 1

γt

)
〈0− γt+1Yt+1, Xt+1 − x〉 .

=
1

γt
〈Xt −Xt+1, Xt+1 − x〉+

(
1

γt+1
− 1

γt

)
〈0−Xt+1, Xt+1 − x〉

Therefore, by developing the scalar products:

〈Xt −Xt+1, Xt+1 − x〉 and 〈0−Xt+1, Xt+1 − x〉 (C.2)

we get:

〈
Vt+1/2, Xt+1 − x

〉
=

1

γt

[
1

2
‖Xt+1 − x+Xt −Xt+1‖2 −

1

2
‖Xt −Xt+1‖2 −

1

2
‖Xt+1 − x‖2

]
+

(
1

γt+1
− 1

γt

)[
1

2
‖Xt+1 − x−Xt+1‖2 −

1

2
‖Xt+1‖2 −

1

2
‖Xt+1 − x‖2

]
(C.3)

which in turn yields:

〈
Vt+1/2, Xt+1 − x

〉
≤ 1

2γt
‖Xt − x‖2−

1

2γt
‖Xt −Xt+1‖2−

1

2γt
‖Xt+1 − x‖2+

1

2

(
1

γt+1
− 1

γt

)
‖x‖2

− 1

2γt+1
‖Xt+1 − x‖2 +

1

2γt
‖Xt+1 − x‖2

(C.4)
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Therefore, after rearranging,
1

2γt+1
‖Xt+1 − x‖2 ≤

1

2γt
‖Xt − x‖2 +

1

2

(
1

γt+1
− 1

γt

)
‖x‖2 −

〈
Vt+1/2, Xt+1 − x

〉
− 1

2γt
‖Xt −Xt+1‖2

=
1

2γt
‖Xt − x‖2 +

1

2

(
1

γt+1
− 1

γt

)
‖x‖2 −

〈
Vt+1/2, Xt+1/2 − x

〉
+
〈
Vt+1/2, Xt+1/2 −Xt+1

〉
− 1

2γt
‖Xt −Xt+1‖2 .

On the other hand, by invoking the update rule of Xt+1/2 in (GEG) we have:

γt
〈
Vt, Xt+1/2 − x

〉
=
〈
Xt −Xt+1/2, Xt+1/2 − x

〉
=

1

2

∥∥Xt+1/2 − x+Xt −Xt+1/2

∥∥2 − 1

2

∥∥Xt −Xt+1/2

∥∥2 − 1

2

∥∥Xt+1/2 − x
∥∥2

=
1

2
‖Xt − x‖2 −

1

2

∥∥Xt −Xt+1/2

∥∥2 − 1

2

∥∥Xt+1/2 − x
∥∥2 ,

(C.5)
and after dividing with γt and rearranging and setting x = Xt+1

1

2γt

∥∥Xt −Xt+1/2

∥∥2 +
1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2 +
〈
Vt, Xt+1/2 −Xt+1

〉
=

1

2γt
‖Xt −Xt+1‖2 .

(C.6)
So, combining the above, we get

1

2γt+1
‖Xt+1 − x‖2 ≤

1

2γt
‖Xt − x‖2 +

1

2

(
1

γt+1
− 1

γt

)
‖x‖2 −

〈
Vt+1/2, Xt+1/2 − x

〉
+
〈
Vt+1/2, Xt+1/2 −Xt+1

〉
−
〈
Vt, Xt+1/2 −Xt+1

〉
− 1

2γt

∥∥Xt −Xt+1/2

∥∥2 − 1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2 .
(C.7)

Hence, we get:
1

2γt+1
‖Xt+1 − x‖2 ≤

1

2γt
‖Xt − x‖2 −

〈
Vt+1/2, Xt+1/2 − x

〉
+

1

2

(
1

γt+1
− 1

γt

)
‖x‖2

+
〈
Vt+1/2 − Vt, Xt+1/2 −Xt+1

〉
− 1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2︸ ︷︷ ︸
(A)

− 1

2γt

∥∥Xt −Xt+1/2

∥∥2 . (C.8)

Moreover, by bounding (A) from above we get:〈
Vt+1/2 − Vt, Xt+1/2 −Xt+1

〉
− 1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2
≤ 1

2
γt
∥∥Vt+1/2 − Vt

∥∥2
∗ +

1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2 − 1

2γt

∥∥Xt+1/2 −Xt+1

∥∥2
≤ 1

2
γt
∥∥Vt+1/2 − Vt

∥∥2
∗ .

(C.9)

So, finally

1

2γt+1
‖Xt+1 − x‖2 ≤

1

2γt
‖Xt − x‖2 −

〈
Vt+1/2, Xt+1/2 − x

〉
+

1

2

(
1

γt+1
− 1

γt

)
‖x‖2

+
1

2
γt
∥∥Vt − Vt+1/2

∥∥2
∗ −

1

2γt
‖Xt −Xt+1/2‖2 (C.10)

So, after rearranging and telescoping over t = 1, . . . , T we get:
T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖X1 − x‖2

2γ1
+
‖x‖2

2γT+1
− ‖x‖

2

2γ1
+

1

2

T∑
t=1

γt
∥∥Vt − Vt+1/2

∥∥2
∗

− 1

2

T∑
t=1

‖Xt −Xt+1/2‖2

γt
(C.11)

The result follows by setting X1 = 0. �
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We have the following result that will help us to deal with the "noise" martingale difference component.

Lemma C.1. Let C ⊆ Rd be a convex set and h : C → R be a 1-strongly-convex with respect to
a ‖ · ‖ over C. Also, assume that ∀x ∈ C, h(x) − minx∈C h(x) ≤ D2

2 . Then, for any martingale
difference (Zt)

T
t=1 ∈ Rd, and any random vector x ∈ C, we have:

E

[〈
T∑
t=1

Zt, x

〉]
≤ D̃

2

√√√√ T∑
t=1

E
[
‖Zt‖2∗

]
(C.12)

The proof of the above lemma could be found in [4], where they present the same result under the
label Proposition B.1.

D Non-adaptive analysis

Proof of Theorem 1. Since we adopt a non-increasing step-size schedule, Proposition 2 applies to
this setting. Combining this with almost sure boundedness of stochastic operators,

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖X‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ −

1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2
≤ ‖x‖

2

2

√
T + 1 +

T∑
t=1

γt
∥∥Vt+1/2

∥∥2
∗ + γt ‖Vt‖2∗

≤ ‖x‖
2

2

√
T + 1 + 2M2

√
T .

By monotonicity, and the definition that Vt+1/2 = A(Xt+1/2) + Ut+1/2,

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
=

T∑
t=1

〈
A(Xt+1/2), Xt+1/2 − x

〉
+
〈
Ut+1/2, x−Xt+1/2

〉
≥

T∑
t=1

〈
A(x), Xt+1/2 − x

〉
+
〈
Ut+1/2, Xt+1/2 − x

〉
= T

〈
A(x), X̄T − x

〉
+

T∑
t=1

〈
Ut+1/2, Xt+1/2 − x

〉
Plugging this lower bound into the first expression,

〈
A(x), X̄T − x

〉
≤

(
‖x‖2
2 + 2M2

)√
T + 1 +

∑T
t=1

〈
Ut+1/2, x−Xt+1/2

〉
T

Taking supremum over x ∈ C and finally computing expectation with respect to all randomness we
obtain

E
[
GapC(X̄T )

]
≤

E

supx∈C


(
‖x‖2
2 + 2M2

)√
T + 1 +

T∑
t=1

〈
Ut+1/2, x

〉
︸ ︷︷ ︸

(A)

−
T∑
t=1

〈
Ut+1/2, Xt+1/2

〉
︸ ︷︷ ︸

(B)




T

.
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For term (A),

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
≤ E

[
max
x∈C

〈
T∑
t=1

Ut+1/2, x

〉]

= E

[〈
T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈ C which attains the maximum)

=
D̃

2

√√√√ T∑
t=1

E
[∥∥Ut+1/2

∥∥2
∗

]
((by Lemma C.1))

=
D̃

2

√√√√ T∑
t=1

E
[
E
[∥∥Ut+1/2

∥∥2
∗ |Ft+1/2

]]
=
D̃

2
σ
√
T (Bounded variance)

Also, for term (B),

E

[
T∑
t=1

〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[
E
[〈
Ut+1/2, Xt+1/2

〉
| Ft+1/2

]]
=

T∑
t=1

E
[〈
E
[
Ut+1/2 | Ft+1/2

]
, Xt+1/2

〉]
=

T∑
t=1

E
[〈

0, Xt+1/2

〉]
(unbiasedness of Vt+1/2)

= 0.

Finally recognizing supx∈C ‖x‖ < D and combining the expressions for term (A) and (B),

E
[
GapC(X̄T )

]
≤

E
[
supx∈C

{(
D2

2 + 2M2
)√

T + 1 + D̃
2 σ
√
T
}]

T
,

which concludes our derivation

E
[
GapC(X̄T )

]
= O(1/

√
T )

�

Proof of Proposition 3. Directly obtained by Theorem 1 by setting Vt = 0 for (DA), Vt = gt+1/2 for
(DE) and Vt = gt−1/2 for (OptDA).

�
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Proof of Theorem 2.

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
=

T∑
t=1

〈
Vt+1/2 − Vt, Xt+1/2 −Xt+1

〉
+
〈
Vt, Xt+1/2 −Xt+1

〉
+
〈
Vt+1/2, Xt+1 − x

〉
=

T∑
t=1

‖Vt+1/2 − Vt‖‖Xt+1/2 −Xt+1‖+
1

γ

〈
Xt −Xt+1/2, Xt+1/2 −Xt+1

〉
+

1

γ
〈γYt −Xt+1, Xt+1 − x〉

=

T∑
t=1

γ

2
‖Vt+1/2 − Vt‖2 +

1

2γ
‖Xt+1/2 −Xt+1‖2

+
1

2γ

(
‖Xt −X‖2 − ‖Xt+1 −X‖2 − ‖Xt −Xt+1/2‖2 − ‖Xt+1/2 −Xt+1‖2

)
=
‖X1 − x‖2

2γ
+
γ

2

T∑
t=1

‖Vt+1/2 − Vt‖2 −
1

2γ

T∑
t=1

‖Xt −Xt+1/2‖2

=
‖x‖2

2γ
+
γ

2

T∑
t=1

‖Vt+1/2 − Vt‖2 −
1

2γ

T∑
t=1

‖Xt −Xt+1/2‖2,

where we setX1 = 0. At this point the question is how to introduce the relative noise into the analysis
such that we show that the stochastic/deterministic operator norms are summable. This would enable
us to achieve the anticipated 1/T rate. In other words, we want to show that

E

[
T∑
t=1

‖A(Xt+1/2)‖2
]
< +∞

E

[
T∑
t=1

‖A(Xt)‖2
]
< +∞

We take expectation with respect to all randomness and lower bound the left hand side with the norm
of the operator using cocoercivity. Setting x = x∗, where x∗ is a solution of (VI),

E

[
T∑
t=1

〈
Vt+1/2, Xt+1/2 − x∗

〉]
= E

[
T∑
t=1

E
[〈
Vt+1/2, Xt+1/2 − x∗

〉
|Ft+1/2

]]

= E

[
T∑
t=1

〈
E
[
Vt+1/2|Ft+1/2

]
, Xt+1/2 − x∗

〉]

= E

[
T∑
t=1

〈
A(Xt+1/2)−A(x∗), Xt+1/2 − x∗

〉]
(Cocoercivity)

≥ 1

L
E

[
T∑
t=1

‖A(Xt+1/2)‖2
]

Plugging this into the original expression yields

1

L
E

[
T∑
t=1

‖A(Xt+1/2)‖2
]
≤ ‖x

∗‖2

2γ
+
γ

2

T∑
t=1

‖Vt+1/2 − Vt‖2 −
1

2γ

T∑
t=1

‖Xt −Xt+1/2‖2
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With a similar approach,

E

[
1

L

T∑
t=1

‖A(Xt+1/2)‖2 +
1

2γ

T∑
t=1

‖Xt −Xt+1/2‖2
]

≥ E

[
1

L

T∑
t=1

‖A(Xt+1/2)‖2 +
1

2L2γ

T∑
t=1

‖A(Xt)−A(Xt+1/2)‖2
]

≥ E

[
min

{
1

2L
,

1

4L2γ

} T∑
t=1

2‖A(Xt+1/2)‖2 + 2‖A(Xt)−A(Xt+1/2)‖2
]

≥ E

[
min

{
1

2L
,

1

4L2γ

} T∑
t=1

‖A(Xt)‖2
]

Hence,

E

[
T∑
t=1

min

{
1

2L
,

1

4L2γ

}
‖A(Xt)‖2 +

1

L
‖A(Xt+1/2)‖2

]
≤ E

[
‖x∗‖2

γ
+ γ

T∑
t=1

‖Vt+1/2 − Vt‖2
]

We now use the relative variance in the expression on the right hand side. Relying on the towering
property of expectation,

E

[
‖x∗‖2

γ
+ γ

T∑
t=1

‖Vt+1/2 − Vt‖2
]
≤ E

[
‖x∗‖2

γ
+ 2γ

T∑
t=1

E
[
‖Vt+1/2‖2|Ft+1/2

]
+ E

[
‖Vt‖2|Ft

]]

≤ E

[
‖x∗‖2

γ
+ 2γc

T∑
t=1

‖A(Xt+1/2)‖2 + ‖A(Xt)‖2
]

Combining last two expressions together yields

E

[
T∑
t=1

min

{
1

2L
,

1

4L2γ

}(
‖A(Xt)‖2 + ‖A(Xt+1/2)‖2

)]
≤ E

[
‖x∗‖2

γ
+ 2γc

T∑
t=1

‖A(Xt+1/2)‖2 + ‖A(Xt)‖2
]

Grouping the same terms on the same side of the inequality,

E

[
T∑
t=1

(
min

{
1

2L
,

1

4L2γ

}
− 2γc

)(
‖A(Xt)‖2 + ‖A(Xt+1/2)‖2

)]
≤ E

[
‖x∗‖2

γ

]

As long as min
{

1
2L ,

1
4L2γ

}
− 2γc > 0, we show that sum of operator norms with respect to both

sequences are summable.

To obtain the gap, we will decompose Vt+1/2 into the full operator plus the noise,

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
=

T∑
t=1

〈
A(Xt+1/2), Xt+1/2 − x

〉
+

T∑
t=1

〈
Ut+1/2, Xt+1/2 − x

〉
≥

T∑
t=1

〈
A(x), Xt+1/2 − x

〉
+

T∑
t=1

〈
Ut+1/2, Xt+1/2 − x

〉
(Monotonicity)

= T
〈
A(x), X̄t+1/2 − x

〉
+

T∑
t=1

〈
Ut+1/2, Xt+1/2 − x

〉
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Rearranging and incorporating into the original bound,

〈A(x), X̄T − x
〉

≤ 1

T

(
‖x‖2

2γ
+

T∑
t=1

γ

2
‖Vt+1/2 − Vt‖2 −

1

2γ
‖Xt −Xt+1/2‖2 +

〈
Ut+1/2, x−Xt+1/2

〉)
,

We take supremum over x to retrieve the gap function and taking expectation,

E
[
GapC(X̄T )

]
≤ E

[
sup
x∈C

{
1

T

(
‖x‖2

2γ
+

T∑
t=1

γ

2
‖Vt+1/2 − Vt‖2 −

1

2γ
‖Xt −Xt+1/2‖2 +

〈
Ut+1/2, x−Xt+1/2

〉)}]

≤ 1

T

(
D2

2γ
+

T∑
t=1

E
[
γ‖Vt+1/2‖2 + γ‖Vt‖2

]
+ E

[
sup
x∈C

{〈
Ut+1/2, x

〉}]
− E

[〈
Ut+1/2, Xt+1/2

〉])

≤ 1

T

D
2

2γ
+ γc

T∑
t=1

E
[
‖A(Xt+1/2)‖2 + ‖A(Xt)‖2

]
︸ ︷︷ ︸

(i)

+

T∑
t=1

E
[
sup
x∈C

{〈
Ut+1/2, x

〉}]
︸ ︷︷ ︸

(ii)

−
T∑
t=1

E
[〈
Ut+1/2, Xt+1/2

〉]
︸ ︷︷ ︸

(iii)

 ,

where we define that supx∈C ‖x‖ ≤ D and use relative variance in the last inequality.

For term (i), we have already proven that this particular summation is finite.

For term (ii),

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
≤ E

[
max
x∈C

〈
T∑
t=1

Ut+1/2, x

〉]

= E

[〈
T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈ C which attains the maximum)

=
D̃

2

√√√√ T∑
t=1

E
[∥∥Ut+1/2

∥∥2
∗

]
((by Lemma C.1))

=
D̃

2

√√√√ T∑
t=1

E
[∥∥Vt+1/2 −A(Xt+1/2)

∥∥2
∗

]
(unbiasedness of Vt+1/2)

=
D̃

2

√√√√ T∑
t=1

E
[∥∥Vt+1/2

∥∥2
∗

]
(Towering property)

=
D̃

2

√√√√ T∑
t=1

E
[
c
∥∥A(Xt+1/2)

∥∥2
∗

]
< +∞ (Relative variance)
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Finally for term (iii),

E

[
T∑
t=1

〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[
E
[〈
Ut+1/2, Xt+1/2

〉
| Ft+1/2

]]
=

T∑
t=1

E
[〈
E
[
Ut+1/2 | Ft+1/2

]
, Xt+1/2

〉]
=

T∑
t=1

E
[〈

0, Xt+1/2

〉]
(unbiasedness of Vt+1/2)

= 0.

Since we have shown that either the terms are finite or 0, it immediately implies that

E
[
GapC(X̄T )

]
= O(1/T )

�

Proof of Proposition 4. Directly obtained by Theorem 2 by setting Vt = 0 for (DA), Vt = gt+1/2 for
(DE) and Vt = gt−1/2 for (OptDA).

�

E Adaptive analysis

In this section we shall provide the proof for (GEG) run with adaptive step-sizes for the various noise
profiles.Before doing so, we shall present two key building blocks that we will use for our analysis;
for both absolute and relative random noise profiles. In particular, we have:

Lemma E.1 (32, 29). For all non-negative numbers α1, . . . αt, the following inequality holds:√√√√ T∑
t=1

αt ≤
T∑
t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt (E.1)

In order to streamline the presentation of our analysis we defer the proof Lemma E.1 to Appendix G
along with several variants concerning inequalities of numerical sequences. Having this result at
hand, we will start presenting our analysis with the absolute random noise setting.

Proof of Theorem 3. Recalling Proposition 2 the following inequality holds:

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ (E.2)

Moreover, by invoking the fact that Vt+1/2 = A(Xt+1/2) + Ut+1/2 we have that:

T∑
t=1

〈
A(Xt+1/2), Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ +

T∑
t=1

〈Ut+1/2, x−Xt+1/2〉

(E.3)
Now, by applying the monotonicity of A we can bound from below the (LHS) as follows:

T∑
t=1

〈
A(x), Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗+

T∑
t=1

〈Ut+1/2, x−Xt+1/2〉 (E.4)
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So, by dividing both sides by T , taking suprema on both sides over a compact neighbourhood of a
solution x∗ and taking expectations:

E
[
sup
x∈C

〈
A(x), XT − x

〉]
≤ D2/2E

[
1

γT+1

]
+

1

2

T∑
t=1

E
[
γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
+

T∑
t=1

E
[
sup
x∈C
〈Ut+1/2, x−Xt+1/2〉

]
(E.5)

which in turn yields:

E
[
GapC(XT )

]
≤ D2/2E

[
1

γT+1

]
+

1

2

T∑
t=1

E
[
γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
+

T∑
t=1

E
[
sup
x∈C
〈Ut+1/2, x−Xt+1/2〉

]
(E.6)

Therefore, we are left to bound from above the (RHS). We shall do this term by term: For the term
D2/2E

[
1

γT+1

]
we have:

D2/2E
[

1

γT+1

]
= D2/2E


√√√√1 +

T∑
t=1

‖Vt − Vt+1/2‖2∗

 ≤ D2/2
√

1 + 4M2T (E.7)

with the second inequality being obtained by the fact that Vt is almost surely bounded for all
t = 1, 1/2, . . . . Moreover, for the term 1

2

∑T
t=1 E

[
γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
we have:

1

2

T∑
t=1

E
[
γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
=

1

2
E

[
T∑
t=1

(γt − γt+1)
∥∥Vt+1/2 − Vt

∥∥2
∗ +

T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]

≤ 1

2

[
4M2E

[
·
T∑
t=1

(γt − γt+1)

]
+ E

[
T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]]

≤ 1

2

[
4M2 + E

[
T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]]
(E.8)

Now by applying Lemma E.1 we have:

E

[
T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]
= E

 T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗√

1 +
∑t
j=1

∥∥Vj+1/2 − Vj
∥∥2
∗


≤ 2E


√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗


≤ 2
√

1 + 4M2T

with the last inequality being obtained by the fact that Vt is bounded almost surely for all t =
1, 1/2, . . . Finally, for the term Bound (B)

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉]
= E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
︸ ︷︷ ︸

(B1)

−E

[
T∑
t=1

〈
Ut+1/2, Xt+1

〉]
︸ ︷︷ ︸

(B2)

(E.9)
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For the term (B2) we have:

E

[
T∑
t=1

〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[〈
Ut+1/2, Xt+1/2

〉]
=

T∑
t=1

E
[
E
[〈
Ut+1/2, Xt+1/2

〉
| Ft+1/2

]]
=

T∑
t=1

E
[〈
E
[
Ut+1/2 | Ft+1/2

]
, Xt+1/2

〉]
=

T∑
t=1

E
[〈

0, Xt+1/2

〉]
(unbiasedness of Vt+1/2)

= 0.

For the term (B1) we will use Lemma C.1 and we get:

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
≤ E

[
max
x∈C

〈
T∑
t=1

Ut+1/2, x

〉]

= E

[〈
T∑
t=1

Ut+1/2, x̃

〉]
(for some x̃ ∈ C which attains the maximum)

≤ D

2

√√√√ T∑
t=1

E
[∥∥Ut+1/2

∥∥2
∗

]
(by Lemma C.1)

≤ Dσ

2

√
T

Therefore, by combining all the above the result follows. �

Now, we can apply Theorem 3 to directly obtain Proposition 6:
Proposition 6. Under Assumption 2 the iterates of (DA), (DE), (OptDA) enjoy the following:

E
[
GapC(XT )

]
= O(1/

√
T ) (E.10)

Proof. Directly obtained by Theorem 3 by setting Vt = 0 for (DA), Vt = gt+1/2 for (DE) and
Vt = gt−1/2 for (OptDA). �

Now, we turn our attention towards the relative random noise. In particular, in order to show our main
results for this context we will the following proposition as a stepping stone. As a prelude, we point
out that the following result will also play a crucial role for establishing the last iterate convergence
in Appendix F.
Proposition E.1. Assume that Xt, Xt+1/2 are the iterates of (GEG) run with (Adapt). Then, we
have:

E
[

1

γ2T+1

]
= E

[
1 +

T∑
t=1

‖Vt − Vt+1/2‖2∗

]
< +∞ (E.11)

and

E

[
T∑
t=1

‖A(Xt+1/2)‖2∗

]
< +∞ (E.12)

and

E

[
T∑
t=1

‖A(Xt)‖2∗

]
< +∞ (E.13)

and

E

[
T∑
t=1

‖Xt+1/2 −Xt‖2
]
< +∞ (E.14)
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Proof. Applying Proposition 2 and for x = x∗ with x∗ being a solution of (VI), we have

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x∗

〉
≤ ‖x

∗‖2

2γT+1
+

1

2

T∑
t=1

γk
∥∥Vt+1/2 − Vt

∥∥2
∗︸ ︷︷ ︸

(A)

−1

2

T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2
(E.15)

First, we shall bound from above term (A):

1

2

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ =

1

2

[
T∑
t=1

(γt − γt+1)
∥∥Vt+1/2 − Vt

∥∥2
∗ +

T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]

≤ 1

2

[
4G2 ·

T∑
t=1

(γt − γt+1) +

T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]

≤ 2G2 +
1

2

T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

≤ 2G2

√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗ +

1

2

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗√

1 +
∑t
j=1

∥∥Vj+1/2 − Vj
∥∥2
∗

≤ 2G2

√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗ + 2 · 1

2

√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

=
(
2G2 + 1

)√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

=
(
2G2 + 1

) 1

γT+1

(E.16)

So, the above becomes, if we also take expectations on both sides:

(B) = E

[
T∑
t=1

〈
Vt+1/2, Xt+1/2 − x∗

〉]
≤ ‖x

∗‖2

2
· E
[

1

γT+1

]
+
(
2G2 + 1

)
· E
[

1

γT+1

]

− 1

2
E

[
T∑
t=1

1

γt

∥∥Xt+1/2 −Xt

∥∥2]

=

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]
− 1

2
E

[
T∑
t=1

1

γt
‖Xt+1/2 −Xt‖2

]
(E.17)

For term (B) we have:

E

[
T∑
t=1

〈
Vt+1/2, Xt+1/2 − x∗

〉]
=

T∑
t=1

E
[〈
Vt+1/2, Xt+1/2 − x∗

〉]
=

T∑
t=1

E
[
E
[〈
Vt+1/2, Xt+1/2 − x∗

〉
| Ft+1/2

]]
=

T∑
t=1

E
[〈
E
[
Vt+1/2 | ξt+1/2

]
, Xt+1/2 − x∗

〉]
=

T∑
t=1

E
[〈
A
(
Xt+1/2

)
, Xt+1/2 − x∗

〉]
(E.18)
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and since A is 1/L-cocoercive, we get:

E

[
T∑
t=1

〈
Vt+1/2, Xt+1/2 − x∗

〉]
≥

T∑
t=1

1

L
E
[∥∥A (Xt+1/2

)∥∥2
∗

]
(E.19)

Therefore, by combining (E.17) and (E.19) the first inequality that we get is

1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
≤

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]
(E.20)

Moreover, we have:

1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
≤

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]
− 1

2

T∑
t=1

E
[

1

γt

∥∥Xt+1/2 −Xt

∥∥2]
(E.21)

and after rearranging and using the fact that 1/γt ≥ 1 we have

(C) =
1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+

1

2

T∑
t=1

E
[∥∥Xt+1/2 −Xt

∥∥2] ≤ [‖x∗‖2
2

+ 2G2 + 1

]
E

[
1

γT+1

]
(E.22)

For the term (C) we will have the following

1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+

1

2

T∑
t=1

E
[∥∥Xt+1/2 −Xt |

∥∥2]
≥ 1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+

1

2L2

T∑
t=1

E
[∥∥A (Xt+1/2

)
−A (Xt)

∥∥2
∗

]
≥ min

{
1

L
,

1

2L2

} T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗ +

∥∥A (Xt+1/2

)
−A (Xt)

∥∥2
∗

]
= min

{
1

2L
,

1

4L2

} T∑
t=1

E
[
2
∥∥A (Xt+1/2

)∥∥2
∗ + 2

∥∥A (Xt+1/2

)
−A (Xt)

∥∥2
∗

]
≥ min

{
1

2L
,

1

4L2

} T∑
t=1

E
[
‖A (Xt)‖2∗

]
(E.23)

So, we get the following inequalities:

1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
≤

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]

min

{
1

2L
,

1

4L2

} T∑
t=1

E
[
‖A (Xt)‖2∗

]
≤

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

] (ineq)

and

(D) =
1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+min

{
1

2L
,

1

4L2

} T∑
t=1

E
[
‖A (Xt)‖2∗

]
≤ 2

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]
(E.24)
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For term (D) we have:

1

L

T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+ min

{
1

2L
,

1

4L2

} T∑
t=1

E
[
‖A (Xt)‖2∗

]
≥ min

{
1

2L
,

1

4L2

}[ T∑
t=1

E
[∥∥A (Xt+1/2

)∥∥2
∗

]
+

T∑
t=1

E
[
‖A (Xt)‖2∗

]]

≥ min

{
1

2L
,

1

4L2

}[ T∑
t=1

1

c
E
[∥∥Vt+1/2

∥∥2
∗

]
+

T∑
t=1

1

c
E
[
‖Vt‖2∗

]]
(Assumption 3)

≥ 1

cmax {4L, 8L2}

[
T∑
t=1

E
[
2
∥∥Vt+1/2

∥∥2
∗ + 2 ‖Vt‖2∗

]]

≥ 1

cmax {4L, 8L2}

T∑
t=1

E
[∥∥Vt+1/2 − Vt

∥∥2
∗

]
So we get:

(E) = E

[
T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

]
≤ 8cmax

{
L, 2L2

}
·

[
‖x∗‖2

2
+ 2G2 + 1

]
E
[

1

γT+1

]
(E.25)

For the term (E) we have:

E

[
T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

]
= E

[
T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗ + 1− 1

]

= E

[
T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗ + 1

]
− 1

= E
[

1

γ2T+1

]
− 1

(E.26)

Therefore

E
[

1

γ2T+1

]
≤ 8cmax

{
L, 2L2

}[‖x∗‖2
2

+ 2G2 + 1

]
E
[

1

γT+1

]
+ 1

≤ 8cmax
{
L, 2L2

}[‖x∗‖2
2

+ 2G2 + 1

]
E
[

1

γT+1

]
+ E

[
1

γT+1

]

=

[
8cmax

{
L, 2L2

}[‖x∗‖2
2

+ 2G2 + 1

]
+ 1

]
E
[

1

γT+1

]
︸ ︷︷ ︸

(F)

(E.27)

For term (F) we have

E
[

1

γT+1

]
= E


√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗


≤

√√√√E

[
1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

]
=

√
E
[

1

γ2T+1

] (E.28)

So, finally we get:

E
[

1

γ2T+1

]
≤

[
8cmax

{
L, 2L2

}[‖x∗‖2
2

+ 2G2 + 1

]
+ 1

]√
E
[

1

γ2T+1

]
(E.29)
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Hence,

E
[

1

γ2T+1

]
≤

(
8cmax

{
L, 2L2

}[‖x∗‖2
2

+ 2G2 + 1

]
+ 1

)2

(E.30)

and the first result follows. The second and third claim is derived directly by combining the first
claim with (ineq). Finally, the last summability condition by rearranging (E.21), we get:

1

2

T∑
t=1

E
[

1

γt

∥∥Xt+1/2 −Xt

∥∥2] ≤ [‖x∗‖2
2

+ 2G2 + 1

]
E
[

1

γT+1

]
(E.31)

and the result by our first summability claim. �

Finally, we shall present the proof of the main result under relative random noise

Proof of Theorem 4. Recalling Proposition 2, we have for all x ∈ Rd

T∑
t=1

〈
Vt+1/2, Xt+1/2 − x

〉
≤ ‖x‖

2

2γT+1
+

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ (E.32)

By the definition of Vt+1/2 = A
(
Xt+1/2

)
+ Ut+1/2 the above becomes

T∑
t=1

〈
A
(
Xt+1/2

)
, Xt+1/2 − x

〉
︸ ︷︷ ︸

(A)

+

T∑
t=1

〈
Ut+1/2, Xt+1 − x

〉
≤ ‖x‖

2

2γT+1
+

1∑
t=1

γ1 ‖Vt+1 − Vt‖2∗

(E.33)
Term (A) due to monotonicity of the operator A,

T∑
t=1

〈
A
(
Xt+1/2

)
, Xt+1/2 − x

〉
≥

T∑
t=1

〈
A(x), Xt+1/2 − x

〉
for all x ∈ Rd (E.34)

Therefore, the above becomes after rearranging,

T∑
t=1

〈
A(x), Xt+1/2 − x

〉
≤

T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉
+
‖x‖2

2γT+1
+

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗ (E.35)

and by dividing both sides by T

〈
A(x), X̄T − x

〉
≤ 1

T

[
T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉
+
‖x‖2

2γT+1
+

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
(E.36)

and taking suprema on both sides over C (defining D2 = supx∈C ‖x− x1‖
2),

GapC
(
X̄T

)
≤ 1

T

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉
+

D2

2γT+1
+

T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
(E.37)

and taking expectations:

E
[
GapC

(
X̄T

)]
≤ 1

T

[
E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉]
︸ ︷︷ ︸

(B)

+
D2

2
E
[

1

γT+1

]
︸ ︷︷ ︸

(C)

+E

[
T∑
t=1

γt
∥∥Vt+1/2 − V1

∥∥2
∗

]
︸ ︷︷ ︸

(D)

]

(E.38)
Now, we shall bound the terms (B), (C), (D) individually. Since (B) is the most tricky one we will
leave it last.
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Bound (C)

D2

2
E
[

1

γT+1

]
=
D2

2
E


√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗


≤ D2

2

√√√√E

[
1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

=
D2

2

√
E
[

1

γ2T+1

]
< +∞, from Proposition E.1.

(E.39)

Bound (D)

E

[
T∑
t=1

γt
∥∥Vt+1/2 − Vt

∥∥2
∗

]
= E

[
T∑
t=1

(γt − γt+1)
∥∥Vt+1/2 − Vt

∥∥2
∗

]
+ E

[
T∑
t=1

γt+1

∥∥Vt+1/2 − Vt
∥∥2
∗

]

≤ 2G2 + 2E


√√√√1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗


≤ 2G2 + 2

√√√√E

[
1 +

T∑
t=1

∥∥Vt+1/2 − Vt
∥∥2
∗

]

≤ 2G2 + 2

√
E
[

1

γ2T+1

]
< +∞, from Proposition E.1

(E.40)
Bound (B)

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x−Xt+1/2

〉]
= E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
︸ ︷︷ ︸

(B1)

−E

[
T∑
t=1

〈
Ut+1/2, Xt+1

〉]
︸ ︷︷ ︸

(B2)

(E.41)
By working in the same spirit Theorem 3 for the term (B2) we have:

E

[
T∑
t=1

〈
Ut+1/2, Xt+1/2

〉]
= 0. (E.42)

and for term (B1),

E

[
sup
x∈C

T∑
t=1

〈
Ut+1/2, x

〉]
≤ D

2

√√√√ T∑
t=1

E
[∥∥Ut+1/2

∥∥2
∗

]
(E.43)

Due to the definition of Vt+1/2 = A
(
Xt+1/2

)
+ Ut+1/2 we have Ut+1/2 = A

(
Xt+1/2

)
− Vt+1/2.

So,

E

[
sup
x∈e

T∑
t=1

〈
Ut+1/2, x

〉]
≤ D

2

√√√√ T∑
t=1

E
[∥∥A (Xt+1)− Vt+1/2

∥∥2
∗

]

≤ D

2

√√√√2

T∑
t=1

E
[
‖A
(
Xt+1/2

)
‖2∗
]

+ 2

T∑
t=1

E
[∥∥Vt+1/2

∥∥2
∗

]
< +∞ , by Proposition E.1

(E.44)

�

29



Similar to Proposition 6, Theorem 4 allows us to obtain the following result.
Proposition 7. Under Assumption 3 the iterates of (DA), (DE), (OptDA) enjoy the following:

E
[
GapC(XT )

]
= O(1/T ) (E.45)

Proof. Directly obtained by Theorem 4 by setting Vt = 0 for (DA), Vt = gt+1/2 for (DE) and
Vt = gt−1/2 for (OptDA). �

F Last iterate analysis

We conclude by showing that the iterates Xt+1/2, Xt of (GEG) run with the adaptive step-size
policy (Adapt) converge towards some (VI) solution x∗ almost surely. In doing so, we will need the
following proposition:
Proposition F.1. Let there be a non-empty closed set F and let a sequence (xt)t ∈ Rd. Suppose that
for all z ∈ F there exists (βt)t sequence of random variables satisfying the following almost surely:

E
[
‖xt+1 − z‖2 | Ft

]
≤ ‖xt − z‖2 + βt (F.1)

with
∑∞
t=1 βt < +∞ almost surely. Then, the following hold:

1. ‖xt − z‖2 converges almost surely.

2. If the set of almost sure limit points, i.e.

X̂ = {x̂ ∈ Rd : there exists a subsequence xtn → x̂ almost surely} (F.2)

is non-empty and X̂ ⊂ F , then xt converges almost surely to some random variable x̂ ∈ F .

Proof. See [11, Proposition 2.3]. �

Moreover, we will heavily use the following classical convergence theorem; that of the so-called
Monotone Convergence Theorem.
Proposition F.2 (Monotone Convergence Theorem). Let (Ω,Σ, µ) be a measure space and X ∈ Σ.
Consider a pointwise non-decreasing sequence (ft)t · (Σ,BR>0

)-measurable non-negative functions:
ft : X → [0,+∞]. Set the pointwise limit of the (fn),

lim
t
ft(x) = f(x) (F.3)

Then, f is (Σ,BR>0) -measurable and

lim
t→+∞

∫
X
ftdµ =

∫
X
fdµ. (F.4)

Having all these at hand, we are now in the position to illustrate the last iterate convergence result
for the iterates of (DA)/(DE)/(OptDA). For the ease of presentation we shall provide the generic
convenience of the general choice for the Vt+1/2.
Proposition F.3. The iterates of (DA)/ (DE)/ (OptDA) converge towards a (VI) solution x∗.

Proof. We are left to show that the iterates Xt+1/2 satisfies the requirements of Proposition F.1. In
particular, invoking Proposition 2 we have:

1

2γt+1
‖Xt+1 − x∗‖2 ≤

1

2γt
‖Xt − x∗‖2−〈Vt+1/2, Xt+1/2−x∗〉+

D2

2

(
1

γt+1
− 1

γt

)
+γt

∥∥Vt − Vt+1/2

∥∥2
∗

(F.5)
with D2 = supx∗∈X ‖x∗‖2. Now, by multiplying both sides with 2γt and using the fact that γt is
non-decreasing and γt ≤ 1 we get:

‖Xt+1 − x∗‖2 ≤ ‖Xt − x∗‖ − γt〈Vt+1/2, Xt+1/2 − x∗〉+
D2

2

(
1

γt+1
− 1

γt

)
+
∥∥Vt − Vt+1/2

∥∥2
∗

(F.6)
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Now, by taking conditional expectations we obtain:

E
[
‖Xt+1 − x∗‖2 | Ft+1/2

]
≤ ‖Xt − x∗‖2 − γtE

[
〈Vt+1/2, Xt+1/2 − x∗〉 | Ft+1/2

]
+
D2

2
E
[(

1

γt+1
− 1

γt

)
| Ft+1/2

]
+ γtE

[
‖Vt − Vt+1‖2∗ | Ft+1/2

]
(F.7)

since γt is Ft+1/2- measurable. Moreover, we have:

γtE
[
〈Vt+1/2, Xt+1/2 − x∗〉 | Ft+1/2

]
= γt〈E[Vt+1/2|Ft+1/2], Xt+1/2 − x∗〉 ≤ 0 (F.8)

since x∗ is a solution of (VI) and Vt+1/2 is an unbiased estimator of A(Xt+1/2). So, we obtain:

E
[
‖Xt+1 − x∗‖2 | Ft+1/2

]
≤ ‖Xt − x∗‖2+

D2

2
E
[(

1

γt+1
− 1

γt

)
| Ft+1/2

]
+E

[
‖Vt − Vt+1‖2∗ | Ft+1/2

]
(F.9)

The first step is to show that:

βt =
D2

2
E
[(

1

γt+1
− 1

γt

)
| Ft+1/2

]
+ E

[
‖Vt − Vt+1‖2∗ | Ft+1/2

]
(F.10)

Indeed we have that:

E

[
T∑
t=1

βt

]
=
D2

2
E

[
T∑
t=1

(
1

γt+1
− 1

γt

)]
+ E

[
T∑
t=1

‖Vt − Vt+1‖2∗

]

≤ D2

2
E
[

1

γT+1

]
+ E

[
1

γ2T+1

]
≤
(
D2

2
+ 1

)
E
[

1

γ2T+1

]
< +∞

due to Proposition E.1. On the other hand,
∑T
t=1 βt is a non-decreasing (random) sequence; therefore

is converges almost surely to some random value
∑+∞
t=1 βt ∈ (0,∞]. Assume that β∞ = +∞. Then,

by applying Proposition F.2 we get:

+∞ = E

[
+∞∑
t=1

βt

]
= lim

T
E

[
T∑
t=1

βt

]
< +∞ (F.11)

which is a contradiction. Therefore
∑+∞
t=1 βt < +∞ almost surely. Therefore, we are left to show

that every almost sure limit point of Xt is a (VI) solution. Let x̂ ∈ Rd be a limit point of Xt.
Then, there exists a subsequence Xtn which converges almost surely towards x̂. Then, by invoking
Proposition E.1 (ii), we have that:

E

[
T∑
t=1

‖A(Xt)‖2∗

]
< +∞ (F.12)

Therefore by the same reasoning as above, Proposition F.2 ensures that:
T∑
t=1

‖A(Xt)‖2∗ < +∞ almost surely (F.13)

which yields a fortiori that ‖A(Xt)‖2∗ → 0 almost surely. On the other hand, we have that:
‖A(Xtn)‖∗ → ‖A(x̂)‖∗. Thus, by limit uniqueness we get that that ‖A(x̂)‖∗ = 0 , so x̂ is a
(VI) solution, hence the result follows by Proposition F.1. Finally, in order to show that Xt+1/2

converges also towards a solution, we shall invoke Proposition E.1 (iii) that:

E

[
T∑
t=1

‖Xt −Xt+1/2‖2
]
< +∞ (F.14)

Hence, by the same reasoning we obtain that:
‖Xt −Xt+1/2‖2 → 0 almost surely (F.15)

and so our proof is completed. �
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G Lemmas on numerical sequences

In this appendix, we provide the necessary inequality on numerical sequences that we require for the
convergence rate analysis of the previous sections.

This lemma that we present is due to [32] and [29].

Lemma E.1 (32, 29). For all non-negative numbers α1, . . . αt, the following inequality holds:√√√√ T∑
t=1

αt ≤
T∑
t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt (G.1)

Proof. We begin, by introducing some necessary notation and set S =
∑T
t=1 αt and x = αT .

The first part is proved by induction. The induction base case T = 1 straightforwardly holds. Now
for the induction step, assume that the lemma holds for T − 1 and we will show that it holds for T as
well. In particular, we have:

T∑
t=1

αt√∑t
i=1 αi

=

T−1∑
t=1

αt√∑t
i=1 αi

+
αT√∑T
t=1 αt

≥

√√√√T−1∑
t=1

αt +
αT√∑T
t=1 αt

=
√
S − x+

x√
S

(G.2)

where the first inequality is obtained due to the induction hypothesis. Hence, in order to prove the
lemma it is sufficient to show that:

√
S − x+

x√
S
≥
√
S (G.3)

By multiplying both sides by
√
S, we get the following equivalent expression:√

S2 − xS ≥ S − x (G.4)

whereas after rearranging we obtain the equivalent inequality:

x ≤ S (G.5)

which holds, since x = αT ≤
∑T
t=1 αt = S and hence the LHS inequality is obtained.

Now, the proof of the RHS inequality:

T∑
t=1

αt√∑t
i=1 αi

≤ 2

√√√√ T∑
t=1

αt (G.6)

will again be done again via induction. The induction base T = 1 holds immediately. Assume that
the lemma holds for T − 1. We will show that it also holds for T . By the induction hypothesis, we
get:

T∑
t=1

αt√∑t
i=1 αi

≤ 2

√√√√T−1∑
t=1

αt +
αT√∑T
t=1 αt

= 2
√
S − x+

x√
S

(G.7)

where x = αT and S =
∑T
t=1 αt (we highlight once more that x ≤ S). Taking the derivative of the

function H(x) = 2
√
S − x+ x√

S
(with respect to x), we get that:

H ′(x) =
1√
S
− 1√

S − x
(G.8)

becomes negative for all x ≥ 0. Thus, H(x) ≤ H(0) = 2
√
S and therefore the result follows. �
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H Numerics

All experiments were performed on a MacBook Pro with a 2.7 GHz Quad-Core Intel Core i7 processor
and 16 GB of RAM.

H.1 Kelly auction

We consider a Kelly auction with number of player N = 4, cost of bidding Z = 100, resources
Q = 1000 and marginal utility gains G = (1.8, 2.0, 2.2, 2.4) (see Section 6 for exact definitions).
The hyperparameters (the step-size for non-adaptive methods and the diameter for adaptive methods)
are not fine-tuned but chosen heuristically based on the sweep in Fig. H.5. When error bars are present
they represent one standard deviation based on 10 independent executions. For more information on
naming and notation see Section 6.

(a) Player utility (b) Gradient norm (c) Last iterate (d) Average iterate

Figure H.1: Comparing methods with σrel = 0.1.

(a) Player utility (b) Gradient norm (c) Last iterate (d) Average iterate

Figure H.2: Relative noise compared with absolute noise using adaptive DualX. We observe the deterioration of
the rate for the average iterate for absolute noise in contrast with relative noise.
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(a) Player utility (b) Gradient norm (c) Last iterate (d) Average iterate

Figure H.3: Different levels of relative noise using adaptive DualX. The O(1/T ) rate for the average iterate
(last plot) is kept even when the noise level is increased to σrel = 1.0.

(a) Player utility (b) Gradient norm (c) Last iterate (d) Average iterate

Figure H.4: Different levels of absolute noise using adaptive DualX. In contrast with relative noise increasing
the absolute noise clearly worsens the slope for the average iterate (last plot) indicating a rate of O(1/

√
T ).

(a) Player utility (b) Gradient norm (c) Last iterate (d) Average iterate

Figure H.5: We compare the effect of the diameter choice for adaptive DualX on a Kelly auction with σrel = 0.2.
We can observe the O(1/T ) average iterate rate for the whole spectrum of diameters but we note that the choice
of diameter still has practical impact on convergence time. The fastest convergence is achieved with the highest
diameter but note that the method did not converge for D = 1000 which we have excluded to keep the plots
readable.

34



(a) Gradient norm (b) Last iterate (c) Average iterate

Figure H.6: DualX in a higher dimensional kelly auction (N = 100). Let the total resources be Q = 1000,
cost of biddding be Z = 100 and the marginal utility gains be G = (6.001, 6.002, ..., 6.1) (see Section 6 for
exact definitions). Since the problem size is out of scope for Mathematica to provide a numerical solution
we computed the optimal point using adaptive DualX for 2.5 million full steps with fine-tuned diameter in a
deterministic setting. The experiment is then subsequently performed with σrel = 0.1 for 500 000 iterations.

H.2 Learning a covariance matrix

We apply adaptive DualX to the non-convex problem of learning a covariance matrix introduced
in [12] (see Fig. H.9). To fit our unconstrained setting we avoid weight clipping. Thus for fair
comparison we include trajectories of GD and OG as well, under these different conditions (see
Fig. H.7 and Fig. H.8 respectively). The experiments builds on the code provided by the authors in
under the MIT license [12].

(a) True Distribution (b) Iterate T − 70 (c) Iterate T − 35 (d) Iterate T − 20 (e) Iterate T

Figure H.7: GD for covariance learning of a two-dimensional gaussian without weight clipping using a batch
size of 50. Comparison of true distribution and distribution of generator at various points at the end of training.
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(a) True Distribution (b) Iterate T − 70 (c) Iterate T − 35 (d) Iterate T − 20 (e) Iterate T

Figure H.8: OG for covariance learning of a two-dimensional gaussian without weight clipping using a batch
size of 50. Comparison of true distribution and distribution of generator at various points at the end of training.

(a) True Distribution (b) Iterate T − 70 (c) Iterate T − 35 (d) Iterate T − 20 (e) Iterate T

Figure H.9: Adaptive DualX for covariance learning of a two-dimensional gaussian without weight clipping
using a batch size of 50. Comparison of true distribution and distribution of generator at various points at the
end of training.
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