
Supplementary Material for
Shape As Points: A Differentiable Poisson Solver

Songyou Peng1,2 Chiyu “Max” Jiang∗ † Yiyi Liao2,3† Michael Niemeyer2,3

Marc Pollefeys1,4 Andreas Geiger2,3

1ETH Zurich 2Max Planck Institute for Intelligent Systems, Tübingen
3University of Tübingen 4Microsoft

In this supplementary document, we first provide derivation details for our Differentiable Poisson
Solver in Section 1. In Section 2, we provide implementation details for our optimization-based and
learning-based methods. Next, we supply discussions on the easy initialization property of our Shape-
As-Points representation in Section 3. Additional results and ablations for the optimization-based and
learning-based reconstruction can be found in Section 4 and Section 5, respectively.

1 Derivations for Differentiable Poisson Solver

1.1 Point Rasterization

Given the origin of the voxel grid c0 = (x0, y0, z0), and the size of each voxel s = (sx, sy, sz),
we scatter the point normal values to the voxel grid vertices, weighted by the trilinear interpolation
weights. For a given point pi := (ci,ni) ∈ {pi, i = 1, 2, · · · , N}, with point location ci =
(xi, yi, zi) and point normal ni = (x̂i, ŷi, ẑi), we can compute the neighbor indices as {j}, where
j = (jx, jy, jz) ∈ (

⌊
xi−x0

sx

⌋
,
⌈
xi−x0

sx

⌉
) × (

⌊
yi−y0
sy

⌋
,
⌈
yi−y0
sy

⌉
) × (

⌊
zi−z0
sz

⌋
,
⌈
zi−z0
sz

⌉
). Here bc and

de denote the floor and ceil operators for rounding integers. We denote the trilinear sampling weight
function as T (cp, cv, s), where cp and cv denote the location of the point and the grid vertex. The
contribution from point pi to voxel grid vertex j can be computed as:

vj←i = T (ci, s� j+ c0, s)ni (1)
Hence the value at grid index j ∈ r×r×r can be computed via summing over all neighborhood points:

vj =
∑
i∈Nj

T (ci, s� j+ c0, s)ni (2)

where Nj denotes the set of point indices in the neighborhood of vertex j.

1.2 Spectral Methods for Solving PSR

We solve the PDEs using spectral methods [3]. In three dimensions, the multidimensional Fourier
Transform and Inverse Fourier Transform are defined as:

f̃(u) := FFT(f(x)) =
∫∫∫ ∞

∞
f(x)e−2πix·udx (3)

f(x) := IFFT(f̃(u)) =
∫∫∫ ∞

∞
f̃(u)e2πix·udu (4)

where x := (x, y, z) are the spatial coordinates, and u := (u, v, w) represent the frequencies
corresponding to x, y and z. Derivatives in the spectral space can be analytically computed:

∂

∂xj
f(x) =

∫∫∫ ∞
∞

2πixj f̃(u)e
2πix·udu = IFFT(2πixj f̃(u))

∗Work done while at UC Berkeley.
†Corresponding authors.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

In discrete form, we have the rasterized point normals v := (vx, vy, vz), where vx, vy, vz ∈ Rn.
Hence in spectral domain, the divergence of the rasterized point normals can be written as:

FFT(∇ · v) = 2πi(u · ṽ) (5)

The Laplacian operator can be simply written as:

FFT(∇2) = −4π2||u||2 (6)

Therefore, the unnormalized solution to the Poisson Equations χ̃, not accounting for boundary
conditions, can be written as:

χ̃ = g̃σ,r(u)
iu� ṽ

−2π||u||2
g̃σ,r(u) = exp

(
− 2

σ2||u||2

r2

)
(7)

Where g̃σ,r(u) is a Gaussian smoothing kernel of bandwidth σ for grid resolution of r in the spectral
domain to mitigate the ringing effects as a result of the Gibbs phenomenon from rasterizing the
point normals. Please refer to Section 4.3 for a more in-depth discussion to motivate the use of the
smoothing parameter, as well as related ablation studies on our parameter choice for σ.

The unnormalized indicator function in the physical domain χ′ can be obtained via inverse Fourier
Transform:

χ′ = IFFT(χ̃) (8)

We further normalize the indicator field to incorporate the boundary condition that the indicator field
is valued at zero at point locations and valued ±0.5 inside and outside the shapes.

χ =
m

abs(χ′|x=0)︸ ︷︷ ︸
scale

(
χ′ − 1

|{c}|
∑

c∈{c}

χ′|x=c

)
︸ ︷︷ ︸

subtract by mean

(9)

2 Implementation Details

In this section, we provide implementation details for baselines and our method for both settings,
optimization-based and the learning-based reconstruction.

Optimization-based 3D reconstruction: We use the official implementation of IGR3 [7] and
Point2Mesh4 [9]. We optimize IGR for 15000 iterations on each object until convergence. For
Point2Mesh, we follow the official implementation and use 6000 iterations for each object. We
generate the initial mesh required by Point2Mesh following the description of the original paper.
Specifically, the initial mesh is provided as the convex hull of the input point cloud for objects with a
genus of zero. If the genus is larger than zero, we apply the watertight manifold algorithm [10] using
a low-resolution octree reconstruction on the output mesh of SPSR to obtain a coarse initial mesh.

For our method, we follow the coarse-to-fine and resampling strategy described in the main paper
(Section 3.2). To smooth the output mesh as well as to stabilze the optimization process, we gradually
increase the Gaussian smoothing parameter σ in (7) when increasing the grid resolution: σ = 2 for
a grid resolution of 323 and 643, σ = 3 when the grid resolution is 1283. At the final resolution of
2563, we use σ = 3 for objects with more details (e.g. objects in SRB [18] and D-FAUST [2], and
σ = 5 for the input points with noises (Thingi10K [20]). We use the Adam optimizer [13] with a
learning rate decay. The learning rate is set to 2× 10−3 at the initial resolution of 323 with a decay
of 0.7 after every increase of the grid resolution. Moreover, we run 1000 iterations at every grid
resolution of 323, 643 and 1283, and 200 iterations for 2563. 20000 source points and normals are
used by our method to represent the final shapes for all objects.

3https://github.com/amosgropp/IGR
4https://github.com/ranahanocka/point2mesh

2

https://github.com/amosgropp/IGR
https://github.com/ranahanocka/point2mesh

