
A Preliminaries on SDE

A.1 SDE Approximation Schemes

Here, we review the common approximation schemes for SDEs and discuss why they are not efficient
enough to be applied to the Itô SDE approximation for SGD. We adapt the information in Chapters
13 and 14 of Kloeden and Platen (2011). In general, an Itô SDE can be written as

dXt = µ(Xt, t)dt+ �(Xt, t)dWt

where µ and � are called the drift and diffusion coefficients respectively. The standard Itô SDE (2)
used to approximate SGD sets µ(Xt, t) = �rL(Xt) and �(Xt, t) = (⌘⌃(Xt))1/2.

Suppose we want to solve the SDE on a time interval [0, T ]. First, we discretize the time interval into
N equal steps ⌧1, ..., ⌧N of size �t. We will construct a Markov chain Y that is a weak approximation
in �t (Definition 4.2) to the true solution, and let Y0 = x0 where x0 is the initialization for the SGD
trajectory.

The Euler-Maruyama scheme is the simplest approximation scheme, and the resulting Markov chain
is an order 1 weak approximation to the true solution of the SDE. For n 2 N, 0  n  N � 1,

Yn+1 = Yn + µ(Yn, ⌧n)�t+ �(Yn, ⌧n)�Wn (16)

where �Wn
i.i.d.
⇠ N (0,�t). In the ML setting, computing a single step in this Markov chain requires

computing the full gradient (for µ(Yn, ⌧n)) and the covariance of the gradient (for �(Yn, ⌧n)). As
such, modeling a single step in the recurrence requires making one pass over the entire dataset. The
error of the approximation scheme scales with �t, so making N larger (thereby requiring more
recurrence steps) will improve the quality of the approximate solution. We furthermore note that
storing the gradient covariance matrix requires a large amount of memory. Each weight parameter in
the network must be modeled by its own recurrence equation, so for modern day deep networks, this
approximation seems computationally intractable.

The Euler-Maruyama scheme is considered the simplest approximation scheme for an Itô SDE. A
variety of other schemes, such as the Milstein and stochastic Runge-Kutta schemes, have been derived
by adding a higher order corrective term, taken from the stochastic Taylor expansion, to the recurrence
computation. In particular, these schemes all still require the computation of µ and � at each step of
the recurrence, so they remain computationally intractable for the Itô SDE used to approximate SGD.

A.2 Preliminary on Stochastic Process

Definition A.1. We call a m-dimensional stochastic process X = {Xt : t � 0} a Lévy process if it
satisfies the following properties:

• X0 = 0 almost surely;
• Independence of increments: For any 0  t1 < t2 < · · · < tn < 1, Xt2 � Xt1 , Xt3 �

Xt2 , . . . , Xtn �Xtn�1 are independent;
• Stationary increments: For any s < t, Xt �Xs is equal in distribution to Xt�s;
• Continuity in probability: For any " > 0 and t � 0 it holds that limh!0 P (|Xt+h �Xt| >

") = 0.
Definition A.2. We call a counting process {N(t) : t � 0} a Poisson process with rate � > 0 if it
satisfies the following properties:

• N(0) = 0;
• has independence of increments;
• the number of events (or points) in any interval of length t is a Poisson random variable with

parameter (or mean) �t.

B Discussion on Non-Gaussian Noise

In Appendix B.1 we give an example where LSR holds while SDE approximation breaks. In
Appendix B.2, we show this example to a more general setting – infinitely divisible noise. We also
explain why decreasing LR along LSR will not get a better approximation for SDE, while decreasing
LR along SVAG will, since both operation preserves the same SDE approximation. In Appendix B.3,
we discuss the possibility where the noise is heavy-tailed and with unbounded covariance.
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B.1 LSR can hold when SDE approximation breaks

Example B.1. Let Z(t) be a 1-dimensional Poisson process (Definition Definition A.2), where Z(t)
follows Poisson distribution with parameter t. We assume the distribution of the gradient on single
sampled data �, rL�(x) is the same as Z(1) for any parameter x. For a batch B of size B (with
replacement), since Poisson process has independent increments, rLB(x) := 1

B

P
�2B rL�(x)

d
=

Z(B)
B .

Thus for any constant T and initialization x0 = 0, performing SGD starting from x0 for T
B steps with

LR B⌘ and batch size B, the distribution of x T
B

is independent of B, i.e.,

xk = xk�1 �B⌘rLBk(xk�1) =) x T
B

d
= �⌘(Z(B) + Z(B) + · · ·+ Z(B))| {z }

T
B ’s Z(B)

d
= �⌘Z(T ).

Thus LSR holds for all batch size B. Below we consider the corresponding NGD (3), {x̂k}, where

x̂k =x̂k�1 �B⌘ErLBk(x̂k�1) +B⌘

p
E(rLBk � ErLBk)

2zk�1

=x̂k�1 �B⌘EZ(B)

B
+B⌘

r
E(Z(B)

B
� EZ(B)

B
)2zk�1zk�1

=x̂k�1 �B⌘ + ⌘

p
BE(Z(1)� EZ(1))2zk�1

=x̂k�1 �B⌘ + ⌘

p

Bzk�1,

and {zi}
T
B�1
i=0

i.i.d.
⇠ N(0, 1).

Thus it holds that x̂ T
B
= �⌘T +⌘

P T
B�1
k=0 zk�1

d
= �⌘(T +WT ), where WT is a Wiener process with

W0 = 0, meaning the NGD final iterate is also independent of B, and constant away form the final
iterate x T

B

d
= �⌘Z(T ). Indeed we can show the same result for Itô SDE (2), dXt = �dt+p

⌘dWt:

X T
B ·B⌘ = X⌘T =

Z ⌘T

t=0
�dt+

p
⌘dWt = �⌘T +

p
⌘W⌘T

d
= �⌘T + ⌘WT .

Thus we conclude that LSR holds but SDE approximation fails. Since NGD achieves the same
distribution as Itô SDE, the gap is solely caused by non-gaussian noise.

However, the reader might still wonder, since batch size is always at least 1, there’s always a lower
bound for LR ⌘ when going down along the ladder of LSR, and thus a discrete process with a finite
step size of course cannot be approximated by a continuous one arbitrarily well. So isn’t this example
trivial? In Appendix B.2, we will see even if we are allowed to use fractional batch size, and thus
allow ⌘ ! 0, LSR can still hold without Itô SDE approximation.

B.2 Infinitely Divisible Noise and Lévy SDE

To understand why decreasing LR along LSR will not get a better approximation for SDE, and how
LSR can hold without Itô SDE approximation when ⌘ ! 0, we assume the noise is infinitely divisible
below for simplicity, which allows us to define SGD with fractional batch sizes and thus we can take
the limit of ⌘ ! 0 along the ladder of LSR.

That is, for the original stochastic loss rL� , for any m 2 N+, there is a random loss function L
m
�0 ,

such that 8x 2 Rd, the original stochastic gradient rL�(x) is equal in distribution to the sum of m
i.i.d. copies of rL

m
� (x):

rL�(x)
d
=

mX

i=1

rL
m
�0
i
(x). (17)
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SGD Lévy SDE

SVAG

LSR

?Gaussian
Noise

LSR

SVAG

Figure 5: Taking ⌘ ! 0 and keeping the first two moments are not enough to converge to Itô SDE
limit, e.g. decreasing LR along LSR can converge to another limit, Lévy SDE. Red and blue arrows
means taking limit of the dynamics when LR ⌘ ! 0 along the SVAG and LSR respectively. Here we
assume the noise in SGD is infinitely divisible such that the LR can go to 0 along LSR. For NGD,
i.e., SGD with Gaussian noise, both SVAG and LSR (Linear Scaling Rule) approaches the same
continuous limit. This does not hold for SGD with non-Gaussian noise.
For SGD with batch size B, such a random loss function can be found when m is a factor of B,
where it suffices to define Lm as m times the same loss with a smaller batch size B

m .4 In other words,
we can phrase LSR in a more general form, which only involves the distribution of the noise, but not
the generating process of the noise (e.g. noise from sampling a batch with replacement).
Definition B.2 (generalized Linear Scaling Rule (gLSR)). Keep LR the same. Replace rL� by
rL

m
� and multiply the total number of steps by m.

It’s well known that every infinitely divisible distribution corresponds to a d-dimensional Lévy
process (Definition A.1) Zx(t) 2 Rd, in the sense that rL�(x)

d
= Zx(1) Ken-Iti (1999). If we

further assume there is a m-dimensional Lévy process Z
0(t) and a function �(x) : Rd

! Rd⇥m

such that for every x, rL�(x)�rL(x)
d
= �(x)Z(1), then by Theorem 2.2 in (Protter et al., 1997),

SGD (18) will converge to a limiting continuous dynamic, which we denote as the Lévy SDE, as the
LR decreases to 0 along LSR.

xk = xk�1 � ⌘rL
m
�k�1

(xk�1), 8k = 1, . . . , b
Tm

⌘
c (18)

Formally, Xt is the solution of the following SDE driven by a Lévy process.

dXt = �rL(Xt)dt+ ⌘�(Xt)dZt/⌘, 8t 2 [0, T ] (19)

In the special case where Zt is the d-dimensional Brownian motion (note {⌘Zt/⌘}t�0 and {
p
⌘Zt}t�0

have the same distributions for the sample paths), �(x) 2 Rd⇥d will be the square root of the noise
covariance, ⌃ 1

2 (x).

Why decreasing LR along LSR will not get a better approximation for SDE: The Lévy SDE is
equal to the Itô SDE only when the noise is strictly Gaussian. Thus the gap induced by non-Gaussian
noise will not vanish even if both SGD and NGD decrease the LR along LSR, as it will converge to
the gap between Itô SDE and Lévy SDE. See Figure 5 for a summary of the relationships among
SGD, NGD, Itô SDE, and Lévy SDE.

Since decreasing LR along LSR converges to a different limit than SVAG does, it’s natural to ask
which part of the approximation in Lemma 4.7 fails for the former. By scrutinizing the proof of
Lemma 4.7, we can see (i) and (ii) still hold for any stochastic discrete process with LR ⌘

l and
matching first and second order moments, while the term ⌘3(3�l�1)

2l2 ⇤(x) now becomes ⌘3

l ⇤(x) for
SGD along LSR, which is larger by an order of l. Therefore, the single-step approximation error
becomes O(l�1) and the total error after bTl/⌘c steps remains constant.5

SDE approximation is not necessary for LSR, even for LR ⌘ ! 0: We also note that though
Smith et al. (2020) derives LSR by assuming the Itô SDE approximation holds, this is only a sufficient

4Batch loss of nets with BatchNorm is not necessarily divisble, because (17) doesn’t hold, as the individual
loss depends on the entire batch of data with the presence of BN. Still, it holds for ghost BatchNorm (Hoffer
et al., 2017) with B equal to the number of mini-ghost batches.

5Such error does not only occur in the third order moment. It also appears in the higher moments. Therefore
simply assuming the noise distribution is symmetric (thus ⇤ = 0) won’t fix this gap.

17



but not necessary condition for LSR. In Section B.1, we provide a concrete example where LSR
holds for all LRs and batch sizes, but the dynamics are constantly away from Itô SDE limit. The
loss landscape and noise distribution are constant, i.e., parameter-independent. This is also an
example where the gap between SGD and Itô SDE is solely caused by non-gaussian noise, but not
the discretization error.

B.3 Heavy-tailed Noise and Unbounded Covariance

Simsekli et al. (2019) experimentally found that the distribution of the SGD noise appears to be
heavy-tailed and proposed to model it with an ↵-stable process. In detail, in Figure 1 of (Simsekli
et al., 2019), they show that the histogram of the gradient noise computed with AlexNet on CIFAR-10
is more close to that of ↵-stable random variables, instead of that of Gaussian random variables.
However, a more recent paper (Xie et al., 2021) pointed out a fundamental limitation of methodology
in (Simsekli et al., 2019): (Simsekli et al., 2019) made a hidden but very restrictive assumption that
the noise of each parameter in the model is distributed identically. Moreover, their test (Theorem B.3)
of the tail-index ↵ works only under this assumption. Thus the empirical measurement in (Simsekli
et al., 2019) (b↵ < 2) doesn’t exclude the possibility that that stochastic gradient noise follows a joint
multivariate Gaussian.
Theorem B.3. (Mohammadi et al., 2015) Let {Xi}

K
i=1 be a collection of i.i.d. random variables with

X1 ⇠ S↵S(�) and K = K1 ⇥K2. Define Yi :=
PK1

j=1 Xj+(i�1)K1
for i 2 {1, . . . ,K2}. Then the

estimator
c1
↵

:=
1

logK1

 
1

K2

K2X

i=1

log |Yi|�
1

K

KX

i=1

log |Xi|

!
. (20)

converges to 1
↵ almost surely, as K2 ! 1. Here S↵S(�) is the ↵-stable distribution defined by

X ⇠ S↵S(�) () E[exp(iwX)] = exp(�|�w|
↵).

We provide the following theoretical and experimental evidence on vision tasks to support the
argument in Xie et al. (2021) that it is reasonable to model the stochastic gradient noise by joint
Gaussian random variables instead of ↵-stable random variables even for finite learning rate. (Note
SVAG (e.g., Figure 4) only shows that when LR becomes infinitesimally small, replacing the noise
by Gaussian noise gets similar performance.)

1. In Figure 3, we find that the trace of covariance of noise is bounded and the empirical
average doesn’t grow with the number of samples/batches (this is not plotted in the current
paper). However, an ↵-stable random variable has unbounded variance for ↵ < 2.

2. In Figures 1, 19, 18, and 20, we show directly that replacing the stochastic gradient noise
by Gaussian noise with the same covariance gets almost the train/test curve and the final
performance.

3. Applying the test in Theorem B.3 on joint multivariate Gaussian random variables can yield
an estimate ranged from 1 to 2 for the tail-index ↵, but for Gaussian variables, ↵ = 2.
(Theorem B.4)

Another recent work Zhang et al. (2020) also confirmed that the noise in stochastic gradient in
ResNet50 on vision tasks is finite. However, they also found the noise for BERT on Wikipedia+Books
dataset could be heavy-tailed: the empirical variance is not converging even with 107 samples. We
left it as a future work to investigate how does SDE approximate SGD on those tasks or models with
heavy-tailed noise.
Theorem B.4. Let K = K1 ⇥K2 = d ⇥m ⇥K2, where K1,K2, d,m 2 N+. Let {Xi}

K
i=1 be a

collection of random variables where X(j�1)d:jd
i.i.d.
⇠ N(0,⌃), for each j 2 {1, . . . ,mK2}. Then

we have

E
"

1

logK1

 
1

K2

K2X

i=1

log |Yi|�
1

K

KX

i=1

log |Xi|

!#
=

1

2

logm+ log 1>⌃1�
1
d

Pd
i=1 log⌃ii

logm+ log d
.

Specifically, when d = K1 and m = 1, taking ⌃ = �11> + (1� �)I , we have

E
"

1

logK1

 
1

K2

K2X

i=1

log |Yi|�
1

K

KX

i=1

log |Xi|

!#
=

1

2

log(�d2 + (1� �)d)

log d
,

18



and ⇢
1

2

log(�d2 + (1� �)d)

log d
| � 2 [0, 1]

�
= [

1

2
, 1].

Proof.

E
"

1

logK1

 
1

K2

K2X

i=1

log |Yi|�
1

K

KX

i=1

log |Xi|

!#
= E

"
1

logK1

 
log |Y1|�

1

d

dX

i=1

log |Xi|

!#
.

(21)

Note Y1 is gaussian with standard deviation
p

1>⌃1 ·m and Xi is gaussian with standard deviation
p
⌃ii. Thus E[log |Y1|� log |Xi|] = log

p

1>⌃1 ·m� log
p
⌃ii. Thus we have

E
"

1

logK1

 
1

K2

K2X

i=1

log |Yi|�
1

K

KX

i=1

log |Xi|

!#
(22)

=E
"

1

logK1

 
log |Y1|�

1

d

dX

i=1

log |Xi|

!#
(23)

=
1

2

logm+ log 1>⌃1�
1
d

Pd
i=1 log⌃ii

logm+ log d
(24)

C Omitted Derivation in Section 4

We prove Theorem 4.3 in this section. The derivation is based on the following two-step process,
following the agenda of (Li et al., 2019a):

1. Showing that the approximation error on a finite interval (N = b
Tl
⌘ c steps) can be upper

bounded by the sum of expected one-step errors. (Theorem C.1, which is Theorem 3 in (Li
et al., 2019a))

2. Showing the one-step approximation error of SVAG is of order 2, and so the approximation
on a finite interval is of order 1. (Lemmas 4.6 and 4.7)

C.1 Relating one-step to N -step approximations

Let us consider generally the question of the relationship between one-step approximations and
approximations on a finite interval. Let T > 0 and N = blT/⌘c. Let us also denote for convenience
eXk := X k⌘

l
. Further, let {Xx,s

t : t � s} denote the stochastic process obeying the same Equation (2),

but with the initial condition X
x,s
s = x. We similarly write eXx,j

k := X
x, j⌘l
k⌘
l

and denote by {x
x,j
k :

k � j} the stochastic process (depending on l) satisfying Equation (5) but with xj = x.

Now, let us denote the one-step changes

SVAG: �(x) := x
x,0
1 � x, SDE: e�(x) := eXx,0

1 � x. (25)

The following result is adapted from (Li et al., 2019a) to our setting, which relates one-step ap-
proximations with approximations on a finite time interval. To prove it, we will construct hybrid
trajectories interpolating between SVAG (5) and the SDE (2), as shown in Figure 6.
Theorem C.1 (Adaption of Theorem 3 in (Li et al., 2019a)). Suppose the following conditions hold:

(i) There is a function K1 2 G independent of l such that
���E�(x)⌦s

� Ee�(x)⌦s
���  K1(x)l�2

for s = 1, 2, 3 and
q
E |�(x)⌦4|

2
 K1(x)l�2

.
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Figure 6: To relate the one-step error to the error over a finite interval, we construct interpolating hybrid
trajectories between SVAG and SDE as shown in the figure. Each hybrid trajectory is built by using the second
to last SVAG point in the previous trajectory as the initial condition and then running the SDE for the remainder
of the time interval.

(ii) For all m � 1, the 2m-moment of xx,0
k is uniformly bounded w.r.t. k and l, i.e. there exists a

K2 2 G, independent of l, k, such that E|xx,0
k |

2m
 K2(x), for all k = 0, . . . , blT/⌘c.

Then, for each g 2 G
4, there exists a constant C > 0, independent of l, such that

max
k=0,...,blT/⌘c

���Eg(xk)� Eg(X k⌘
l
)
���  Cl

�2

Proof of Theorem C.1. Let T, l > 0, N = blT/⌘c and for convenience we also define eXk := X k⌘
l

.
Further, let {Xx,s

t : t � s} denote the stochastic process obeying the same Equation (2), but with

the initial condition X
x,s
s = x. We similarly write eXx,j

k := X
x, j⌘l
k⌘
l

and denote by {x
x,j
k : k � j} the

stochastic process (depending on l) satisfying Equation (5) but with xj = x. Alternatively, we write
eXk(x, j) := eXx,j

k and xk(x, j) := x
x,j
k . By definition, eXk(xk, k) = xk and eXk(x0, 0) = eXk.

Thus we have for any 1  k  b
lT
⌘ c, we can decompose the error as illustrated in Figure 6,

|Eg(xk)� Eg(X k⌘
l
)| = |Eg(xk)� Eg( eXk)|



k�1X

j=0

���Eg( eXk(xj+1, j + 1))� Eg( eXk(xj , j))
���



k�1X

j=0

���Euk,j+1( eXj+1(xj , j))� Euk,j+1(xj+1(xj , j))
���



k�1X

j=0

���Euk,j+1( eX1(xj , 0))� Euk,j+1(x1(xj , 0))
���



k�1X

j=0

E
h���Euk,j+1( eX1(xj , 0))� Euk,j+1(x1(xj , 0))

���
��xj

i
,
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where uk,j+1(x) is defined as Eg(Xk(x, j +1)) and the second to the last step is because of SDE (2)
is time-homogeneous. By Proposition 25 in (Li et al., 2019a), uk,j+1

2 G
4 uniformly, thus by

Lemma C.2, we know there exists K(x) = 1(1 + |x|
22) 2 G such that

|Eg(xk)� Eg(X k⌘
l
)| 

k�1X

j=0

E
⇥
K(xj)l

�2
⇤


k�1X

j=0

E
⇥
1(1 + |xj |

22)l�2
⇤

By assumption (ii), we know the there is some K
0
2 G,

|Eg(xk)� Eg(X k⌘
l
)| 

k�1X

j=0

E
⇥
1(1 + |xj |

22)l�2
⇤


b lT
⌘ c�1X

j=0

E
⇥
1(1 + |xj |

22)l�2
⇤
 K

0(x)l�1
,

which completes the proof.

Recall that

SVAG: �(x) := x
x,0
1 � x, SDE: e�(x) := eXx,0

1 � x. (26)

Lemma C.2. Suppose u1
, . . . , u

k
2 G

4 uniformly, that is, u1
, . . . , u

k
2 G and there’s a single K0 2

G such that
��� @su
@x(i1),...x(ij)

(x)
���  K0(x), for s = 1, 2, 3, 4 and ij 2 {1, 2, . . . , d}, j 2 {1, . . . , s}.

Let assumption (i),(ii) in Thm. C.1 hold and K1(x),K2(x) be such functions. Then, there exists some
K 2 G, independent of l, r, such that

���Eur(xx,0
1 )� Eur( eXx,0

1 )
���  K(x)l�2

Proof. W.L.O.G, we can assume K0(x) = 0,1(1 + |x|
20,2)  K0(x)2, for 0,1 > 0,0,2 2 N+,

thus for ↵ 2 [0, 1] and x, y 2 Rd, we have K0((1� ↵)x+ ↵y)  max(K0(x),K0(y))  K0(x) +
K0(y). We also assume EK0(x

x,0
1 )2  K

2
2 (x).

Using Taylor’s theorem with the Lagrange form of the remainder, we have for any j 2 {1, . . . , k},

u
r(xx,0

1 )� u
r( eXx,0

1 ) =
3X

s=1

1
s!

dX

i1,...,ij=1

sY

j=1

[�(ij)(x)�
e�(ij)(x)]

@sur

@x(i1),...x(ij)
(x)

+ 1
4!

dX

i1,...,i4=1

2

4 @4ur

@x(i1),...x(i4)
(x+ a�(x))

4Y

j=1

�(i4)(x)

3

5

�
1
4!

dX

i1,...,i4=1

2

4 @4ur

@x(i1),...x(i4)
(x+ a�(x))

4Y

j=1

�(i4)(x)

3

5

where a,ea 2 [0, 1].

Taking expectations over the first term, using assumption (i) of Thm. C.1, we get
������
E

2

4
3X

s=1

1
s!

dX

i1,...,ij=1

sY

j=1

[�(ij)(x)�
e�(ij)(x)]

@sur

@x(i1),...x(ij)
(x)

3

5

������
 l

�2(
d

1!
+

d
2

2!
+

d
3

3!
)K1(x)K0(x)
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Taking expectations over the second term, using assumption (i) of Appendix C.1 and Lemma D.1, we
get

������
E

2

4 1
4!

dX

i1,...,ij=1

2

4 @4ur

@x(i1),...x(i4)
(x+ a�(x))

4Y

j=1

�(i4)(x)

3

5

3

5

������


1
4!

dX

i1,...,i4=1

E
��� @4ur

@x(i1),...x(i4)
(x+ a�(x))

���

������

4Y

j=1

�(i4)(x)

������


1
4!

dX

i1,...,i4=1

vuuutE
��� @(↵+1)ur

@x(i1),...x(i4)
(x+ a�(x))

���
2
E

������

4Y

j=1

�(i4)(x)

������

2


1

4!l2

dX

i1,...,i4=1

r
E
���K0(x) +K0(x

x,0
1 )
���
2
K1(x)2
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We can deal with the third term similarly to the second term and thus we conclude
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C.2 One-step approximation

Lemma 4.6. Define the one-step increment of the Itô SDE as e�(x) = eXx,0
1 � x. Then we have

(i) Ee�(x) = �
⌘
l rL(x) +O(l�2), (ii) Ee�(x)e�(x)> = ⌘2

l ⌃(x) +O(l�2),

(ii) Ee�(x)⌦3 = O(l�2), (iv)
q

E|e�(x)⌦4|2 = O(l�2).

Proof. To obtain (i)-(iii), we simply apply Lem. D.2 with  (z) =
Qs

j=1(z(ij)�x(ij)) for s = 1, 2, 3
and ij 2 {1, . . . , d} respectively. (iv) is due to Lemma D.1.

Next, we estimate the moments of the SVAG iterations below.
Lemma 4.7. Define the one-step increment of SVAG as �(x) = x

x,0
1 � x. Then we have

(i) E�(x) = �
⌘
l rL(x),

(ii) E�(x)�(x)> = ⌘2

l ⌃(x) +
⌘2

l2 rL(x)rL(x)> = ⌘2

l ⌃(x) +O(l�2),

(iii) E�(x)⌦3 = ⌘3

l2
3�l�1

2 ⇤(x) + ⌘3

l3

⇣
3rL(x)⌦ ⌃(x) +rL(x)⌦3

⌘
= O(l�2)

(iv)
p
E|�(x)⌦4|2 = O(l�2),

where ⇤(x) := E(rL�1(x)�rL(x))⌦3, and T denotes the symmetrization of tensor T , i.e.,
T ijk = 1
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P
i0,j0,k0 Ti0j0k0 , where i

0
, j

0
, k

0 sums over all permutation of i, j, k.
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Proof. Recall �(x) = �
⌘
l rL�̄(x), where L�̄(x) = 1+

p
2l�1
2 L�1(x) +

1�
p
2l�1
2 L�2(x). Taking

expectations, (i) and (ii) are immediate. Note |�(x)| = O(l�0.5), (iv) also holds.

Below we show (iii). For convenience, we denote
p
2l � 1 by c, r = rL(x), eri = rL�i(x) �

rL(x), for i = 1, 2 and er = 1+c
2
er1 +

1�c
2
er2 = rL�(x)�rL(x). We have

E l
3

⌘3
�(x)⌦3 = E(er+r)⌦3

=Eer⌦3 + 3Eer⌦ er⌦r+r
⌦3 (Eer = 0)

=Eer⌦3 + 3E⌃⌦r+r
⌦3

=
3l � 1

2
⇤(x) + 3E⌃⌦r+r

⌦3
,

where the last step is because

Eer⌦3(x) = E(1 + c

2
er1 +

1� c

2
er2)⌦3(x)

=[((
1 + c

2
)3 + (

1� c

2
)3)]E(rL�1(x)�rL(x))⌦3

=[((
1 + c

2
)3 + (

1� c

2
)3)]⇤(x)

=
3l � 1

2
⇤(x).

D Auxiliary results for the proof of Thm. 4.3

Lemma D.1. Let ↵ � 1, there exists a K 2 G, independent of l, such that
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where ij 2 {1, . . . , d} and C > 0 is independent of l.
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Using Cauchy-Schwarz inequality, Itô’s isometry, we get
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where C depends only on ↵. Now, using the linear growth condition (4.3 (ii)) and the moment
estimates in Theorem 19 in (Li et al., 2019a), we obtain the result.

We prove the following Itô-Taylor expansion, which is slightly different from Lemma 28 in (Li et al.,
2019a).
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Lemma D.2. Let  : Rd
! R be a sufficiently smooth function.

Suppose that b,� 2 G
3, and X

x,0
t is the solution of the following SDE, with X

x,0
0 = x.

dXt = b(Xt)dt+ �(Xt)dWt.

Then we have

E (Xx,0
⌘ ) =  (x) + ⌘b(x)>r (x) + ⌘Tr

⇥
r

2
 · �

2
⇤
(x) +O(⌘2).

That is, there exists some function K 2 G such that

|E (Xx,0
⌘ )�  (x)� ⌘b(x)>r (x)� ⌘Tr

⇥
r

2
 · �

2
⇤
(x)|  K(x)⌘2.

Proof. We define operator A1,✏ := b
>
r , A2,✏ := 1

2Tr
⇥
r

2
 · �

2
⇤
.

Using Itô’s formula, we have

E (Xx,0
⌘ ) = (x) +

Z ⌘

0
EA1,✏ (X

x,0
s )ds+

Z ⌘

0
EA2,✏ (X

x,0
s )ds

By further application of the above formula to EA1,✏ and EA2,✏ , we have

E (Xx,0
⌘ ) = (x) + ⌘A1,✏ (x) + ⌘A2,✏ (x)

+

Z ⌘

0

Z s

0
E((A1,✏ +A2,✏)(A1,✏ +A2,✏)) (X

x,0
v )dvds

Taking expectations of the above, it remains to show that each of the terms is O(⌘2). This follows
immediately from the assumption that b,� 2 G

3 and  2 G
4. Indeed, observe that all the integrands

have at most 3 derivatives in b0, b1,�0 and 4 derivatives in  , which by our assumptions all belong to
G. Thus, the expectation of each integrand is bounded by 1(1 + supt2[0,⌘] E|X

x,0
t |

22) for some
1,2, which by Theorem 19 in (Li et al., 2019a) must be finite. Thus, the expectations of the other
integrals are O(⌘2) by the polynomial growth assumption and moment estimates in Theorem 19 in
(Li et al., 2019a).

We also prove a general moment estimate for the SVAG iterations Equation (5).
Lemma D.3. Let {xk : k � 0} be the generalized SVAG iterations defined in Equation (5). Suppose

|rL�(x)|  L�(1 + |x|), 8x 2 Rd
, �

for some random variable L� > 0 with all moments bounded, i.e., ELk
� < 1, for k 2 N. Then, for

fixed T > 0 and any m � 1, E|xk|
2m exists and is uniformly bounded in l and k = 0, . . . , N ⌘

blT/⌘c.

Proof. Recall that rL
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(x) = 1+

p
2l�1
2 rL�k,1(x) +

1�
p
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2 rL�k,2(x), thus there exists random
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Hence, if we let ak := E(1 + |xk|
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where C > 0 are independent of l and k, which immediately implies, for all k = 0, . . . , b lT
⌘ c,
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E Omitted proofs in Section 5

In this section, we provide the missing proofs in Section 5, including Theorem 5.5, Theorem 5.6 and
the counterpart of Theorem E.4 between 1st order SDE (2) and 2nd order SDE (32), which is Theo-
rem E.1. We also provide the derivation of properties for scale invariant functions in Appendix E.4.

E.1 Proof of Theorem 5.6

Proof of Theorem 5.6. Suppose (C,)-LSI hold, similar to Equation (11), we have

(2� ⌘�)�RB,⌘
1 = ⌘(GB,⌘

1 +N
B,⌘
1 ), (27)

(2� ⌘�)�RB,⌘
1 = ⌘(GB,⌘

1 +N
B,⌘
1 ), (28)

Thus combining (27) ,(28) and (8), we have

(GB,⌘
1 +N

B,⌘
1 ) = (2� ⌘�)

�

⌘
R

B,⌘
1  (2� ⌘�)

�

⌘
CR

B,⌘
1 = C(NB,⌘

1 +G
B,⌘
1 ).

Applying (13) again, we have

G
B
1 +N

B
1  C(GB,⌘

1 +N
B,⌘
1 )  C

2(NB,⌘
1 +G

B,⌘
1 ).

Therefore we conclude that   C
2(1 + NB,⌘

1
GB,⌘

1
).

E.2 Proof of Theorem 5.5

Proof. Suppose (C,)-LSI hold, by (8), we have

CG
B,⌘
1 + CN
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1 � G

B,⌘
1 +N

B,⌘
1 .

By (27) ,(28) and (8), we have

G
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⌘
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2
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⌘
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C
(GB,⌘

1 +N
B,⌘
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Rearranging things, we have

N
B,⌘
1 �

� C
2

(C2 � 1)
G

B,⌘
1 � ((1�

1


)

1

C2 � 1
�

1


)GB,⌘

1 .

E.3 Necessary condition for C-closeness between 1st order and 2nd order SDE
approximation

In this section we will present a necessary condition for C-closeness between 1st order and 2nd
order SDE approximation, similar to that betweeen 1st order approximation and SGD. The key
observation is that the missing second order term ⌘G1 in 1st order SDE, also appears in the 2nd
order SDE, as it does for SGD. Thus we can basically apply the same analysis and show the similar
conclusion (Theorem E.4).

Below we first recap the notion of 1st and 2nd order SDE approximation with weight decay (i.e.,
`2 regularization). We first define L

0
�(X) = L�(X) + �

2 |X|
2 and the SGD dynamics (30) can be

written by

xk+1 = xk � ⌘rL
0
�(xk) = xk � ⌘r

�
L�k(Xt) +

�

2
|Xt|

2
�

(30)

Below we recap the 1st and 2nd order SDE approximation:
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• 1st order SDE approximation (with ⌃ = ⌘⌃):

dXt = �r
�
L(Xt) +

�

2
|Xt|

2
�
dt+ (⌘⌃)1/2(Xt)dWt (31)

• 2nd order SDE approximation:

dXt = �r
�
L
0(Xt) +

⌘

4
|rL

0(Xt)|
2
�
dt+ (⌘⌃)1/2(Xt)dWt (32)

Theorem E.1 (Theorem 9 in Li et al. (2019a)). (32) is an order-2 weak approximation of SGD (1).

We first prove a useful lemma.
Lemma E.2. Suppose L is scale invariant, then for any X 2 Rd, X 6= 0,

X
>
r

2
L(X)rL(X) =

1

2
X

>
r(krLk

2
2) = �krL(X)k22 .

Proof. By chain rule, we have

X
>
r(krLk

2
2)

= lim
t!0

krL((1 + t)X)k22 � krL(X)k22
t

= lim
t!0

(1 + t)�2
� 1

t
krL(X)k22 (by scale invariance)

=� 2 krL(X)k22

Definition E.3 (C-closeness). We use R
0
1 := lim

t!1
E|Xt|

2
, G

0
1 := lim

t!1
E|rL(Xt)|2, N

0
1 :=

lim
t!1

E[Tr[⌃(Xt)] = lim
t!1

E[Tr[⌘⌃(Xt)] to denote the limiting squared norm, gradient norm and
trace of covariance for SDE (32). (We assume bothXt converge to their equilibrium so the limits
exist). We say the two equilibriums of 1st order SDE approximation (31) and 2nd order SDE
approximation (34) are C-close to each other iff

1

C


R1

R
0
1
,
G1

G
0
1
,
N1

N
0
1

 C. (33)

The following theorem is an analog of Theorem 5.2.
Theorem E.4. If the equilibriums of (31) and (32) exist and are C-close for some C > 0, then

⌘ 
N1

G1

�
C

2(1 +
⌘�

2
)� 1

�
⇡

N1

G1

�
C

2
� 1
�
,

where � is usually of scale 10�4 in practice and thus can be omitted when calculating upper bound.

Proof. Since L is scale-invariant, so rL(X)>X = 0, which implies |rL
0(X)|2 = |rL(X)|2 +

�
2
|X|

2. Plug in L
0, we have

dXt = �

⇣
rL(Xt) +

⌘

2
r

2
L(Xt)rL(Xt)

⌘
dt+ (⌘⌃)1/2(Xt)dWt � �(1 +

⌘�

2
)Xtdt. (34)

Applying Itô’ lemma, we have
d|Xt|

2 =2 hXt, dXti+ hdXt, dXti

=� 2�(1 +
⌘�

2
)|Xt|

2dt� ⌘
⌦
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2
L(Xt)rL(Xt)

↵
dt+ 2

⌦
Xt,⌃1/2(Xt)dWt

↵
� 2 hXt,rL(Xt)i dt

+Tr[⌃(Xt)]dt

=� 2�(1 +
⌘�

2
)|Xt|

2dt� ⌘
⌦
Xt,r

2
L(Xt)rL(Xt)

↵
dt+Tr[⌘⌃(Xt)]dt (by Corollary E.8)

=� 2�(1 +
⌘�

2
)|Xt|

2dt+
�
⌘Tr[⌃(Xt)] + ⌘|rL(Xt)|

2
�
dt (by Lemma E.2)

(35)
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Thus
dE[|Xt|

2]

dt
= �2�(1 +

⌘�

2
)E[|Xt|

2] + E[⌘Tr[⌃(Xt)] + ⌘|rL(Xt)|
2]. (36)

Suppose Xt is samples from the equilibrium, we have dE[|Xt|2]
dt = 0 and

(2 + ⌘�)�R
0
1 = ⌘G

0
1 +N

0
1. (37)

If we compare Equation (37) to Equations (11) and (12) (we recap them below), it’s quite clear 2nd
order is much closer to SGD in terms of the relationship between R1, G1 and N1. Thus 1st and
2nd order SDE approximation won’t be C-close if N1

G1
is larger than some constant for the exact

same reason that 1st SDE is not C-close to SGD.

(2� ⌘�)�R1 = ⌘G1 + ⌘N1, (11)

2�R1 = +N1. (12)

In detail, by combining (37), (12) and (33), we have

⌘G
0
1 +N

0
1 = (2 + ⌘�)�R

0
1  (2 + ⌘�)�CR1 = (1 +

⌘�

2
)CN1.

Applying (33) again, we have

⌘G1 +N1  C(⌘G
0
1 +N

0
1)  C

2(1 +
⌘�

2
)N1  C

3(1 +
⌘�

2
)N

0
1,

which imples ⌘ 
�
C

2(1 + ⌘�
2 )� 1

�
min{N1

G1
,
N

0
1

G
0
1
}.

Remark E.5. Kunin et al. (2020) derived a similar equation to Equation (35) in Appendix F of their
paper.

E.4 Properties of Scale Invariance Function

These properties are proved in Arora et al. (2019b). We include them here for self-containedness.
Definition E.6 (Scale Invariance). We say L : Rd

! R is scale invariant iff 8x 2 Rd
, x 6= 0 and

8c > 0, it holds that
L(cx) = L(x).

We have the following two properties.
Lemma E.7. If L is scale invariant, then 8x 2 Rd

/{0}, we have

(1) hx,rL(x)i = 0.
(2) 8c > 0, crL(cx) = rL(x).
(3) 8c > 0, c2r2

L(cx) = r
2
L(x).

Proof. For (1), by chain rule, we have hx,rL(x)i = limt!0
L((1+t)x)�L(x)

t = 0.

For (2), for any v 2 Rd, again by chain rule, we have

hv, crL(cx)i = hcv,rL(cx)i = lim
t!0

L(cx+ cvt)� L(cx)

t
= lim

t!0

L(x+ vt)� L(x)

t
= hv,rL(x)i .

For (3), take gradient on both sides of (2) over x and the proof is completed.

Suppose L� is a random loss and is scale invariant for every �, and we use rL(x) and ⌃(x) to
denote the expectation and covariance of gradient, then for any x 2 Rd

/{0}, we have the following
corollary:
Corollary E.8. hx,rL(x)i = 0, x>⌃(x)x = 0.
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F Experiments

We use the models from Github Repository: https://github.com/bearpaw/

pytorch-classification. For VGG and PreResNet, unless noted otherwise, we
modified the model following Appendix C of (Li and Arora, 2020b) so that the network is scale
invariant, e.g., fixing the last layer. Such modification doesn’t lead to change in performance, as
shown in Hoffer et al. (2018). We use Weights & Biases to manage our experiments (Biewald, 2020).

F.1 Further Verification of SVAG

We verify that SVAG converges for different architectures (including ones without normalization),
learning rate schedules, and datasets. We further conclude that for most the standard settings we
consider (excluding the use of large batch size in Figures 4 and 14 and GroupNorm on CIFAR-100
in Figure 13), SVAG with large l achieves similar performance to SGD, i.e. SVAG with l = 1.

Theorem 4.3 only holds if each step of SGD is a Markov process, which is in part determined by how
each example is sampled from the dataset. We describe three common ways that examples can be
sampled from the dataset during training.

1. Random shuffling (RS): RS is standard practice in experiments and is the default implemen-
tation in PyTorch. A random shuffled order of datapoints is fixed at the start of each epoch,
and each sample is drawn in this order. SGD with this sampling scheme can be viewed as a
Markov process per epoch, although not per step. We use this method in our experiments,
but our theory for SVAG (Section 4) does not cover this sampling method.

2. Without replacement (WOR): WOR requires drawing each sample i.i.d. from the dataset
without replacing previously drawn ones. SGD with this sampling scheme can be viewed as
a Markov process per step, so our theory for SVAG (Section 4) does cover this case.

3. With replacement (WR): WR requires drawing each sample i.i.d. from the dataset with
replacement. SGD with this sampling scheme can be viewed as a Markov process per step,
so our theory for SVAG (Section 4) does cover this case.

In Figure 7, we observe that SVAG (including SGD) behaves similarly when using all three of these
sampling methods. Therefore, although our theory does not directly apply to the commonly used RS
scheme, we can heuristically apply Theorem 4.3 to understand its behavior.

We furthermore note that our findings do not match the conclusion in Smith et al. (2021) that SGD
with RS has a different implicit bias compared to WOR and WR. This is possibly because the analysis
of Smith et al. (2021) doesn’t apply to SGD with commonly used tricks like data augmentation and
Batch Normalization. These tricks break the most important property of random shuffling SGD used
in the analysis of Smith et al. (2021), that the average of batch loss functions in an epoch is equal to
the expected loss function. The other possible reasons for this discrepancy includes:

(1) Their result concerns behavior after a single epoch and our experiments run for hundreds of
epochs; (2) Their result holds when ⌘ is smaller than an unmeasurable constant, so it may be the case
that their results do not apply to the constant LR regime we use SVAG in.

F.1.1 Further Verification of SVAG on more architectures on CIFAR-10

For all CIFAR-10 experiments in this subsection, there are 320 epochs with initial LR ⌘ = 0.8 and 2
LR decays by a factor of 0.1 at epochs 160 and 240 and we use weight decay with � = 5e�4 and
batch size B = 128. We also use the standard data augmentation for CIFAR-10: taking a random
32⇥ 32 crop after padding with 4 pixels and randomly performing a horizontal flip.

In Figure 8, we demonstrate that SVAG converges and closely follows SGD for PreResNet32 with
BatchNorm (left), PreResNet32 (4x) with BatchNorm (middle) and PreResNet32 with GroupNorm
(right).

In Figure 9, we demonstrate that SVAG converges and closely follows SGD for VGG16 without
Normalization (left), VGG16 with BatchNorm (middle) and VGG16 with GroupNorm (right).
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Figure 7: Different sampling methods have little impact on the performance of SVAG (SGD). We compare
random shuffling (RS), which is the default implementation in PyTorch, to with replacement (WR) and without
replacement (WOR), which Theorem 4.3 applies to. We train for 320 epochs with initial LR ⌘ = 0.8 with 2
LR decays by a factor of 0.1 at epochs 160 and 240, and we use weight decay with � = 5e�4 and batch size
B = 128. Since SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, we plot accuracy
against “effective steps” defined as #steps

l .

Figure 8: Validation accuracy for PreResNet32 with BatchNorm (left), PreResNet32 (4x) with BatchNorm
(middle) and PreResNet32 with GroupNorm (right) during training on CIFAR-10. SVAG converges and closely
follows the SGD trajectory in all three cases. Since SVAG takes l smaller steps to simulate the continuous
dynamics in ⌘ time, we plot accuracy against “effective steps” defined as #steps

l .

Figure 9: Validation accuracy for VGG16 without Normalization (left), VGG16 with BatchNorm (middle) and
VGG16 with GroupNorm (right) during training on CIFAR-10. SVAG converges and closely follows the SGD
trajectory in all three cases. Since SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, we
plot accuracy against “effective steps” defined as #steps

l .
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F.1.2 Further Verification of SVAG on more complex LR schedules

We verify that SVAG converges and closely follows the SGD trajectory for networks trained with
more complex learning rate schedules. In Figure 11, we use the triangle (i.e., cyclical) learning rate
schedule proposed in Smith (2017), visualized in Figure 10. We implement the schedule over 320
epochs of training: we increase the initial learning rate 0.001 linearly to 0.8 over 80 epochs, decay
the LR to 0.001 over the next 80 epochs, increase the LR to 0.4 over 80 epochs, and decay the LR to
0.001 over the remaining 80 epochs. As seen in Figure 11, SVAG converges to the SGD trajectory in
this setting.

We further test SVAG on the cosine learning rate schedule proposed in Loshchilov and Hutter (2016)
with ⌘max = 0.8 and ⌘min = 0.001 with total training budgets of 160 epochs. We visualize the
schedule in Figure 10. In Figure 12, we see that SVAG converges and closely follows the SGD
trajectory, suggesting the SDE (2) can model SGD trajectories with complex learning rate schedules
as well.

Figure 10: Cosine (left, Loshchilov and Hutter (2016)) and cyclic (right, Smith (2017)) learning rate schedules
for different SVAG configurations, plotted against “effective steps” defined as #steps

l .

Figure 11: Validation accuracy for PreResNet-32 with B = 128 (left) and VGG16 with B = 128 (right) during
training on CIFAR-10. We use the triangle LR schedule proposed in Smith (2017) with 80 epochs of increase to
LR 0.8, 80 epochs of decay to 0, 80 epochs of increase to 0.4 and 80 epochs of decay to 0. The LR schedule is
visualized in Figure 10. Since SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, we
plot accuracy against “effective steps” defined as #steps

l .

F.1.3 Further Verification of SVAG on more datasets (CIFAR-100 and SVHN)

We also verify that SVAG converges on the CIFAR-100 dataset. We set the learning rate to be 0.8 and
decay it by a factor of 0.1 at epochs 160 and 240 with a total budget of 320 epochs. We use weight
decay with � = 5e�4. We use the standard data augmentation for CIFAR-100: randomly taking
a 32⇥ 32 crop from the image after padding with 4 pixels and randomly horizontally flipping the
result. We observe that SVAG converges for computationally tractable value of l in Figure 13, but
for both GN architectures, the SDE fails to approximate SGD training.

We also verify SVAG on the Street View House Numbers (SVHN) dataset (Netzer et al., 2011). We
set the learning rate to 0.8 for batch size 128 and scale it according to LSR (Definition 2.1) for large
batch training. We train for 240 epochs and decay the learning rate by a factor of 0.1 once at epoch
200. We use weight decay with � = 5e�4.
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Figure 12: Validation accuracy for PreResNet-32 with B = 128 (left) and VGG16 with B = 128 (right) during
training on CIFAR-10. We use the cosine LR schedule proposed in Loshchilov and Hutter (2016) starting with
LR 0.8 and following the cosine curve until the LR becomes infinitesimally small. The LR schedule is visualized
in Figure 10. Since SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, we plot accuracy
against “effective steps” defined as #steps

l .

Figure 13: Validation accuracy for wider PreResNet-32 with B = 128 using BN (top left) and GN (top right)
and for VGG-19 with B = 128 using BN (bottom left) and GN (bottom right) trained on CIFAR-100. We train
for 320 epochs and decay the LR by 0.1 at epochs 160 and 240. Since SVAG takes l smaller steps to simulate
the continuous dynamics in ⌘ time, we plot accuracy against “effective steps” defined as #steps

l . Interestingly, we
found the performance of BatchNorm out performs GroupNorm and the performance of the latter gets improved
when using larger l for SVAG.
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Figure 14: Validation accuracy for PreResNet-32 with B = 128 using GN (left) and BN (center) and with
B = 1024 using GN trained on the SVHN dataset (Netzer et al., 2011). We train for 240 epochs and decay the
LR by 0.1 at epoch 200. Since SVAG takes l smaller steps to simulate the continuous dynamics in ⌘ time, we
plot accuracy against “effective steps” defined as #steps

l .

F.2 Further Verification of Necessary Condition for LSR

We further verify the necessary condition for LSR (Theorem 5.6) using different architectures and
datasets. Figure 15 tests the condition for ResNet-32 and wider PreResNets trained on CIFAR-10.
Although our theory requires strict scale-invariance, we find the condition to still be applicable to
the standard ResNet architecture (He et al., 2016), ResNet32, likely because most of the network
parameters are scale-invariant. Figure 16 tests the condition for wider PreResNets and VGG-19
trained on CIFAR-100. We require the wider PreResNet to achieve reasonable test error, but we note
that the larger model made it difficult to straightforwardly train with a larger batch size.

In Figure 15 and Figure 3, Gt and Nt are the empirical estimations of G1 and N1 taken after
reaching equilibrium in the second to last phase (before the final LR decay), where the number of
samples (batches) is equal to max(200, 50000/B), and B is the batch size.

Per the approximated version of Theorem 5.6, i.e., B⇤ = B . C
2
BN

B
1/G

B
1, we use baseline runs

with different batch sizes B to report the maximal and minimal predicted critical batch size, defined
as the x-coordinate of the intersection of the threshold (Gt/Nt = C

2) with the green and blue lines,
respectively. Both the green and blue line have slope 1, and thus the x-coordinate of intersection, B⇤,
is the solution of the following equation,

B
⇤

B
=

G
B⇤
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B⇤

t
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B
t

, where G
B⇤

t /N
B⇤

t = C
2.

For all settings, we choose a threshold of C2 = 2, and consider LSR to fail if the final test error
exceeds the lowest achieved test error by more than 20% of its value, marked by the red region on the
plot. Surprisingly, it turns out the condition in Theorem 5.6 is not only necessary, but also close to
sufficient.
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Figure 15: Further verification for our theory on predicting the failure of Linear Scaling Rule. We test if the
condition applies to different architectures trained on CIFAR-10. All three settings use the same LR schedule,
LR= 0.8 initially and is decayed by 0.1 at epoch 250 with 300 epochs total budget. We measure Gt and Nt by
averaging their values over the last 50 epochs of the first phase (i.e., from epoch 200 to 250).

Figure 16: Further verification for our theory on predicting the failure of Linear Scaling Rule. We test if the
condition applies to different architectures trained on CIFAR-100. All four settings use the same LR schedule,
LR= 0.8 initially and is decayed by 0.1 at epoch 80 and again at epoch 250 with 300 epochs total budget. We
measure Gt and Nt by averaging their values over the last 50 epochs of the second phase (i.e., from epoch 200
to 250).
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Figure 17: Further verification for our theory on predicting the failure of Linear Scaling Rule. We test if the
condition applies to PreResNet-32 with GN trained on SVHN Netzer et al. (2011). LR= 0.8 initially and is
decayed by 0.1 at epoch 100 with 120 epochs total budget. We measure Gt and Nt by averaging their values
over the last 20 epochs of the second phase (i.e., from epoch 80 to 100).

F.3 Additional Experiments for NGD (Noisy Gradient Descent)

We provide further evidence that SGD (1) and noisy gradient descent (NGD) (3) have similar train
and test curves in Figures 18, 19, and 20. To perform NGD, we replace the SGD noise by Gaussian
noise with the same covariance as was done in Wu et al. (2020). In Wu et al. (2020), the authors
trained a network using BatchNorm, which prevents the covariance of NGD from being exactly equal
to that of SGD. Hence, we use GroupNorm in our experiments, which improves NGD accuracy. We
note that each step of NGD requires computing the full-batch gradient over the entire dataset (in this
case, done through gradient accumulation), which is much more costly than a single SGD step. Each
figure took roughly 7 days on a single RTX 2080 GPU.

Explanation for the sudden drop of accuracy of GD in Figures 1, 19 and 20: Note that the drop
happens after the train accuracy reaches 100% for a while and that the high training accuracy (i.e.,
small loss) will lead to vanishing gradients. Our hypothesis is that after reaching full train accuracy
for a while, the weight decay term dominates the dynamics and the smoothness (sharpness) of the
loss function increases as the weight norm decays. This is because the scale invariance of the network
implies that the smaller the weight norm is, the larger the smoothness (sharpness) is. (see property
(3) of Lemma E.7). When the weight norm is small enough, the learning rate becomes larger than
2/smoothness (2/sharpness), and the dynamics of GD become unstable.
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Figure 18: SGD and NGD with matching covariance have close train (top) and test (bottom) curves.
The batch size for SGD is 500 and LR= 3.2 for both settings and decayed by 0.1 at step 8000. We
smooth the training curve by dividing it into intervals of 100 steps and recording the average. For
efficient sampling of Gaussian noise, we use GroupNorm instead of BatchNorm and turn off data
augmentation. SGD and NGD achieve a maximum test accuracy of 82.3% and 82.5%, respectively

Figure 19: SGD and NGD with matching covariance have close train (top) and test (bottom) curves.
The batch size for SGD is 125 and LR= 0.8 for all three settings and decayed by 0.1 at step 32000.
We smooth the training curve by dividing it into intervals of 100 steps and recording the average. For
efficient sampling of Gaussian noise, we use GroupNorm instead of BatchNorm and turn off data
augmentation. GD achieves a maximum test accuracy of 76.5%, while SGD and NGD achieve 86.9%
and 86.8%, respectively
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Figure 20: SGD and NGD with matching covariance have close train (top) and test (bottom) curves
for VGG16. The batch size for SGD is 125 and LR= 0.8 for all three settings and decayed by 0.1 at
step 32000. We smooth the training curve by dividing it into intervals of 100 steps and recording the
average. For efficient sampling of Gaussian noise, we use GroupNorm instead of BatchNorm and
turn off data augmentation. GD achieves a maximum test accuracy of 80.9%, while SGD and NGD
achieve 86.8% and 86.5%, respectively
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