
Supplemental Information for

“Out-of-Distribution Generalization in Kernel Regression”

SI.1 Calculation of Generalization Error

SI.1.1 Problem Formulation

We consider a probability distribution p(x) on the input space X ⇢ RD and an orthonormal basis
{�⇢(x)}|M⇢=0 (M is typically infinite) spanning the space of square integrable functions L2(X) such
that any square integrable function can be expanded as:

f(x) =
MX

⇢=1

a⇢�⇢(x), hf, fip(x) =
MX

⇢=1

a2⇢ < 1, (SI.1.1)

where hf, fip(x) denotes the L2 norm of the function.

A reproducing kernel Hilbert space (RKHS) H is a Hilbert space endowed with an inner product
h., .i

H
where evaluation operator is continuous, mapping any function f 2 H to its value at f(x)

[26, 53]:

f(x) = hf(.),K(.,x)i
H

8f 2 H. (SI.1.2)

Here the so-called reproducing kernel K : X ⇥ X ! R is a positive-definite function whose partial
evaluation K(.,x) itself belongs to H. It can be characterized by the integral operator TK :

[TKf](x) =

Z
dx0p(x0)K(x,x0)f(x0), (SI.1.3)

where TK has spectral decomposition [TK�⇢](x) = ⌘⇢�⇢(x) for ⇢ = 1, . . . ,M . Then Mercer’s
theorem allows the following kernel representation in terms of orthonormal functions {�⇢(x)}|M⇢=0:

K(x,x0) =
NX

⇢=1

⌘⇢�⇢(x)�⇢(x
0) = �(x)>⇤�(x0) = (x)> (x), (SI.1.4)

 ⇢(x) ⌘
p
⌘⇢�⇢(x), h ⇢(x), �(x)iH = �⇢� ,

where we defined the diagonal eigenvalue matrix ⇤⇢� = ⌘⇢�⇢� , M -dimensional vector
�
�(x)

�
⇢
=

�⇢(x) and features ⇢. With this representation Hilbert inner product h., .i
H

reduces to:

hf, gi
H

⌘
MX

⇢=1

a⇢b⇢
⌘⇢

, (SI.1.5)

for two functions f(x) = a>�(x) and g(x) = b>�(x). A function belongs to this RKHS only if
its Hilbert norm is finite:

kfk2
H

⌘ hf, fi
H

=
MX

⇢=1

a2⇢
⌘⇢

< 1. (SI.1.6)

Note that the kernel does not have to represent all M -features meaning that its eigenvalues may
truncate at some integer N < M : ⌘⇢>N = 0. If this is the case, then functions which have power on
modes ⇢ > N are out-of-RKHS functions since they have infinite Hilbert norm.

Given a finite training data D = {xµ, yµ}Pµ=1 where inputs are drawn from probability distribution
p(x), we wish to study kernel regression on the RKHS H. First, we assume that the labels are
generated by a target function f̄(x) with additive noise:

yµ = f̄(xµ) + ✏µ, (SI.1.7)

where E[✏µ✏⌫] = "2�µ⌫ are independent for each training sample. In general, the target function does
not have to be in the RKHS and the out-of-RKHS components need to be treated separately when

1

⌘⇢ = 0 for some ⇢. However we find that taking the limit ⌘⇢ ! 0 at the end of the calculation yields
the correct expressions for out-of-RKHS cases hence we keep all ⌘⇢ 6= 0 for now. Expanding the
target function in terms of the eigenfunctions with respect to p(x):

yµ = ā>�(x) + ✏µ = w̄> (xµ) + ✏µ. (SI.1.8)
The problem of interest is the minimization of the energy function H[f ;D] with respect to functions
f 2 H:

w⇤ = argminw2RMH(w;D), H(w;D) ⌘ 1

2�

PX

µ=1

�
 (xµ) · (w̄ �w) + ✏µ

�2
+

1

2
kwk22,

(SI.1.9)
Then the resulting estimator becomes:

f⇤(x;D) = w⇤> (x), (SI.1.10)
Note that the estimator is always in the RKHS, meaning it should not depend on eigenfunctions �⇢(x)
if the corresponding eigenvalue ⌘⇢ = 0.

The estimator above depends on the particular choice of a training set and it is difficult to obtain an
analytical expression for it. Hence we would like to compute the average case estimator which only
depends on the input distribution, size of the dataset, target function and the hypothesis class H but
not the individual training samples. Next we discuss how to perform dataset averaging for kernel
regression using methods from statistical physics.

SI.1.2 Replica Calculation for Generalization

We would like to calculate the observables O[f⇤] of the estimator f⇤(x) averaged over the training
dataset D. These observables include the generalization and training errors. For our purposes, we
only need to calculate the mean and variance of the estimator which completely determines the
generalization error. To perform this calculation, we introduce the following partition function:

Z[⇠,�] =

Z
dwe��H(w;D)+�⇠·w+ �

2 �>ww>�, (SI.1.11)

where � is inverse temperature and ⇠,� are source terms to compute expectation values of the
estimator weights. The partition function represents a probability distribution over all possible
estimators w and as � ! 1 it concentrates around the kernel regression solution w⇤.

We can calculate the dataset averaged estimator f⇤(x) and its correlation function via:

p
⌘↵EDw

⇤

↵(D) = lim
�!1

1

�

@

@⇠0↵
EDlogZ[⇠,�]

����
⇠,�=0

p
⌘↵⌘�ED[w

⇤

↵(D)w⇤

�(D)] = lim
�!1

1

�

@2

@�0
↵@�

0

�

EDlogZ[⇠,�]

�����
⇠,�=0

, (SI.1.12)

where the primed quantities are defined as ⇠ = ⇤1/2⇠0 and � = ⇤1/2�0. Hence one can read out:

EDf
⇤(x,D) =

X

↵

EDw
⇤

↵(D)
p
⌘↵�↵(x)

ED[f
⇤(x,D)f⇤(x0,D)] =

X

↵�

ED[w
⇤

↵(D)w⇤

�(D)]
p
⌘↵⌘��↵(x)��(x

0). (SI.1.13)

However, computing the average of logZ over all possible training samples and noises is a challenging
task due to the integrals of logarithms. This is where we resort to replica trick which replaces averaging
logZ with averaging Zn, n-times replicated partition function:

EDlogZ = lim
n!0

EDZn � 1

n
. (SI.1.14)

2

The calculation of EDZn is done for integer n and then analytically continued to real numbers to
perform the limit. Despite being non-rigorous, the replica method has proven powerful and predictive
in the study of disordered systems as well as neural networks and machine learning (see [14, 54, 27]
for reviews).

Plugging in the eigenfunction expansions derived above, Zn becomes:

EDZ
n = e�

n�
2 (W̄�⇠)>w̄

Z ✓ nY

a=1

dwa

◆
e�

�
2

Pn
a=1 wa>(I���>)wa

��W̄> Pn
a=1 wa

⇥
⌧
e�

�
2�

Pn
a=1

�
wa

· (x)+✏a
�2�P

x⇠p(x),{✏a}

, (SI.1.15)

where we shifted wa ! wa + w̄ and defined W̄ = (w̄� ⇠)� (�>w̄)� for notational convenience.
A crucial step is to compute the expectation value over possible realizations of training sets which
behave as quenched disorders in our system. Our strategy to perform this quenched average is
approximating the exponent as a Gaussian random variable defined by qa = (wa � w̄) · (x) + ✏a

whose second-order statistics is given by:

µa ⌘ hqai = 0,

Cab ⌘ hqaqbi = (wa � w̄)> h (x) (x)T i (wb � w̄) + h✏a✏bi = (wa � w̄)>⇤(wb � w̄) +⌃ab,
(SI.1.16)

where ⌃ = ("2 + kāk22)11> is the covariance matrix of noise across replicas. We assumed that
the kernel does not include a constant mode so that µa = 0. Noticing that qa is a summation
of many uncorrelated random variables (

⌦
 ⇢(x), ⇢0(x)

↵
p(x)

= ⌘⇢�⇢⇢0) and a Gaussian noise, we
approximate the probability distribution of qa by a multivariate Gaussian with its mean and covariance
given by Eq.(SI.1.16):

P ({qa}) = 1p
(2⇡)n det(C)

exp

✓
� 1

2

X

a,b

qa
�
Cab

��1
qb
◆
, (SI.1.17)

The Gaussian approximation proves accurate given the excellent match of our theory to simulations.
This reduces the average over quenched disorder to:
⌧
e�

�
2�

Pn
a=1

�
(wa

�w̄)· (x)+✏a
�2�

x,{✏a}

⇡
Z

{dqa}P ({qa}) exp
✓
� �

2�

nX

a=1

(qa)2
◆

= exp

✓
� 1

2
log det

✓
I+

�

�
C

◆◆
.

(SI.1.18)

Combining everything together, the averaged replicated partition function becomes:

EDZ
n = e�

n�
2 (W̄�⇠)>w̄

Z ✓ nY

a=1

dwa

◆
e�

�
2

Pn
a=1 wa>(I���>)wa

��W̄> Pn
a=1 wa

�
P
2 log det(I+ �

�C),

(SI.1.19)
Using the definitions Eq.(SI.1.16), we insert the following identity to the integral:

1 =

✓
iP

2⇡

◆n(n+1)
2

Z ✓Y

a�b

dCabdĈab

◆
exp

"
� P

X

a�b

Ĉab

✓
Cab �wa>⇤wb �⌃ab

◆#
(SI.1.20)

Here, the integral over Ĉ runs over the imaginary axis and we explicitly scaled conjugate variables
by P . Then defining:

GE =
1

2
log det

✓
I+

�

�
C

◆
, (SI.1.21)

e�GS =

Z ✓ nY

a=1

dwa

◆
exp

0

@��
2

X

a�b

wa>

✓�
I� ��>

�
Iab � 2P

�
⇤Ĉab

◆
wb � �W̄>

nX

a=1

wa

1

A,

(SI.1.22)

3

we obtain:

EDZ
n = e

n(n+1)
2 log(iP

2⇡)�
n�
2 (W̄�⇠)>w̄

Z ✓Y

a�b

dCabdĈab

◆
exp

2

4�P
X

a�b

Ĉab(Cab �⌃ab)� PGE �GS

3

5 .

(SI.1.23)

Next, we need to evaluate the integral in GS . First we would like to express the ordered sumP
a�bw

a>
��
I� ��>

�
Iab � 2P

� ⇤Ĉ
ab
�
wb as an unordered sum over a, b. Note that

X

a,b

wa>

✓�
I� ��>

�
Iab � 2P

�
⇤Ĉab

◆
wb

= 2
X

a�b

wa>

✓�
I� ��>

�
Iab � 2P

�
⇤Ĉab

◆
wb �

X

a,b

wa>

✓�
I� ��>

�
Iab � 2P

�
⇤diag(Ĉ)ab

◆
wb

Hence, we obtain:

X

a�b

wa>

✓�
I� ��>

�
Iab � 2P

�
⇤Ĉab

◆
wb =

X

a,b

wa>Xabwb,

where we defined:

Xab =
�
I� ��>

�
Iab � P

�
⇤
�
Ĉ+ diag(Ĉ)

�ab
. (SI.1.24)

In order to evaluate the Gaussian integral, we will cast the function and target weights into an nM
dimensional vector:

w =
�
w1 w2 .. wa .. wn

�
nM⇥1

W̄⌦n =
�
W̄ W̄ . . . W̄

�
nM⇥1

(SI.1.25)

Furthermore, we introduce the nM ⇥ nM matrix X as:

X =

0

BBBBBB@

X11 X12 X1n

X21 X22 X2n

...
...

. . .
...

... . . . Xab . . .
...

Xn1 Xnn

1

CCCCCCA

nM⇥nM

(SI.1.26)

Finally, we denote the integration measure as Dw =
Q

a,⇢ dw
a
⇢ . With these definitions, GS becomes:

e�GS =

Z
Dw e�

�
2 w>Xw��W̄>

⌦nw (SI.1.27)

Hence, we turned the integral in GS to a simple Gaussian integral. The result is:

e�GS =

✓
2⇡

�

◆nM
2 �

detX
�� 1

2 exp

✓
�

2
W̄>

⌦nX
�1W̄⌦n

◆
. (SI.1.28)

4

Now the integral in Eq.(SI.1.23) can be evaluated using the method of steepest descent. In Eq.(SI.1.23),
we see that all the terms in the exponent is O(n). Furthermore, we will use P as the saddle point
parameter going to infinity with proper scaling. Therefore, defining the following function:

S[C, Ĉ,µ, µ̂] =
1

n

X

a�b

Ĉab(Cab �⌃ab) +
1

nP

✓
PGE +GS +

n�

2
(W̄ � ⇠)>w̄

◆

GE =
1

2
log det

✓
I+

�K
�

C

◆

GS =
1

2
log detX� �

2
W̄>

⌦nX
�1W̄⌦n, (SI.1.29)

we obtain:

EDlogZ = lim
n!0

1

n

�
EDZ

n � 1
�
,

EDZ
n = e

n(n+1)
2 log(iP

2⇡)+nM
2 log 2⇡

�

Z ✓Y

a�b

dCabdĈab

◆
e�nPS[C,Ĉ]. (SI.1.30)

The reader may question the dependence of various quantities in S on P , since we are taking a
P ! 1 limit. This is because we want to keep our treatment general. Depending on the kernel and
data distribution, there are other quantities here that can scale with P . Specific examples will be
given.

SI.1.3 Replica Symmetry and Saddle Point Equations

To proceed with the saddle point integration, we further assume replica symmetry relying on the
convexity of the problem:

C0 = Caa, Ĉ0 = Ĉaa,

C = Ca 6=b, Ĉ = Ĉa 6=b. (SI.1.31)

Therefore, we have C = (C0 �C)I+C11> and Ĉ = (Ĉ0 � Ĉ)I+ Ĉ11>. In this case, the matrix
X has the form:

X =

0

BBBBBB@

X0 X1 X1 . . . X1

X1 X0 X1 . . . X1

X1 X1 X0 . . .
...

...
. . .

...
X1 X0

1

CCCCCCA
= In⇥n ⌦ (X0 �X1)M⇥M + 1n⇥n ⌦ (X1)M⇥M ,

(SI.1.32)

where:

X0 ⌘ Xaa =
�
I� ��>

�
� 2PĈ0

�
⇤

X1 ⌘ Xa 6=b = �PĈ

�
⇤.

It is straightforward to calculate the inverse of this matrix using Sherman-Morrison-Woodbury
formula (A+B)�1 = A�1 �A�1BA�1(I +BA�1)�1:

X�1 = In ⌦ (X0 �X1)
�1 �

�
1n ⌦ (X0 �X1)

�1X1(X0 �X1)
�1
��
In ⌦ IM + 1n ⌦X1(X0 �X1)

�1
��1

= In ⌦Q�1 � 1n ⌦Q�1X1Q
�1 +O(n),

5

where we defined,

Q ⌘ X0 �X1 = I� P (2Ĉ0 � Ĉ)

�
⇤� ��>, (SI.1.33)

for shorthand notation. Hence, we get:

W̄>

⌦nX
�1W̄⌦n = nW̄>Q�1W̄ +O(n2). (SI.1.34)

We also need to calculate the determinant of this matrix which can be done by using Gaussian
elimination method to bring it into a block-triangular form. The result is:

detX = det(X0 �X1)
n�1 det

�
X0 + (n� 1)X1

�
= det(X0 �X1)

n�1 det(X0 �X1 + nX1).
(SI.1.35)

Taylor expanding the last term using det(I+ nC) = 1 + nTrC+O(n2), we obtain:

log detX =n log detQ+ nTr
⇣
X1Q

�1
⌘
+O(n2) = n log detQ� n

PĈ

�
Tr⇤Q�1 +O(n2).

(SI.1.36)

Next, using the matrix determinant lemma det
�
A+ uvT

�
= det(A)(1 + vTA�1u), we obtain:

det

✓
I+

�

�
C

◆
=
⇥
1 +

�

�
(C0 � C)

⇤n
✓
1 + n

�C

�+ �(C0 � C)

◆
,

) log det

✓
I+

�

�
C

◆
= n log

✓
1 +

�

�
(C0 � C)

◆
+ n

�C

�+ �(C0 � C)
,

(SI.1.37)

Finally, we need to simplify
P

a�bĈ
ab(Cab �⌃ab) under the replica symmetry up to leading order

in n: X

a�b

Ĉab(Cab �⌃ab) = n
�
Ĉ0(C0 � "2)� 1

2
Ĉ(C � "2)

�
. (SI.1.38)

Therefore, under replica symmetry, the function S given in Eq.(SI.1.29) simplifies to:

S[C, Ĉ] =Ĉ0(C0 � "2)� 1

2
Ĉ(C � "2) +

1

2
log

✓
1 +

�

�
(C0 � C)

◆
+

1

2

�C

�+ �(C0 � C)

+
1

2P

log detQ� PĈ

�
Tr⇤Q�1

!
� �

2P
W̄>Q�1W̄ +

�

2P
(W̄ � ⇠)>w̄,

(SI.1.39)

where we recall that Q = I� P (2Ĉ0�Ĉ)
� ⇤� ��>. The saddle point equations of S with respect to

C0 and C are simple:

@S

@C
= 0) Ĉ =

�2C
�
�+ �(C0 � C)

�2 ,

@S

@C0
= 0) Ĉ0 =

1

2
Ĉ � 1

2

�

�+ �(C0 � C)
. (SI.1.40)

The equation @S/@Ĉ = 0 yields:

6

C =
PĈ

�2
Tr⇤Q�1⇤Q�1 + W̄>Q�1⇤Q�1W̄ + "2, (SI.1.41)

and the equation @S/@Ĉ0 = 0 yields:

C0 = C +
1

�
Tr⇤Q�1. (SI.1.42)

Two commonly appearing forms are:

 ⌘ �+�(C0 � C) = �+Tr⇤Q�1,

2Ĉ0 � Ĉ

�
= � 1

�+ �(C0 � C)
= � 1

.

(SI.1.43)

Plugging second equation to the expression for G, we get:

Q = I+
P

⇤� ��>, (SI.1.44)

hence we obtain the following implicit equation:

 = �+Tr⇤

✓
I+

P

⇤� ��>

◆�1

. (SI.1.45)

In terms of , final saddle point equations reduce to:

Ĉ⇤

0 =
1

2
Ĉ⇤ � 1

2

�

,

Ĉ⇤ =
�2C⇤

2
,

C⇤

0 = C⇤ +
� �

�
,

C⇤ = C⇤
P

2
Tr⇤Q�1⇤Q�1 + W̄>Q�1⇤Q�1W̄ + "2. (SI.1.46)

Here, ⇤ indicates the quantities that give the saddle point. Finally, solving for C⇤ in the last equation,
we obtain:

C⇤ =
1

1� P
2 Tr⇤Q�1⇤Q�1

✓
W̄>Q�1⇤Q�1W̄ + "2

◆
. (SI.1.47)

Having obtained the saddle points, we can evaluate the saddle point integral. In the limit P ! 1,
the dominant contribution is:

EDZ
n ⇡ e�nPS[C⇤,Ĉ⇤]. (SI.1.48)

Taking the n ! 0 limit and plugging in the saddle point solutions to the expression Eq.(SI.1.39), we
obtain the free energy EDlogZ = �PS to be:

EDlogZ =
P

2

� �

� P

2
log

�
� P

2
log detQ� �P

2

"2

+
�

2
W̄>Q�1W̄ � �

2
(W̄ � ⇠)>w̄,

 = �+Tr⇤Q�1,

Q = I+
P

⇤� ��>,

W̄ = (w̄ � ⇠)� (�>w̄)�. (SI.1.49)

7

SI.1.4 Expected Estimator and the Correlation Function

Finally, we can calculate the RKHS weights of the expected function and its variance:

p
⌘↵EDw

⇤

↵ = lim
�!1

1

�

@

@⇠0↵
EDlogZ

����
⇠,�=0

p
⌘↵⌘�ED[w

⇤

↵(D)w⇤

�(D)] = lim
�!1

1

�

@2

@�0
↵@�

0

�

EDlogZ

�����
⇠,�=0

, (SI.1.50)

where the derivatives are with respect to ⇠0↵ = ⇠↵/
p
⌘↵ and �0

↵ = �↵/
p
⌘↵, respectively. Taking

derivatives for each entry of ⇠0, we obtain:

1

�

@

@⇠0↵
EDlogZ =

p
⌘↵w̄↵ �

p
⌘↵(w̄↵ � ⇠↵)

P⌘↵ +
=

P⌘↵
p
⌘↵w̄↵ +

p
⌘↵⇠↵

P⌘↵ +
. (SI.1.51)

Hence the average estimator has the following form:

EDf
⇤(x;P) =

X

⇢

P⌘⇢
P⌘⇢ +

w̄⇢ ⇢(x), (SI.1.52)

which approaches to the target function as P ! 1. Note that the learned function can only express
the components which span the RKHS. If the target function has out-of-RKHS components, those
will never be learned.

Finally, we want to calculate the correlation function of the estimator. Given the partition function
Z =

R
dwe��H(w;D)+�⇠·w+ �

2 �>ww>�, notice that the variance:

1

�2

@2

@⇠↵@⇠�
EDlogZ = ED[hw↵w�iw � hw↵iw hw�iw] =

1

�

P⌘↵ +
�↵� (SI.1.53)

vanishes as � ! 1 since there is a unique solution. However, there is variance to the estimator due
to averaging over different training sets which is given by:

ED[hw↵w�iw]� ED hw↵iw ED hw�iw , (SI.1.54)

and it is finite as � ! 1. The first term, the eigenfunction expansion coefficients of the correlation
function of the estimator hf(x)f(x0)i, can be calculated by taking two derivatives of EDlogZ with
respect to �0. To simplify the calculation, we first redefine Q ⌘ I + P

⇤ � ⇤1/2�0�0>⇤1/2 by
setting J = 0 and introduce the notation @↵ ⌘ @

@�0
↵

for notational simplicity. First, we calculate the
derivatives of :

@↵ = �Tr⇤Q�1

✓
� P

2
⇤@↵�⇤1/2@↵(�

0�0>)⇤1/2

◆
Q�1

= @↵
P

2
Tr⇤2Q�2 +Tr⇤Q�1⇤1/2@↵(�

0�0>)⇤1/2Q�1

= @↵
P

2
Tr⇤2Q�2 + 2

X

⇢

⌘⇢Q
�1
⇢↵

p
⌘↵

✓X

�

p
⌘��

0

�Q
�1
�⇢

◆
. (SI.1.55)

Hence, we find that:

8

@�0|�0=0 = @�0Q|�0=0 = 0. (SI.1.56)

This greatly simplifies the second derivative of :

@↵@�|�0=0 =

@↵@�

P

2
Tr⇤2Q�2 + 2

X

⇢

⌘⇢Q
�1
⇢↵

p
⌘↵⌘�Q

�1
�⇢

�����
�0=0

= (@↵@�|�0=0)
X

⇢

P⌘2⇢
(P⌘⇢ +)2

+
22

P

P⌘2↵
(P⌘↵ +)2

�↵�

=
22

P

1

1� �

P⌘2↵
(P⌘↵ +)2

�↵� , (SI.1.57)

where � =
P

⇢
P⌘2

⇢

(P⌘⇢+)2 as defined before. Now we calculate the variance of the expected function:

p
⌘↵⌘�ED[w

⇤

↵(D)w⇤

�(D)] = lim
�!1

1

�
@↵@�EDlogZ

��
⇠0,�0=0

=
P

2

"2

2
@↵@�+

p
⌘↵⌘�w̄↵w̄� �

p
⌘↵⌘�w̄↵w̄�

P⌘� +
�

p
⌘↵⌘�w̄↵w̄�

P⌘↵ +

� 1

2
W̄>G�1

✓
� P

2
⇤@↵@��⇤1/2@↵@�(�

0�0>)⇤1/2

◆
G�1W̄

=
1

1� �

✓
"2 + 2

X

⇢

⌘⇢w̄2
⇢

(P⌘⇢ +)2

◆
P⌘2↵

(P⌘↵ +)2
�↵� + 2

⌘↵w̄2
↵

(P⌘↵ +)2
�↵�

+
P⌘�

p
⌘↵⌘�w̄↵w̄�

P⌘� +
�

p
⌘↵⌘�w̄↵w̄�

P⌘↵ +
. (SI.1.58)

Now we can calculate the coefficients of covariance of the estimator:

p
⌘↵⌘�

�
ED[w

⇤

↵w
⇤

�]� EDw
⇤

↵EDw
⇤

�

�
(SI.1.59)

=
1

1� �

✓
"2 + 2

X

⇢

⌘⇢w̄2
⇢

(P⌘⇢ +)2

◆
P⌘2↵

(P⌘↵ +)2
�↵� + 2

⌘↵w̄2
↵

(P⌘↵ +)2
�↵�

+
(P⌘↵ +)P⌘�

p
⌘↵⌘�w̄↵w̄�

(P⌘↵ +)(P⌘� +)
�

(P⌘� +)
p
⌘↵⌘�w̄↵w̄�

(P⌘↵ +)(P⌘� +)
�

P 2⌘↵⌘�
p
⌘↵⌘�w̄↵w̄�

(P⌘↵ +)(P⌘� +)

=
1

1� �

✓
"2 + 2

X

⇢

⌘⇢w̄2
⇢

(P⌘⇢ +)2

◆
P⌘2↵

(P⌘↵ +)2
�↵� + 2

p
⌘↵⌘�w̄↵w̄�

(P⌘↵ +)(P⌘� +)
(�↵� � 1) .

Hence the covariance of the estimator is:

Cov[
⌦
f⇤(x;P)f⇤(x0;P)

↵
D
] =

X

↵�

✓
ED[w

⇤

↵w
⇤

�]� EDw
⇤

↵EDw
⇤

�

◆
 ↵(x) �(x

0). (SI.1.60)

SI.1.5 Generalization Error

Having computed the mean and covariance of the estimator, now we can calculate the average
generalization error which can be decomposed as:

9

EDEg =

Z
dx p̃(x)ED(f

⇤2(x))� 2

Z
dx p̃(x)EDf

⇤(x)f̄(x) +

Z
dx p̃(x)f̄(x)2, (SI.1.61)

where we compute the data average over a new distribution p̃(x). A useful quantity is the overlap
matrix defined as:

O⇢� =

Z
dx p̃(x)�⇢(x)��(x), (SI.1.62)

and �0 =
P

⇢ O⇢⇢
P⌘2

⇢

(P⌘⇢+)2 . In terms of these quantities, using the calculation above, we find:

Z
dx p̃(x)ED(f

⇤2(x))�
Z

dx p̃(x)EDf
⇤(x)EDf

⇤(x) =
�0

1� �

✓
"2 + 2

X

⇢

⌘⇢w̄2
⇢

(P⌘⇢ +)2

◆

Z
dx p̃(x)EDf

⇤(x)EDf
⇤(x) =

X

⇢,�

O⇢�
P⌘3/2⇢ w̄⇢

P⌘⇢ +

P⌘3/2� w̄�

P⌘� +

Z
dx p̃(x)EDf

⇤(x)f̄(x) =
X

⇢,�

O⇢�
p
⌘⇢w̄⇢

P⌘3/2� w̄�

P⌘� +
Z

dx p̃(x)f̄(x)2 =
X

⇢,�

O⇢�
p
⌘⇢w̄⇢

p
⌘�w̄� , (SI.1.63)

where the first line is the contribution to generalization error due to the estimator variance. Hence
generalization error is:

EDEg =
�0

1� �

✓
"2 + 2

X

⇢

ā2⇢
(P⌘⇢ +)2

◆

| {z }
Variance V

+2
X

⇢�

O⇢�
ā⇢

P⌘⇢ +

ā�
P⌘� +

| {z }
Bias B

(SI.1.64)

where we replaced ā⇢ =
p
⌘⇢w̄⇢ which are the L2 weights of the target. This is the bias-variance

decomposition of generalization error in our setting where the bias term is monotonically decreasing
while the variance term is solely responsible for any non-monotonicity appearing in the generalization
error.

This expression also shows simply how to handle out-of-RKHS components of the target function.
Assume that the kernel is band-limited, meaning ⌘⇢>N = 0 for some N < M . Then generalization
error becomes:

EDEg =
�0

1� �

✓
"̃2 + 2

NX

⇢=1

ā2⇢
(P⌘⇢ +)2

◆
+ 2

NX

⇢,�=1

O⇢�
ā⇢

P⌘⇢ +

ā�
P⌘� +

+ 2
MX

⇢=N+1

NX

�=1

O⇢�
ā⇢ā�

P⌘� +
+

MX

⇢,�=N+1

O⇢� ā⇢ā� , (SI.1.65)

where we define the effective noise "̃2 = "2 +
PM

⇢=N+1 ā⇢. Therefore, bias decomposes into three
terms which correspond to three block components of the overlap matrix. The last diagonal block of
the overlap matrix yields an irreducible error on the generalization error.

We are mostly interested in how out-of-distribution generalization deviates from when the training
and test distributions are same. The in-distribution generalization is simply given by setting overlap
matrix to identity:

E0,p(x)
g =

�

1� �

✓
"2 + 2

NX

⇢=1

ā2⇢
(P⌘⇢ +)2

◆
+ 2

NX

⇢=1

ā2⇢
(P⌘⇢ +)2

, (SI.1.66)

10

where E0,p(x)
g denotes the generalization error when both training and test distributions are p(x).

Note that the data {ā⇢} and {⌘⇢} are obtained with respect to p(x) and can be replaced by {˜̄a⇢} and
{⌘̃⇢} if the test distribution is fixed and the training distribution is varied. We will first consider the
former case with fixed training distribution and varying test distribution:

�Eg ⌘ Eg � E0,p(x)
g =

�0 � �

1� �
"2 + 2ā>(P⇤+ I)�1

O
0(P⇤+ I)�1ā (SI.1.67)

where we defined O
0 = O � 1��0

1�� I which captures the effect of distribution mismatch on the
generalization error. An example of shifted overlap matrix O

0 has been shown in Figure 1 and
Figure 2.

SI.1.6 Symmetries of Overlap Matrix

The overlap matrix naturally arises when one considers the kernel eigenvalue problem with respect to
two different input distributions:

Z
dx0 p(x0)K(x,x0)�⇢(x

0) = ⌘⇢�⇢(x),) K(x,x0) =
X

⇢

⌘⇢�⇢(x)�⇢(x)

Z
dx0 p̃(x0)K(x,x0)�̃⇢(x

0) = ⌘̃⇢�̃⇢(x),) K(x,x0) =
X

⇢

⌘̃⇢�̃⇢(x)�̃⇢(x) (SI.1.68)

Therefore we have two sets of orthonormal bases {�⇢} and {�̃⇢} with respect to distributions p(x)
and p̃(x), both spanning L2(X). A square integrable function in this space can be expanded as:

f(x) =
X

⇢

a⇢�⇢(x) =
X

⇢

ã⇢�̃⇢(x), h�⇢,��ip = �⇢� , h�̃⇢, �̃�ip̃ = �⇢� , (SI.1.69)

where we defined the inner product hf, gip(x) =
R
dx p(x)f(x)g(x). Expansion coefficients can be

found in terms of each other via:

ã⇢ =
X

�

a� h�� , �̃⇢ip̃ = (Ãa)⇢, Ã⇢� ⌘ h�̃⇢,��ip̃ ,

a⇢ =
X

�

ã� h�̃� ,�⇢ip = (Aã)⇢, A⇢� ⌘ h�⇢, �̃�ip . (SI.1.70)

This immediately implies that:

ÃA = AÃ = I (SI.1.71)

We call A, Ã cross-overlap matrices and in general they do not correspond to norm-preserving
transformations. Note that the L2 norm of a function depends on the probability measure on the
space:

kfk2p(x) =
X

⇢

a2⇢ 6=
X

⇢

(Ãa)2⇢ = kfk2p̃(x) (SI.1.72)

Later we show that the Hilbert norm kfk
H

is independent of the probability measures if f 2 H.

These matrices also connect the eigenfunctions:

� = Ã>�̃, �̃ = A>� (SI.1.73)

Using these relations, cross-overlap matrices can be related to overlap matrix O:

O⇢� =

Z
dx p̃(x)�⇢(x)��(x) =

X

�0

Ã>

��0

Z
dx p̃(x)�⇢(x)�̃�0(x) = (Ã>Ã)⇢�

Õ⇢� =

Z
dx p(x)�̃⇢(x)�̃�(x) =

X

�0

A>

��0

Z
dx p(x)�̃⇢(x)��0(x) = (A>A)⇢� , (SI.1.74)

11

which, together with Eq.(SI.1.71), have inverses O
�1 = AA> and Õ

�1 = ÃÃ>. Furthermore, this
shows that O and Õ are symmetric positive definite matrices.

Now we connect these matrices to the kernel eigenvalues. Kernel features defined by (x) =
⇤1/2�(x) are orhonormal with respect to the Hilbert inner product on the RKHS but their L2 inner
product depends on the probability measure:

h (x),�(x)>i
H

= I,

Z
dx p(x) (x) (x)> = ⇤

h ̃(x), �̃(x)>i
H

= I,

Z
dx p̃(x) ̃(x) ̃(x)> = ⇤̃, (SI.1.75)

where h., .i
H

is defined in Eq.(SI.1.5). In terms of features, kernel can be expressed as:

K(x,x0) = (x)> (x0) = ̃(x)> ̃(x0). (SI.1.76)

We note that the Hilbert inner product of two functions f, g 2 H does not depend on the measure
against which the kernel is diagonalized [26]. Hence for any function f(x) = w> (x) = w̃> ̃(x)
we have:

kfk2
H

= w>w = w̃>w̃, (SI.1.77)

which immediately implies that there exists an orthogonal transformation U which rotates the features
and the weights as follows:

 ̃(x) = U (x), w̃ = Uw, (SI.1.78)

where U> = U�1. Using the relations in Eq.(SI.1.75), one can obtain the relations:

⇤1/2
O⇤1/2 = U>⇤̃U

⇤̃1/2
Õ⇤̃1/2 = U⇤U>. (SI.1.79)

Furthermore, one can easily find U in terms of matrices A, Ã:

U = ⇤1/2Ã>⇤̃�1/2, U> = ⇤̃1/2A>⇤�1/2 (SI.1.80)

Of course this relation requires eigenvalue matrices to be invertible otherwise one must replace
inverses with pseudo-inverses.

Finally, we obtain how the two eigenvalue matrices connect to each other:

K(x,x0) = �>⇤� = �̃>⇤̃�̃) ⇤̃ = Ã⇤Ã>, ⇤ = A⇤̃A>. (SI.1.81)

These transformations help us to rewrite the generalization error in terms of the test eigenvalues and
weights.

SI.1.7 Generalization Error In Terms of Test Distribution

Using the identities in SI.1.6, we first start with expressing in terms of the test distribution
eigenvalues:

 = �+ Tr
n
⇤(P⇤+ I)�1

o
= �+ Tr

n
⇤̃(P ⇤̃+ Õ�1)�1

o
, (SI.1.82)

where we used the identity ⇤̃1/2
Õ⇤̃1/2 = U⇤U> and the properties of trace. Similarly we have:

� = P Tr
⇣
⇤2(P⇤+ I)�2

⌘
= P Tr

⇣
⇤̃(P ⇤̃+ Õ�1)�1⇤̃(P ⇤̃+ Õ�1)�1

⌘

�0 = P Tr
⇣
O⇤2(P⇤+ I)�2

⌘
= P Tr

⇣
O⇤̃(P ⇤̃+ Õ�1)�1⇤̃(P ⇤̃+ Õ�1)�1

⌘
(SI.1.83)

Generalization error is given by:

Eg =
�0

1� �

�
"2 + 2ā>(P⇤+ I)�2ā

�
+ 2ā>(P⇤+ I)�1

O(P⇤+ I)�1ā. (SI.1.84)

12

Using the relations ⇤ = A⇤̃A>, ã = Ãa and ÃÃ> = Õ
�1, we get:

Eg =
�0

1� �

�
"2 + 2 ˜̄a>(P ⇤̃+ Õ�1)�1

Õ
�1(P ⇤̃+ Õ�1)�1 ˜̄a

�

+ 2 ˜̄a>(P ⇤̃+ Õ�1)�1
Õ

�2(P ⇤̃+ Õ�1)�1 ˜̄a. (SI.1.85)

As we have done before, we can compare this to in-distribution generalization error when both
training and test distributions are p̃(x):

E0,p̃(x)
g =

�̃

1� �̃

✓
"2 + ̃2

NX

⇢=1

˜̄a2⇢
(P ⌘̃⇢ + ̃)2

◆
+ ̃2

NX

⇢=1

˜̄a2⇢
(P ⌘̃⇢ + ̃)2

, (SI.1.86)

where ̃ = �+ ̃Tr
⇣
⇤̃(P ⇤̃+ ̃I)�1

⌘
and �̃ = P Tr

⇣
⇤̃2(P ⇤̃+ ̃I)�2

⌘
.

SI.2 Further Analysis for Real Data Applications and Additional

Experiments

The form for OOD generalization with label noise "2 = 0 given by Eq.(1) has a simple form in terms
of the overlap matrix:

�Eg = v(P)>O
0v(P)

O
0 = O � I+

Tr (O � I)M(P)

1� TrM(P)
I

O⇢� =

Z
dx p̃(x)�⇢(x)��(x), (SI.2.1)

where v and M are independent of the test distribution and only given by target weights and kernel
eigenvalues with respect to training distribution. In this section, we further study how mismatched
train and test distributions can improve generalization.

Fixed Training Distribution: Consider minimizing �Eg in Eq.(SI.2.1) with respect to the overlap
matrix. For fixed training distribution, the gradient with respect to O will be always positive-definite
since the overlap matrix appears linearly in �Eg and is the only test distribution related quantity. This
implies that �Eg does not have a non-trivial extremum except for the trivial �Eg = �E0,p(x)

g which
is possible only if O = 0. This implies that OOD generalization can be reduced to zero and often
never happens except for very special cases where all eigenfunctions become zero at some point x⇤

(�⇢(x⇤) = 0) and the test distribution sharply centers around the same point x⇤ (p̃(x) = �(x� x⇤)).

However, a more likely scenario where �Eg is minimized is picking a test distribution which sharply
centers around a point x⇤ which yields the smallest error:

x⇤ = min
x2D

(f⇤(x)� f̄(x))2. (SI.2.2)

Then keep testing on this single point (in the sense that p̃(x) = �(x � x⇤)) should yield the best
OOD generalization hence minimizing �Eg. This has been noted in [4] and also what we observe
in our experiments when we run gradient descent with respect to test distribution on Eg for fixed
training distribution. In Figure SI.2.1, we show an experiment where we fix the training distribution
to be uniform and obtain beneficial/detrimental test distributions by running gradient descent/ascent
on Eg for different epochs. In Figure SI.2.1 (a), we see that when number of epochs is small, the test
distribution stays close to the uniform distribution. But with increasing epochs, it sharpens more and
more around a particular point. Here we also show that images which have high probability mass in
beneficial distribution have low probability mass in detrimental distribution. In Figure SI.2.1 (b,c),
we show that the empirical generalization error gets smaller/larger for beneficial/detrimental test
distributions and matches perfectly with our theory.

Fixed Test Distribution: The other way �Eg can be minimized is by fixing test distribution and
varying training distribution. Note that, for fixed test distribution p̃(x), rO|p̃(x)�Eg is much harder
to evaluate since the only way we can change overlap matrix is by changing the training distribution
which in turn alters all training distribution related quantities. Hence, a priori, it is not obvious if the

13

a)

c)b)

Figure SI.2.1: Optimal test distributions for fixed uniform training distribution. a) As the number of
epochs increase for gradient descent/ascent, the test distribution concentrates more and more around
a particular sample. We also see that the images which have high probability mass in beneficial
test distribution are assigned low probability mass during gradient ascent. b) The generalization
error curves for a trained neural network and kernel regression with the corresponding kernel. Both
experiments match perfectly with theory (dashed lines). We see that beneficial test distributions yield
better generalization than the in-distribution generalization. c) Same experiment with detrimental test
distributions. As expected the generalization is worse than in-distribution case. The errorbars show
standard deviation for 50 trials.

gradient descent procedure explained in Algorithm 1 converges to a fixed training distribution. Next,
we show that it indeed converges to a fixed training measure for MNIST experiments with NTK and
we discuss its implications.

We first note that our formula for generalization error depends on the number of training set size P
and hence the optimized training/test measures. Then our problem is what is the optimal choice of
training examples for a limited training budget Pbudget so that generalization performance is maximal.
This problem intuitively makes sense; for kernel ridgeless regression it would be the best to train
uniformly on all samples if we had infinite training budget since we can exactly fit all samples. Or
conversely, for few shot learning (low Pbudget), we would like to choose the best few training samples
which yields the best generalization performance.

In Figure SI.2.2, we show experiments where the test distributions is fixed to uniform and optimal
training distributions are obtained via gradient descent on �z / �rO|p̃(x)�Eg(Pbudget) for several
training budgets where z are logits which translate to training probability masses via p = softmax(z).
In Figure SI.2.2(a), we show that in fact the gradient descent converges to a fixed training distribution
for all Pbudget’s. Furthermore, we compute the participation ratio given by 1P

µ(p
µ)2 which quantifies

how uniform the probability masses are. We find that this quantity approaches roughly to Pbudget
meaning that GD finds ⇠ Pbudget samples which are most beneficial for generalization and discards
the rest. In Figure SI.2.2(b), we show the training distributions for each Pbudget where each distribution
is sorted from high to low probability masses. We again see that only ⇠ Pbudget examples have high
probability mass and the rest are effectively ignored. The resulting high and low probability mass
images are shown in Figure SI.2.2(c). We find that for low Pbudget, easier samples are preferred to
train on but for high Pbudget’s we do not see an apparent qualitative difference between low and high
probability mass images. Finally in Figure SI.2.2(d), we test if these optimized training distributions
help generalization. We find that the training distributions optimized for a certain Pbudget performs

14

a) b)

c)

d)

Figure SI.2.2: Optimal training distributions for fixed test distribution. a) Gradient descent on Eg(P)
with respect to training distribution converges for various Pbudget. We also see that the participation
ratio converges to ⇠ Pbudget, implying that gradient descent finds the best Pbudget samples for fixed
training budget to obtain an optimal generalization error. b) The training distributions for several
Pbudget’s. For larger training budgets, the training distribution approaches to the test distribution which
is uniform. c) High and low probability mass images for Pbudget = {10, 1000}. For smaller budgets
(P = 10), GD finds the simplest examples to train on. For high training budgets (P = 1000), there
is no qualitative difference. d) The corresponding generalization error for each optimized training
distribution compared to kernel regression experiments on NTK (dots).

the best until the number of training samples hit Pbudget after which the generalization error stays
constant.

SI.2.1 Adversarial Attacks during Testing

We finally consider how our theory can be used in more practical settings such as adversarial attacks
during testing. We devise a simple experiment where a kernel machine is trained on a subset of
MNIST dataset with uniform training distribution and tested on the same subset but with noise added
on the images. Then we identify the images which were correctly classified before adding noise
but misclassified after. We create a new dataset where we add these misclassified images to the
original dataset and run gradient descent/ascent on the generalization error to see if these images
will be assigned low/high probability masses. We fix the training distribution to be uniform on the
original images and have zero probability mass on the adversarial samples. On the other hand, the
test probability masses stay as variables for the adversarial samples as well as the original samples.

In Figure SI.2.3 (a), we show the probability masses of each adversarial MNIST images obtained
after gradient descent/ascent. We find that the beneficial test distribution places considerably low
probability mass to the adversarial images than the detrimental test distribution. Figure SI.2.3
(b) shows the first few high and low probability mass images during gradient descent, where the
adversarial examples are among the low probability mass images.

SI.3 Linear Regression

As we discussed in the main text, it is straightforward to show that the generalization error reduces to
the Eq.(4) when the input distributions are Gaussian with arbitrary covariance matrices C and C̃ for
training and test distributions.

15

a) b)

Figure SI.2.3: Adversarial samples in optimal test distribution. a) Probability masses of the adversarial
samples after running gradient descent/ascent with respect to test distribution. Gradient descent/ascent
places low/high probability mass to adversarial examples. b) The high and low probability mass
images obtained after gradient descent. The adversarial examples get low probability mass.

Here, we generalize the discussion of linear regression with diagonal covariance matrices to include
the out-of-RKHS scenarios. Similarly, we consider D-dimensional inputs and a linear target of the
form f̄ =

PD
⇢=1 �⇢x⇢. Furthermore, we take the training and test distributions to be of the form:

C = diag (�2, . . .�2

| {z }
Mr

, 0, . . . 0| {z }
D�Mr

)

C̃ = diag (�̃2, . . . �̃2

| {z }
Ms

, 0, . . . 0| {z }
D�Ms

), (SI.3.1)

where Mr,Ms D. Finally, we allow the kernel to have less features then the ambient space so
that it does not express the whole RD: K(x,x0) = 1

M

PM
⇢=1 x⇢x0

⇢ where M D. Therefore, we
have 6 parameters: 1) Mr,Ms representing how many directions training and test distributions have
non-zero variance on, 2) N quantifying how many directions target depends on and M how many
directions kernel can represent, 3) �2, �̃2 respectively the variances of training and test distributions.

Then plugging the parameters of this setting in Eq.(4), the generalization error simplifies to:

0 =
1

2

�
1 + �̃� ↵

�
+
q�

1 + �̃+ ↵
�2 � 4↵

�
, �̃ =

�

�2 min(1,Mr/M)
, (SI.3.2)

� =
↵

(0 + ↵)2
,

Eg =
Nrs

Nr

�

1� �

✓
�̃2

�2
"2 +

�̃202

(↵+ 02)

NrX

⇢=1

�2
⇢ + �̃2

MrX

⇢=Nr+1

�2
⇢

◆
+

�̃202

(↵+ 02)

NrsX

⇢=1

�2
⇢ + �̃2

MsX

⇢=Nrs+1

�2
⇢ ,

(SI.3.3)

where we defined ↵ = P/Nr, Nr = min{M,Mr} and Nrs = min{M,Mr,Ms}. Hence, the
learning rate is determined by the minimum between number of features and the number of nonzero
variance directions in the training distribution. Although complicated looking, Eq.(SI.3.2) predicts
several interesting phenomena:

1. When there is an out-of-RKHS component in the target function, those components act like
noise causing the effective noise given by:

"̃2 = �̃2Nrs

Nr

✓
"2

�2
+

MrX

⇢=Nr+1

�2
⇢

◆
. (SI.3.4)

Hence, even there is no label noise in the training set, we observe a double-descent due to
the effective noise.
Our theory suggests that the only way avoiding the contribution to noise from out-of-RKHS
components is to not train on those directions, i.e. setting Mr M . This has been
demonstrated in Figure SI.3.1(a).

16

2. When the target depends on all dimensions, the irreducible error (last term) can be avoided if
Ms < Nr. This simply means that only testing on the features which are not learned (either
due to not training on those directions or the kernel not expressing them as features) causes
an irreducible error in Eg . This has been demonstrated in Figure SI.3.1(b). Note that there
is still double-descent since we are still training on the directions kernel does not express.

3. If the irreducible error is avoided by not testing on the directions where the training dis-
tribution has zero variance or kernel does not express (Ms M,Mr), the generalization
error approaches to 0 as P ! 1 even though the target has out-of-RKHS components (See
Figure SI.3.1(b)).

Figure SI.3.1: Effect of training and test distributions for out-of-RKHS target functions. The error
bars indicate standard deviation over 30 averages.

SI.4 Rotation Invariant Kernels and Neural Tangent Kernel

Another application of our theory is the study of rotation invariant kernels on high-dimensional input
spaces. This type of kernels includes many popular kernels including Laplace kernels, radial basis
function kernels and neural tangent kernel (NTK). Specifically, the kernel only depends on the inner
product of two inputs: K(x,x0) = K(x · x0). In this case Mercer’s decomposition takes the form:

K(x,x0) =
X

k,m,n

⌘k,m,nRn(kxk)Rn(
��x0
��)Yk,m(x)Yk,m(x0) (SI.4.1)

where Ykm are the hyper-spherical harmonics [55] which only depend on the angular coordinates of
x and Rn depend on the norm of the input which are usually orthonormal polynomials of order n. If
the kernel is rotation invariant, the eigenvalues only depend on the degree of the spherical harmonics
k but not on the azimuthal coordinates m which means N(D, k) ⇠ O(Dk) times degeneracy for
each ⌘k,m,n = ⌘k,n. Note that ⌘k,n ⇠ O(N(D, k)�1) for kernel to have finite trace. Then we define
OD(1) quantity ⌘̄k,n ⌘ N(D, k)⌘k,n.

Furthermore, we assume that the target function f̄(x) =
P

k,m,n āk,m,nRn(kxk)Yk,m(x) has finite
L2 norm which implies that ā2k,n ⌘ 1

N(D,k)

P
m ā2k,m,n is finite for each mode k. Note that the

overlap matrix

Okmn;k0m0n0 =

Z
dx p̃(x)Rn(kxk)Rn0(kxk)Yk,m(x)Yk0,m0(x)

is in general very difficult to calculate analytically without assuming specific probability distributions.
To simplify, we consider probability distributions on hyperspheres with radius R and R̃ for training
and test distributions, respectively. Then considering the limit P,D ! 1 while keeping ↵k ⌘
P/N(D, k) finite, we find that the different degree k modes decouple over angular indices leading:

Eg =
�0

1� �

✓
"2 +

X

k0>k

X

n

ā2k0,n

◆
+ 2

X

n,n0

āk,n
↵k⌘̄k,n +

(Onn0 +
�0

1� �
I)

āk,n0

↵k⌘̄k,n0 +

+
X

k0>k

X

nn0

Onn0 āk0,nāk0,n0 , (SI.4.2)

17

where Onn0 =
R
dx p̃(x)Rn(kxk)Rn0(kxk) and

 = �+
X

k0>k,n

⌘̄k0n +
X

n

⌘̄k,n
↵k⌘̄k,n +

, � = ↵k

X

n

⌘̄2k,n
(↵k⌘̄k,n +)2

, �0 = ↵k

X

n

Onn⌘̄2k,n
(↵k⌘̄k,n +)2

.

(SI.4.3)

We notice that the effective regularization becomes �̃ / �+
P

k0>k,n ⌘̄k0n implying that the inductive
bias of the kernel machine solely depends on the training distribution and can be altered by changing
it. Furthermore, the target power for k0 > k acts as an effective noise and this is in fact an example of
out-of-RKHS generalization: in the limit P,D ! 1 for finite ↵k ⌘ P/N(D, k), the modes larger
than k are not in the sub-RKHS defined by polynomials of degree k. This has also been pointed out
in [16]. There is also an irreducible error due to the target power for k0 > k which depends on both
training and test distribution.

To conclude this section, we finally consider ReLU NTK regression with arbitrary depth. Note that
the ReLU networks are homogeneous maps with respect to the norm of inputs [56]:

K(x,x0) = kxk
��x0
��k
✓

x · x0

kxkkx0k

◆
, (SI.4.4)

and therefore we can drop n-indices in the computation above. Notice that the self-consistent equation
 in this case can be solved exactly and the solution is very similar to the one for linear regression:

0 = /⌘̄k = 1
2

⇥
(1 + �̃k � ↵k) +

q
(1 + �̃k + ↵k

�2 � 4↵k] where the effective regularization is
�̃k = (� +

P
k0>k ⌘̄k0)/⌘̄k. In this case the learning rate is controlled by the degeneracy of mode

k: ↵ = P/N(D, k). Homogeneity of the NTK Eq.(SI.4.4) implies that for inputs restricted to a
D-sphere of radius R, the eigenvalues simply are multiplied by the norm squared: ⌘k ! R2⌘k.
Therefore when an NTK regression is performed on a training set with radius R and tested on a
sphere with radius R̃, the overlap matrix simply becomes diagonal with components R̃2

R2 and the
analysis for linear regression can be directly applied here:

Ek
g = R̃2

✓
"̃2

R2

↵k

(0 + ↵k)2 � ↵
+

02

(0 + ↵k)2 � ↵k

◆
+

R̃2

R2

X

k0>k

ā2k, (SI.4.5)

where we define effective noise to be "̃2 = "2 +
P

k0>k ā
2
k. Ek

g is the generalization error in learning
stage k for large P,D limit and shows that it is very similar to linear regression we studied in Section
4. At each learning stage k, the kernel machine learns the kth mode and the higher modes act as
irreducible error given by R̃2

R2

P
k0>k ā

2
k. This implies that the irreducible error is controlled by the

ratio of radii of the test and target distributions. Note that for larger test radius, generalization error
increases for large width neural networks. We demonstrate this in Figure SI.4.1 where the inputs are
randomly drawn from a sphere of radius R for training set and test inputs are drawn from a sphere of
radius R̃ for 2-layer NTK regression.

SI.5 Interpolation vs. Extrapolation

Another subject where understanding OOD distribution is crucial is extrapolation from training data
to test data whose support lies outside the training distribution. Our theory can also explain how
kernel regression generalizes in extrapolation tasks for simple models like linear regression and
band-limited Fourier kernels.

To understand extrapolation in linear regression, we introduce rectangular distributions for each
direction x⇢ defined as:

p(x) = R�1(x1) . . . R�D (xD), R�↵(x) =

(
1

2
p
3�↵

�
p
3�↵ x

p
3�↵

0 otherwise

p̃(x) = R�̃1(x1) . . . R�̃D (xD). (SI.5.1)

Then one can take �̃2
↵ > �2

↵ to change the support of train and test distributions. Note that the
Gaussian measure is an example of interpolation since the support of the data is always Supp(p(x)) =

18

(a) R = R̃ = 1 (b) R = 1 and R̃ = 0.5

Figure SI.4.1: 2-Layer NTK Regression on random spherical data. a) The training and test distribution
radii are the same R = R̃ = 1. b) Training distribution radius is R = 1 and test distribution radius is
R̃ = 0.5. As predicted by theory, Eg is lower in the former case.

(�1,1). One can easily show that the solution to the integral eigenvalue problem for kernel is the
same as when the distributions are Gaussian with diagonal covariance matrices: the kernel eigenvalues
are given by ⌘⇢ = �2

⇢/D and eigenfunctions are �⇢(x) = x⇢/�⇢ leaving the features unchanged.
Then the analysis in Section 4 exactly applies to the extrapolation in this scenario implying that the
extrapolation and interpolation are the same when linear regression for linear tasks are concerned.
For NTK, this finding has been stated in [57] that as long as all x⇢ with nonzero power in target is
expressed in the kernel, the kernel regression should be able to extrapolate. This intuitively makes
sense since once the parameters are � are found, the extrapolation should be trivial.

However, with nonlinear features we find that learning nonlinear functions, although possible, is
much more costly when extrapolating with rectangular distributions than Gaussian distributions.
Heuristically, we claim that the Gaussian distribution has always the same support and can still be
thought of as interpolation no matter how much the variance is changed, while in the rectangular
case supports for training and test distributions may be different and the kernel machine might not be
trained on the region it is tested on. Here we demonstrate an example to explain why this is the case.

We consider a band-limited kernel with Fourier features in 1D, K(x, x0) =
PN

k=1 cos k⇡(x�x0) and
a periodic target function f̄(x) = ecos(⇡x�✓) + ecos(⇡x+✓) centered around its mean. For the inputs,
we consider centered Gaussian distributions with varying variances and rectangular distributions on
the interval x 2 [�a, a] with varying a. By ↵ = P/N , we denote the ratio of training samples to the
number of features and for certain values of ↵ we compare the estimator (Eq.(SI.1.52)) to the target
function f̄ . In Figure SI.5.1(a,b), we find that the estimator perfectly matches the target when ↵ = 4
for both narrow and wide Gaussian training distributions. On the contrary, when the rectangular
distributions are used for training in Figure SI.5.1(c,d), we find that interpolation is achieved as soon
as ↵ = 1 while extrapolation requires much more samples ↵ = 250. We attribute this behavior to the
observation that some eigenvalues in the rectangular distribution case effectively goes to 0 as can
be seen from Figure SI.5.1(f) while for Gaussian distribution they stay large Figure SI.5.1(e). This
means that as the range of the rectangular distribution gets smaller, more modes in the target function
become out-of-RKHS leading to an irreducible error.

SI.6 Numerical Methods

We performed our experiments using JAX software [30] and NeuralTangents package [29] on Google
Colaboratory environment [58]. Specifically, the automatic differentiation capabilities of JAX helped
us optimize over training and test distributions on MNIST digits [59]. All code used to perform
experiments and generate figures can be accessed at https://github.com/Pehlevan-Group/kernel-ood-
generalization.

19

https://github.com/Pehlevan-Group/kernel-ood-generalization
https://github.com/Pehlevan-Group/kernel-ood-generalization

a) b) e)

c) d) f)

Figure SI.5.1: Interpolation with Gaussian distribution (first row) vs. Extrapolation with Rectan-
gular distribution (second row). The estimator obtained from kernel regression is presented. a, b)
Interpolation with narrower width (a) requires more training samples than wider widths (b). c, d) In
comparison, rectangular distributions work are able to interpolate well (at ↵ = 1) while extrapola-
tion takes much more samples (↵ ⇠ 100) to extrapolate. (e,f) The kernel eigenvalues on training
distribution and target power are shown for Gaussian and rectangular distributions, respectively.
Dashed lines indicate the number of features N represented in the kernel. We observe that for varying
Gaussian distribution widths, the spectrum does not change significantly while for rectangular case
some eigenvalues effectively go to 0 implying an irreducible error in the generalization.

20

	Introduction
	OOD Generalization Error for Kernel Regression from the Replica Method
	Problem setup
	Overview of the calculation
	Main Result

	Applications to Real Datasets
	Shift in test distribution may help or hurt generalization
	Optimized Training Measure for Digit Classification with Wide Neural Networks

	Linear Regression: An Analytically Solvable Model
	Further Results
	Discussion
	Calculation of Generalization Error
	Problem Formulation
	Replica Calculation for Generalization
	Replica Symmetry and Saddle Point Equations
	Expected Estimator and the Correlation Function
	Generalization Error
	Symmetries of Overlap Matrix
	Generalization Error In Terms of Test Distribution

	Further Analysis for Real Data Applications and Additional Experiments
	Adversarial Attacks during Testing

	Linear Regression
	Rotation Invariant Kernels and Neural Tangent Kernel
	Interpolation vs. Extrapolation
	Numerical Methods

