
A Numerically stable Multinomial Diffusion in log space

In this section we explain how Multinomial Diffusion models can be implemented in a numerically
safe manner in log-space. Note that in addition to this appendix with pseudo-code, the actual source
code will also be released. First we define a few helper functions:

def log_add_exp(a, b):
maximum = max(a, b)
return maximum + log(exp(a - maximum) + exp(b - maximum ))

def log_sum_exp(x):
maximum = max(x, dim=1, keepdim=True)
return maximum + log(exp(x - maximum ).sum(dim =1))

def index_to_log_onehot(x, num_classes ):
# Assume that onehot axis is inserted at dimension 1
x_onehot = one_hot(x, num_classes)

# Compute in log -space , extreme low values are later
# filtered out by log sum exp calls.
log_x = log(x_onehot.clamp(min=1e-4�))
return log_x

def log_onehot_to_index(log_x):
return log_x.argmax (1)

def log_1_min_a(a):
return log(1 - a.exp() + 1e-4�)

Then we can initialize the variables we are planning to utilize for the multinomial diffusion model.
This is done with float64 variables to limit the precision loss in the log_1_min_a computation. Since
these are precomputed and later converted to float32, there is no meaningful increase in computation
time.

alphas = init_alphas ()
log_alpha = np.log(alphas)
log_cumprod_alpha = np.cumsum(log_alpha)

log_1_min_alpha = log_1_min_a(log_alpha)
log_1_min_cumprod_alpha = log_1_min_a(log_cumprod_alpha)

Then we can define the functions that we utilize to compute the log probabilities of the categorical
distributions of the forward process. The functions below compute the probability vectors for
q(xt|xt�1), q(xt|x0) and q(xt�1|xt,x0).

def q_pred_one_timestep(log_x_t , t):
# Computing alpha_t * E[xt] + (1 - alpha_t) 1 / K
log_probs = log_add_exp(

log_x_t + log_alpha[t],
log_1_min_alpha[t] - log(num_classes)

)
return log_probs

def q_pred(log_x� , t):
log_probs = log_add_exp(

log_x� + log_cumprod_alpha[t],
log_1_min_cumprod_alpha[t] - log(num_classes)

)
return log_probs

def q_posterior(log_x� , log_x_t , t):
# Kronecker delta peak for q(x� | x1, x�).
if t == �:

log_probs_xtmin = log_x�
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else:
log_probs_xtmin = q_pred(log_x� , t - 1)

# Note log_x_t is used not x_tmin , subtle and not straightforward
# why this is true. Corresponds to Algorithm 1.
unnormed_logprobs = log_probs_xtmin + q_pred_one_timestep(log_x_t , t)

log_probs_posterior = unnormed_logprobs - log_sum_exp(unnormed_logprobs)
return log_probs_posterior

Some magic is happening in q_pred_one_timestep. Recall that at some point we need to compute
C(xt|(1 � �t)xt�1 + �t/K) for different values of xt, which when treated as a function outputs
(1 � �t) + �t/K if xt = xt�1 and �t/K otherwise. This function is symmetric, meaning that
C(xt|(1 � �t)xt�1 + �t/K) = C(xt�1|(1 � �t)xt + �t/K). This is why we can switch the
conditioning and immediately return the different probability vectors for xt. This also corresponds to
Equation 13.

Then using the q_posterior function as parametrization we predict the probability vector for
p(xt�1|xt) using a neural network.

def p_pred(log_x_t , t):
x_t = log_onehot_to_index(log_x_t)
log_x_recon = logsoftmax(neuralnet(x_t , t))
log_model_pred = q_posterior(log_x_recon , log_x_t , t)
return log_model_pred

And then finally we can compute the loss term Lt using the KL divergence for categorical distribu-
tions:

def categorical_kl(log_prob_a , log_prob_b ):
kl = (log_prob_a.exp() * (log_prob_a - log_prob_b )). sum(dim =1)
return kl

def compute_Lt(log_x� , log_x_t , t):
log_true_prob = q_posterior(log_x� , log_x_t , t)
log_model_prob = p_pred(log_x_t , t)
kl = categorical_kl(log_true_prob , log_model_prob)
loss = sum_except_batch(kl)
return loss

Coincidentally this code even works for L0 because x0 is onehot and then:

� log C(x0|x̂0)�
X

k

x0,k log x̂0,k =
X

k

x0,k[logx0,k| {z }
0 or log 0

� log x̂0,k] = KL(C(x0)||C(x̂0)),

where in the last term x0 and x̂0 are probability vectors and 0 log 0 is defined to be 0.
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B Experimental details

This section gives details on experimental setup, architectures and optimization hyperparameters. In
addition, the code to reproduce experiments will be released publicly.

Diffusion settings For diffusion we use the cosine schedule for {↵t} from Nichol and Dhariwal
(2021) with the difference that what was previously

p
↵̄t is now ↵̄t, so that their factor

p
↵̄t for the

Gaussian mean is equal to our factor ↵̄t for categorical parameters. Specifically, our ↵̄t are defined
using:

↵̄t =
f(t)

f(0)
f(t) = cos

✓
t/T + s

1 + s
· ⇡
2

◆
, s = 0.008,

where T is the total number of diffusion steps. Nichol and Dhariwal (2021) show that instead of
sampling t uniformly, variance is reduced when t is importance-sampled with q(t) /

p
E[L2

t ], which
is estimated using training statistics, and we use their approach. The objective can be summarized as:

logP (x0) � Et⇠q(t),xt⇠q(xt|x0)


� 1
q(t)

KL
�
q(xt�1|xt,x0)|p(xt�1|xt)

�
. (17)

Gumbel properties In Table 5 a useful overview of Gumbel properties are given. These equations
can be used to sample and compute the likelihood of the (truncated) Gumbel distributions. For a
more extensive treatment see (Maddison et al., 2014; Kool et al., 2019).

Table 5: Summary of Gumbel properties.
Description log p Sample

Gumbel(g|�) �� g � exp(�� g)
g = � log(� log(u)) + �
u ⇠ U(0, 1)

maxi Gumbel(gi|�)
logGumbel(gmax|�max)
�max = log

P
i exp�i

gmax ⇠ Gumbel(�max)
�max = log

P
i exp�i

TruncGumbel(g|�, T ) ��g�exp(��g)+exp(��T )
if g < T else �1

g = ��log(exp(��T )�log u)
u ⇠ U(0, 1)

B.1 Language Modelling

For the language modelling experiments we utilize the standard text8 dataset with sequence
length 256 and enwik8 dataset with sequence length 320. The train/val/test splits are
90000000/5000000/5000000 for both text8 and enwik8, as is standard in literature. The Multino-
mial Text Diffusion models are trained for 300 epochs, whereas the Argmax Flows are trained for 40
epochs, with the exception of the Argmax Coupling Flow on enwik8 which only needs to be trained
for 20 epochs. Further details are presented in Tables 6 and 7. In addition, the code to reproduce
results will be publicly available. There are no known ethics issues with these datasets at the time of
writing.

Table 6: Optimization details for text models.
Model batch size lr lr decay optimizer dropout

Multinomial Text Diffusion (text8) 32 0.0001 0.99 Adam 0
Multinomial Text Diffusion (enwik8) 32 0.0001 0.99 Adam 0
Argmax AR Flow (text8) 64 0.001 0.995 Adam 0.25
Argmax AR Flow (enwik8) 64 0.001 0.995 Adam 0.25
Argmax Coupling Flow (text8) 16 0.001 0.995 Adamax 0.05
Argmax Coupling Flow (enwik8) 32 0.001 0.995 Adamax 0.1
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Table 7: Architecture description for text models.
Model Architecture description

Multinomial Text Diffusion (text8) 12-layer transformer 8 global, 8 local heads / 1000 diffusion steps
Multinomial Text Diffusion (enwik8) 12-layer transformer 8 global, 8 local heads / 4000 diffusion steps
Argmax AR Flow (text8) 2-layer LSTM, 2048 hidden units
Argmax AR Flow (enwik8) 2-layer LSTM, 2048 hidden units
Argmax Coupling Flow (text8) 2-layer bi-directional LSTM, 512 hidden units
Argmax Coupling Flow (enwik8) 2-layer bi-directional LSTM, 768 hidden units

B.2 Cityscapes

Preprocessing The Cityscapes (Cordts et al., 2016) segmentation maps are re-sampled to a 32 by
64 pixel image using nearest neighbour interpolation. The original segmentation maps are down-
loaded from https://www.cityscapes-dataset.com/downloads/ where all files are contained
in gtFine_trainvaltest.zip. Note that we train on a 8-class problem since we only consider
what is called the category_id field in torchvision. We re-purpose the validation set as test set,
containing 500 maps. The original train set containing 2975 maps is split into 2500 maps for
training and 475 maps for validation. The original test set is not utilized. To aid reproducibil-
ity we will publish source code that includes the preprocessing and the dataloaders. There are
no known ethics issues with the segmentation maps at the time of writing. License is located at
https://www.cityscapes-dataset.com/license/.

Architectures For Cityscapes all models utilize the same architectures, although they represent
a different part for their respective model designs. The density model p(v) consist of 4 levels with
10 subflows each, separated by squeeze layers, where each subflow consists of a 1 ⇥ 1 convolution
and an affine coupling layer. The coupling layers are parametrized by DenseNets (Huang et al.,
2017). The same model is used for the latent distribution in the VAE (usually referred to as p(z) in
literature). The probabilistic inverse q(v|x) is modelled by a single level flow that has 8 subflows,
again consisting of affine coupling layers and 1 ⇥ 1 convolutions. To condition on x it is processed
by a DenseNet which outputs a representation for the coupling layers that is concatenated to the
original input. The same model is utilized to parametrize the VAE encoder (commonly referred to
as q(z|x)). The VAE additionally has a model for the decoder p(x|z) which is parametrized by a
DenseNet which outputs the parameters for a categorical distribution. The models are optimized
using the same settings, and no hyperparameter search was performed. Specifically, the models are
optimized with minibatch size 64 for 2000 epochs with the Adamax optimizer with learning rate
0.001 and a linear learning rate warmup of 10 epochs and a decay factor of 0.995.

B.3 Range of considered hyperparameters

For Multinomial Text Diffusion we experimented with the depth of transformers
{1, 2, 4, 8, 12, 16, 20} and the hidden size {128, 256, 512, 1024}. We found that models with depth
12 and 512 could be trained in a reasonable amount of time while giving good performance. For the
cityscapes experiments no hyperparameter search was performed.

B.4 Details on latent normalizing flows for text8

We utilize the official code repository from Ziegler and Rush (2019) in here2. The original code
utilizes 10 ELBO samples, which is relatively expensive. For that reason we instead opt for 1 ELBO
sample and find it gives similar results. The batch size is increased from 16 to 32. Additionally we
reduce the KL scheduling from 4 initial 10�5 epochs to only 2 initial 10�5 epoch and we anneal
linearly over the next 4 epochs instead of over the next 10 epochs. In total the models are optimized
for 30 epochs. We verify that the resulting models still achieve similar performance on the Penn Tree
Bank experiment compared to the original paper in terms of ELBO values: Our hyperparameter setup
for AF/AF achieves slightly better performance with 1.46 versus 1.47 bpc and for IAF/SCF achieves
slightly worse 1.78 versus 1.76 bpc.

2https://github.com/harvardnlp/TextFlow
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B.5 Computing infrastructure

Experiments where run on NVIDIA-GTX 1080Ti GPUs, CUDA 10.1 with Python version 3.7.6 in
Pytorch 1.5.1 or 1.7.1.

C Reproducing Discrete Flows

In this section we detail our efforts to reproduce the results from discrete flows (Tran et al.,
2019). Specifically, we are interested in the discrete flows models that map to factorized dis-
tributions, for instance the discrete bipartite (coupling) flow. We avoid situations where an au-
toregressive base distribution is used, it may be difficult to identify how much the flow is actu-
ally learning versus the ARM as base. For this paper an official implementation was released
at https://github.com/google/edward2/blob/master/edward2/tensorflow/layers/ in
the files discrete_flows.py and utils.py. However, this codebase contains only the high-
level modules and code for the toy example, it does not contain the specific code related to the
language experiments. These high-level modules and the toy problem were ported to PyTorch
here: https://github.com/TrentBrick/PyTorchDiscreteFlows. Using this codebase, we
were able to compare on the quantized eight Gaussians toy dataset, as depicted in Figure 6. In this
experiment we clearly see that argmax flows outperform discrete flows both numerically (6.32 versus
7.0 nats) and visually by comparing the samples or probability mass function.

(a) Samples from Discrete Flow using a sin-
gle layer, taken from (Tran et al., 2019).

(b) Samples from the quantized 8 Gaussians
data distribution.

(c) Samples from the Discrete Flows PyTorch
re-implementation, achieving 7.0 nats.

(d) Probability mass of our Argmax Flow
using a single layer, achieving 6.32 nats.

Figure 6: Reproduction of the quantized eight Gaussians experiment. Plots show either the probability
mass function or weighted number of samples (which will tend towards the pmf).
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Subsequent efforts by others to reproduce the language experiments failed (see https://github.
com/TrentBrick/PyTorchDiscreteFlows/issues/1). In another work, Lippe and Gavves
(2020) also noticed the difficulty of getting discrete flows to succesfully optimize, as detailed
in the set shuffling/summation experiment corresponding to Table 5 in the paper.

For this paper we also tried to reproduce the language experiments. After verifying the correctness
of the one_hot_argmax, one_hot_minus and one_hot_add functions in https://github.com/
TrentBrick/PyTorchDiscreteFlows, we implemented an autoregressive discrete flow layer with
an expressive network, in an effort to limit the accumulated gradient bias. Recall that an autoregressive
layer is more expressive than a coupling layer as it has more dependencies between dimensions.
As can be seen in Table 8 our re-implementation also performed considerably worse, matching the
experience of the others described above.

Table 8: Discrete Flows on text8. Note that AR is more expressive than coupling.
Model text8 (bpc)

Discrete Flows from paper (coupling, factorized base, without scale) 1.29
Discrete Flows from paper (coupling, factorized base, with scale) 1.23
Discrete Flows reimplementation (AR, factorized base, without scale) 4.13

Argmax Flow, AR (ours) 1.38
Argmax Coupling Flow (ours) 1.80

Final remarks We have had extensive contact with the authors of (Tran et al., 2019) to resolve
this issue over the course of several months. Unfortunately it is not possible for them to share the
code for the language flows due to internal dependencies. Also, we have not been able to find any
implementation of discrete flows online that achieves the reported performance on text. The authors
generously offered to look at our reimplementation, which we have shared with them. At the time of
writing we have not yet heard anything back on the code. For the reasons described in this appendix,
we currently assume that the language experiments in discrete flows are not reproducible.
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D Additional experiments

A comparison of the performance for Cartesian products with different bases is shown in Table 9.
Note that this experiment was performed using a somewhat smaller architecture then in the main
text. As can be seen, the performance difference between different Cartesian products is relatively
small. The performance does decreases slightly over larger base numbers, indicating that it is better
to choose a small base that results in fewer overall dimensions.

Table 9: Cartesian Products with different base numbers trained using a slightly smaller version of
the Argmax AR Flow on text8.

Model text8 (bpc)

dm = 1,M = 27 1.45
dm = 2,M = 6 1.44
dm = 3,M = 3 1.44
dm = 5,M = 2 1.44

A comparison of sampling time speeds are shown in Table 10. A couple of orders in magnitude
difference can be seen comparing autoregressive versus non-autoregressive models. This highlights
the importance of researching generative models that can be built from non-autoregressive components.
The main source of difference between our coupling approach and IAF/SCF is that we utilize mixture
of discretized logistics (Ho et al., 2019) as coupling transformation, which requires a iterative process
to invert over 1 dimension. The multinomial diffusion takes in-between the time of autoregressive
and coupling models. Also reducing steps reduces the required sampling time, as is expected.

Table 10: Comparison of different methods in terms of sample time. Sample time is measured by
generating a single text sample of length 256 averaged over 10 runs, unless specified otherwise.

Model type Model Sample time (s)

ARM 64 Layer Transformer (Al-Rfou et al., 2019) 35.5†

VAE AF/AF? (AR) (Ziegler and Rush, 2019) 156 ±1.8
IAF / SCF? (Ziegler and Rush, 2019) 0.04 ±0.004

Generative Flow
Argmax Flow, AR (ours) 115 ±0.03
Argmax Coupling Flow (ours) 0.40 ±0.03
Discrete Flow (Tran et al., 2019) 0.16†

Diffusion Multinomial Text Diffusion (ours) 26.6 ±2.2‡

Multinomial Text Diffusion, 100 steps (ours) 2.4 ±0.16

† Computed on a 288-length sequence instead of 256-length, taken from (Tran et al., 2019).
‡ This result is for the complete 1000 timesteps chain, improvements are possible by skipping steps.

Due to the computational cost of running normalizing flows, it is not possible for us to run every
model many times. However, generally single-run results suffice, as the performance variance of these
models is relatively small. In Table 11 the standard deviation and average performance for a selection
of models is shown, taken over 3 runs. Observe that these standard deviations are small compared to
the reported differences between the models. Notice that standard deviations for coupling models are
larger, but the performance difference between those types of models is also larger.

Table 11: Average and standard deviations of several models.
Dequantization Flow type Dataset average stdev

Argmax Flow (ours) AR text8 1.38 0.001
Argmax Flow (ours) AR enwik8 1.42 0.008
Argmax Flow (ours) Coupling text8 1.82 0.017
Argmax Flow (ours) Coupling enwik8 1.93 0.012

Finally, we also compare argmax flows to a situation where its density model exactly matches the
density model in (Lippe and Gavves, 2020) on text8. In this experiment Argmax Flows (1.43 bpc)
outperform CategoricalNF (1.45 bpc) in an equal setting.
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E Samples from the text models

Samples from our proposed models are presented in Table 12 and a Multinomial Text Diffusion train
is shown in Figure 7, these results were not cherry-picked.

Table 12: Samples from models trained on text8.
Model Nr Text
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Figure 7: Intermediate steps of the generation chain of the Multinomial Text Diffusion model trained
on text8.
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