Supplementary material:
 Global Convergence of Online Optimization for Nonlinear
 Model Predictive Control

A Expression of Newton System

For future references, we explicitly write out each component of (3). For stage k, we let $H_{k}\left(\boldsymbol{z}_{k}, \boldsymbol{\lambda}_{k}\right)=$ $\nabla_{\boldsymbol{z}_{k}}^{2}\left(g_{k}\left(\boldsymbol{z}_{k}\right)-\boldsymbol{\lambda}_{k}^{T} f_{k}\left(\boldsymbol{z}_{k}\right)\right), A_{k}\left(\boldsymbol{z}_{k}\right)=\nabla_{\boldsymbol{x}_{k}}^{T} f_{k}\left(\boldsymbol{z}_{k}\right)$ and $B_{k}\left(\boldsymbol{z}_{k}\right)=\nabla_{\boldsymbol{u}_{k}}^{T} f_{k}\left(\boldsymbol{z}_{k}\right)$. Then, we have

$$
\begin{equation*}
H^{t}\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t}\right)=\operatorname{diag}\left(H_{t}, \ldots, H_{M_{t}-1}, \nabla_{\boldsymbol{x}_{M_{t}}}^{2} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}}, \mathbf{0}\right)+\mu I\right) \tag{12}
\end{equation*}
$$

with $H_{k}=H_{k}\left(\boldsymbol{z}_{k}, \boldsymbol{\lambda}_{k}\right)$ for $k \in\left[t, M_{t}-1\right]$, and have

$$
G^{t}\left(\tilde{\boldsymbol{z}}_{t}\right)=\left(\begin{array}{cccc}
{ }^{I} & & & \tag{13}\\
-A_{t}-B_{t} & I & \\
& -A_{t+1}-B_{t+1} & I & \\
& & \ddots & \ddots \\
& & & -A_{M_{t}-1}-B_{M_{t}-1} I
\end{array}\right)
$$

with $A_{k}=A_{k}\left(\boldsymbol{z}_{k}\right)$ and $B_{k}=B_{k}\left(\boldsymbol{z}_{k}\right)$. The gradient of Lagrangian $\mathcal{L}^{t}(\cdot)$ on the right side of (3) can be expressed as

$$
\begin{align*}
& \nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t}\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t} ; \overline{\boldsymbol{x}}_{t}\right)=\left(\begin{array}{c}
\nabla_{\boldsymbol{x}_{t}} g_{t}\left(\boldsymbol{z}_{t}\right)+\boldsymbol{\lambda}_{t-1}-A_{t}^{T}\left(\boldsymbol{z}_{t}\right) \boldsymbol{\lambda}_{t} \\
\nabla_{u_{t}} g_{t}\left(\boldsymbol{z}_{t}\right)-B_{t}^{T}\left(\boldsymbol{z}_{t}\right) \boldsymbol{\lambda}_{t} \\
\vdots \\
\nabla_{\boldsymbol{x}_{M_{t}-1}} g_{M_{t}-1}\left(\boldsymbol{z}_{M_{t}-1}\right)+\boldsymbol{\lambda}_{M_{t}-2}-A_{M_{t}-1}^{T}\left(\boldsymbol{z}_{M_{t}-1}\right) \boldsymbol{\lambda}_{M_{t}-1} \\
\nabla_{u_{M_{t}-1}} g_{M_{t}-1}\left(\boldsymbol{z}_{M_{t}-1}\right)-B_{M_{t}-1}^{T}\left(\boldsymbol{z}_{M_{t}-1}\right) \boldsymbol{\lambda}_{M_{t}-1} \\
\nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}-1}+\mu \boldsymbol{x}_{M_{t}}
\end{array}\right), \tag{14}\\
& \nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t}\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t} ; \overline{\boldsymbol{x}}_{t}\right)=\left(\begin{array}{c}
\boldsymbol{x}_{t}-\overline{\boldsymbol{x}}_{t} \\
\boldsymbol{x}_{t+1}-f_{t}\left(\boldsymbol{z}_{t}\right) \\
\vdots \\
\boldsymbol{x}_{M_{t}}-f_{M_{t}-1}\left(\boldsymbol{z}_{t}\right)
\end{array}\right) .
\end{align*}
$$

We also explicitly write out the gradient of the augmented Lagrangian (5) by

$$
\binom{\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}_{\eta}^{t}}{\nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}_{\eta}^{t}}=\left(\begin{array}{cc}
I+\eta_{2} H^{t} & \eta_{1}\left(G^{t}\right)^{T} \tag{15}\\
\eta_{2} G^{t} & I
\end{array}\right)\binom{\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t}}{\nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t}} .
$$

B Proof of Theorem 4.4

We first have a simple observation: by Assumptions 4.1 4.2 for any $\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t}\right) \in \mathcal{Z} \otimes \Lambda\left(\right.$ by $\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t}\right) \in$ $\mathcal{Z} \otimes \Lambda$ we mean $\left(\tilde{\boldsymbol{z}}_{k, t}, \tilde{\boldsymbol{\lambda}}_{k, t}\right) \in \mathcal{Z} \times \Lambda$ for all stages k of the t-th subproblem), $\left\|G^{t}\left(\tilde{\boldsymbol{z}}_{t}\right)\right\| \leq 1+2 \Upsilon$, $\left\|H^{t}\left(\tilde{z}_{t}, \tilde{\boldsymbol{\lambda}}_{t}\right)\right\| \leq \Upsilon^{\prime}+\mu$, and

$$
\begin{equation*}
\left\|\nabla\left(\left(G^{t}\right)^{T} \nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t}\right)\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t} ; \overline{\boldsymbol{x}}_{t}\right)\right\| \leq \Upsilon^{\prime}, \quad\left\|\nabla\left(H^{t} \nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t}\right)\left(\tilde{\boldsymbol{z}}_{t}, \tilde{\boldsymbol{\lambda}}_{t} ; \overline{\boldsymbol{x}}_{t}\right)\right\| \leq \Upsilon^{\prime} \tag{16}
\end{equation*}
$$

for some constant Υ^{\prime} not depending on μ. This is from the definitions (12)-14) and noting that only the last block of H^{t} and the last row of $\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t}$ contain μ. We can also replace Υ in Assumption 4.2 by $\Upsilon \leftarrow(1+2 \Upsilon) \vee \Upsilon^{\prime} \vee \delta$ and require $\mu \geq \Upsilon$. Then we have $\left\|G^{t}\right\| \leq \Upsilon,\left\|B^{t}\right\| \vee\left\|H^{t}\right\| \leq 2 \mu$, $\left\|\nabla\left(\left(G^{t}\right)^{T} \nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t}\right)\right\| \leq \Upsilon$, and $\left\|\nabla\left(H^{t} \nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t}\right)\right\| \leq 2 \mu^{2}$. By the definition of H^{t} in (12), without loss of generality we let the last block of B^{t} be μI.

We then provide a formula for the KKT matrix inverse. We suppress the index t since the results hold for any $t \geq 0$.
Lemma B.1. Let $G^{T}=Y K$ where Y has orthonormal columns that span $\operatorname{Im}\left(G^{T}\right)$ and K is a nonsingular square matrix (since G^{T} has full column rank), and let Z have orthonormal columns that span $\operatorname{Ker}(G)$. If $Z^{T} B Z$ is invertible, then

$$
S:=\left(\begin{array}{cc}
B & G^{T} \\
G & \mathbf{0}
\end{array}\right)^{-1}=\left(\begin{array}{cc}
S_{1} & S_{2}^{T} \\
S_{2} & S_{3}
\end{array}\right)
$$

where

$$
\begin{aligned}
& S_{1}=Z\left(Z^{T} B Z\right)^{-1} Z^{T} \\
& S_{2}=K^{-1} Y^{T}\left(I-B Z\left(Z^{T} B Z\right)^{-1} Z^{T}\right) \\
& S_{3}=K^{-1} Y^{T}\left(B Z\left(Z^{T} B Z\right)^{-1} Z^{T} B-B\right) Y K^{-1}
\end{aligned}
$$

Under Assumption 4.2, we have $\|S\| \leq 5 \Upsilon^{2} \mu^{2} / \gamma_{R H}$.
Given Lemma B.1, we apply (3) and (15) and have

$$
\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}_{\eta}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\eta}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}=-\binom{\nabla_{\tilde{\tilde{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}^{T}\left(\begin{array}{cc}
B & G^{T} \\
G & \mathbf{0}
\end{array}\right)^{-1}\left(\begin{array}{cc}
I+\eta_{2} H & \eta_{1} G^{T} \\
\eta_{2} G & I
\end{array}\right)\binom{\nabla_{\tilde{\tilde{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}} .
$$

By Lemma B.1 we define $W=I-Z\left(Z^{T} B Z\right)^{-1} Z^{T} B$ and have

$$
\begin{align*}
\left(\begin{array}{cc}
B & G^{T} \\
G & \mathbf{0}
\end{array}\right)^{-1} & \left(\begin{array}{cc}
I+\eta_{2} H & \eta_{1} G^{T} \\
\eta_{2} G & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
\eta_{2} I+Z\left(Z^{T} B Z\right)^{-1} Z^{T}\left\{I+\eta_{2}(H-B)\right\} & W Y\left(K^{-1}\right)^{T} \\
K^{-1} Y^{T} W^{T}\left\{I+\eta_{2}(H-B)\right\} & \eta_{1} I-K^{-1} Y^{T} B W Y\left(K^{-1}\right)^{T}
\end{array}\right) \\
& =: W_{1}+W_{2}+W_{3}, \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
W_{1} & =\left(\begin{array}{cc}
\frac{\eta_{2}}{2} I & \mathbf{0} \\
\mathbf{0} & \frac{\eta_{1}}{2} I
\end{array}\right), \\
W_{2} & =\left(\begin{array}{cc}
\frac{\eta_{2}}{2} I & W Y\left(K^{-1}\right)^{T} \\
K^{-1} Y^{T} W^{T} & \frac{\eta_{1}}{2} I-K^{-1} Y^{T} B W Y\left(K^{-1}\right)^{T}
\end{array}\right), \\
W_{3} & =\left(\begin{array}{cc}
Z\left(Z^{T} B Z\right)^{-1} Z^{T}\left\{I+\eta_{2}(H-B)\right\} & \mathbf{0} \\
\eta_{2} K^{-1} Y^{T} W^{T}(H-B) & \mathbf{0}
\end{array}\right)
\end{aligned}
$$

We deal with each term separately. First, we have

$$
\begin{align*}
&\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}^{T} W_{3}\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}} \\
&= \nabla_{\tilde{\tilde{z}}}^{T} \mathcal{L}^{0} Z\left(Z^{T} B Z\right)^{-1} Z^{T} \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}+\eta_{2} \nabla_{\tilde{\boldsymbol{z}}}^{T} \mathcal{L}^{0} Z\left(Z^{T} B Z\right)^{-1} Z^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&+\eta_{2} \nabla_{\tilde{\boldsymbol{\lambda}}}^{T} \mathcal{L}^{0} K^{-1} Y^{T} W^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&=(\Delta \tilde{\boldsymbol{z}})^{T} B Z\left(Z^{T} B Z\right)^{-1} Z^{T} B \Delta \tilde{\boldsymbol{z}}-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T} B Z\left(Z^{T} B Z\right)^{-1} Z^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T} Y Y^{T} W^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&=(\Delta \tilde{\boldsymbol{z}})^{T} B Z\left(Z^{T} B Z\right)^{-1} Z^{T} B \Delta \tilde{\boldsymbol{z}}-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T}\left(I-W^{T}\right)(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T} Y Y^{T} W^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
&=(\Delta \tilde{\boldsymbol{z}})^{T} B Z\left(Z^{T} B Z\right)^{-1} Z^{T} B \Delta \tilde{\boldsymbol{z}}-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \tag{18}
\end{align*}
$$

Here, the second equality is due to the KKT system (3) and the fact that $G Z=\mathbf{0}$; the third equality is due to the definition of W; and the fourth equality is due to $Y Y^{T} W^{T}=W^{T}$. Let us decompose $\Delta \tilde{\boldsymbol{z}}=\Delta \tilde{\boldsymbol{v}}+\Delta \tilde{\boldsymbol{u}}$, where $\Delta \tilde{\boldsymbol{v}}=Z \Delta \boldsymbol{v}$ is a vector in $\operatorname{Im}(Z)$, and $\Delta \tilde{\boldsymbol{u}}=G^{T} \Delta \boldsymbol{u}$ is a vector in $\operatorname{Im}\left(G^{T}\right)$. Since $G \Delta \tilde{\boldsymbol{z}}=-\nabla_{\tilde{\lambda}} \mathcal{L}^{0}$ from (3), we know $\Delta \boldsymbol{u}=-\left(G G^{T}\right)^{-1} \nabla_{\tilde{\lambda}} \mathcal{L}^{0}$ and hence $\Delta \tilde{\boldsymbol{u}}=-G^{T}\left(G G^{T}\right)^{-1} \nabla_{\tilde{\lambda}} \mathcal{L}^{0}=-Y\left(K^{-1}\right)^{T} \nabla_{\tilde{\lambda}} \mathcal{L}^{0}$. Plugging the decomposition into (18), we have

$$
\begin{aligned}
\binom{\nabla_{\tilde{z}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}^{T} & W_{3}\binom{\nabla_{\tilde{z}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}} \\
= & (\Delta \boldsymbol{v})^{T} Z^{T} B Z \Delta \boldsymbol{v}-2(\Delta \boldsymbol{v})^{T} Z^{T} B Y\left(K^{-1}\right)^{T} \nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}-\eta_{2}(\Delta \tilde{\boldsymbol{z}})^{T}(H-B) \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0} \\
& +\nabla_{\tilde{\boldsymbol{\lambda}}}^{T} \mathcal{L}^{0} K^{-1} Y^{T} B Z\left(Z^{T} B Z\right)^{-1} Z^{T} B Y\left(K^{-1}\right)^{T} \nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0} \\
\geq & \gamma_{R H}\|\Delta \boldsymbol{v}\|^{2}-4 \mu \Upsilon\|\Delta \boldsymbol{v}\|\left\|\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}\right\|-\eta_{2} \delta\|\Delta \tilde{\boldsymbol{z}}\|\left\|\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}\right\|
\end{aligned}
$$

$$
\begin{aligned}
& \geq \frac{\gamma_{R H}}{2}\|\Delta \boldsymbol{v}\|^{2}-\frac{8 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}\left\|\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}\right\|^{2}-\eta_{2} \delta^{2}\|\Delta \tilde{\boldsymbol{z}}\|^{2}-\frac{\eta_{2}}{4}\left\|\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}\right\|^{2} \\
& =\frac{\gamma_{R H}}{2}\|\Delta \boldsymbol{v}\|^{2}-\frac{8 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}\left\|\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}\right\|^{2}-\eta_{2} \delta^{2}\left(\|\Delta \boldsymbol{v}\|^{2}+\|\Delta \tilde{\boldsymbol{u}}\|^{2}\right)-\frac{\eta_{2}}{4}\left\|\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}\right\|^{2} \\
& \geq\left(\frac{\gamma_{R H}}{2}-\eta_{2} \delta^{2}\right)\|\Delta \boldsymbol{v}\|^{2}-\left(\frac{8 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}+\eta_{2} \delta^{2} \Upsilon^{2}\right)\left\|\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}\right\|^{2}-\frac{\eta_{2}}{4}\left\|\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}\right\|^{2}
\end{aligned}
$$

where the second and fifth inequalities are due to Assumption 4.2 , which implies $\left\|K^{-1}\right\| \leq \Upsilon,\|B\| \vee$ $\|H\| \leq 2 \mu$; the third inequality is due to Young's inequality; and the fourth equality is due to $\|\Delta \tilde{\boldsymbol{z}}\|^{2}=\|\Delta \tilde{\boldsymbol{v}}\|^{2}+\|\Delta \tilde{\boldsymbol{u}}\|^{2}=\|\Delta \boldsymbol{v}\|^{2}+\|\Delta \tilde{\boldsymbol{u}}\|^{2}$. Using the above display and supposing

$$
\begin{equation*}
\frac{\gamma_{R H}}{2}-\eta_{2} \delta^{2} \geq 0 \Longleftrightarrow \eta_{2} \leq \frac{\gamma_{R H}}{2 \delta^{2}} \tag{19}
\end{equation*}
$$

we further have

$$
\begin{align*}
\binom{\nabla_{\tilde{z}} \mathcal{L}^{0}}{\nabla_{\tilde{\lambda}} \mathcal{L}^{0}}^{T} W_{3}\binom{\nabla_{\tilde{z}} \mathcal{L}^{0}}{\nabla_{\tilde{\lambda}} \mathcal{L}^{0}} & \geq-\left(\frac{8 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}+\frac{\gamma_{R H} \Upsilon^{2}}{2}\right)\left\|\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}\right\|^{2}-\frac{\eta_{2}}{4}\left\|\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}\right\|^{2} \\
& \geq-\frac{9 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}\left\|\nabla_{\tilde{\lambda}} \mathcal{L}^{0}\right\|^{2}-\frac{\eta_{2}}{4}\left\|\nabla_{\tilde{z}} \mathcal{L}^{0}\right\|^{2} \tag{20}
\end{align*}
$$

Let us now deal with W_{2}. By Schur complement, in order to show $W_{2} \succeq \mathbf{0}$, we only have to let

$$
\begin{equation*}
\frac{\eta_{1}}{2} I-K^{-1} Y^{T} B W Y\left(K^{-1}\right)^{T}-\frac{2}{\eta_{2}} K^{-1} Y^{T} W^{T} W Y\left(K^{-1}\right)^{T} \succeq \mathbf{0} \tag{21}
\end{equation*}
$$

Note that $-K^{-1} Y^{T} B W Y\left(K^{-1}\right)^{T} \succeq-K^{-1} Y^{T} B Y\left(K^{-1}\right)^{T}$ and

$$
\begin{aligned}
\| K^{-1} Y^{T} B Y\left(K^{-1}\right)^{T} & +\frac{2}{\eta_{2}} K^{-1} Y^{T} W^{T} W Y\left(K^{-1}\right)^{T}\left\|\leq 2 \mu \Upsilon^{2}+\frac{2 \Upsilon^{2}}{\eta_{2}}\right\| W \|^{2} \\
& \leq 2 \mu \Upsilon^{2}+\frac{2 \Upsilon^{2}}{\eta_{2}}\left(1+\frac{2 \mu}{\gamma_{R H}}\right)^{2}=2 \mu \Upsilon^{2}+\frac{2 \Upsilon^{2}}{\eta_{2}}+\frac{8 \mu \Upsilon^{2}}{\eta_{2} \gamma_{R H}}+\frac{8 \mu^{2} \Upsilon^{2}}{\eta_{2} \gamma_{R H}^{2}} \\
& \leq \frac{12 \mu \Upsilon^{2}}{\eta_{2} \gamma_{R H}}+\frac{8 \mu^{2} \Upsilon^{2}}{\eta_{2} \gamma_{R H}^{2}} \leq \frac{16 \mu^{2} \Upsilon^{2}}{\eta_{2} \gamma_{R H}^{2}}
\end{aligned}
$$

where the fifth inequality supposes $\gamma_{R H} \leq \sqrt{2} \delta$ (without loss of generality, since δ is upper bound and $\gamma_{R H}$ is lower bound in Assumption 4.2) so that $\eta_{2} \gamma_{R H} \leq 1$; and the last inequality uses $\mu \geq 2 \gamma_{R H}$. Thus, we only have to let

$$
\begin{equation*}
\frac{\eta_{1}}{2} \geq \frac{16 \mu^{2} \Upsilon^{2}}{\eta_{2} \gamma_{R H}^{2}} \Longleftrightarrow \eta_{1} \eta_{2} \geq \frac{32 \mu^{2} \Upsilon^{2}}{\gamma_{R H}^{2}} \tag{22}
\end{equation*}
$$

then (21) is satisfied and $W_{2} \succeq \mathbf{0}$. Combining (17), (20), and noting that W_{1} is a diagonal matrix, we obtain that under (19) and (22),

$$
\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}_{\eta}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\eta}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}} \leq-\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}^{T}\left(\begin{array}{cc}
\frac{\eta_{2}}{4} & \mathbf{0} \\
\mathbf{0} & \frac{\eta_{1}}{2}-\frac{9 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}
\end{array}\right)\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}} .
$$

Using $\gamma_{R H} \leq 6 \mu \delta \Upsilon$, we can easily check that, as long as $\eta=\left(\eta_{1}, \eta_{2}\right)$ satisfies

$$
\eta_{1} \geq \frac{25 \mu^{2} \Upsilon^{2}}{\gamma_{R H}}=: \tau_{1}, \quad \eta_{2} \leq \frac{\gamma_{R H}}{2 \delta^{2}}=: \tau_{2}, \quad \eta_{1} \eta_{2} \geq \frac{32 \mu^{2} \Upsilon^{2}}{\gamma_{R H}^{2}}=: \tau_{3}
$$

we have

$$
\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}_{\eta}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\eta}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}} \leq-\frac{\eta_{2}}{4}\left\|\binom{\nabla_{\tilde{\tilde{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}\right\|^{2}
$$

This completes the proof of the first part of the statement. For the second part of the statement. We note that $\eta_{2}^{0}=1$ and each While loop decreases η_{2}^{0} by ρ. Thus, to satisfy $\eta_{2} \leq \tau_{2}$, the number of the
required While loop iterations \mathcal{T} only need satisfy $\rho^{\mathcal{T}} \geq 1 / \tau_{2}$. For the similar reason, we require $\rho^{\mathcal{T}} \geq \tau_{3} / \mu^{2}$ and $\rho^{\mathcal{T}} \geq \sqrt{\tau_{1} / \mu^{2}}$. Combining them together, we know if \mathcal{T} satisfies

$$
\rho^{\mathcal{T}} \geq\left(\frac{1}{\tau_{2}} \vee \frac{\tau_{3}}{\mu^{2}} \vee \sqrt{\frac{\tau_{1}}{\mu^{2}}}\right)=\frac{32 \Upsilon^{2}}{\gamma_{R H}^{2}}
$$

then no other iterations will go into the While loop again. Thus, we know $\rho^{\mathcal{T}} \leq \frac{32 \Upsilon^{2} \rho}{\gamma_{R H}^{2}}$. Moreover,

$$
\bar{\eta}_{2}=1 / \rho^{\mathcal{T}} \geq \frac{\gamma_{R H}}{32 \Upsilon^{2} \rho}, \quad \text { and } \quad \bar{\eta}_{1}=\mu^{2}\left(\rho^{\mathcal{T}}\right)^{2} \leq \frac{32^{2} \rho^{2} \mu^{2} \Upsilon^{4}}{\gamma_{R H}^{4}}
$$

This completes the second part of the statement.

C Proof of Lemma B. 1

We note that $Y Y^{T}+Z Z^{T}=I$. Thus, $Y Y^{T}\left(I-B Z\left(Z^{T} B Z\right)^{-1} Z^{T}\right)=I-B Z\left(Z^{T} B Z\right)^{-1} Z^{T}$. Using this observation, the formula of S can be verified directly by checking $S S^{-1}=I$. Moreover, under Assumption 4.2, we know

$$
\left\|\left(Z^{T} B Z\right)^{-1}\right\| \leq 1 / \gamma_{R H}, \quad\left\|K^{-1}\right\| \leq \Upsilon, \quad \text { and } \quad\|B\| \leq 2 \mu
$$

Therefore,

$$
\|S\| \leq\left\|S_{1}\right\|+2\left\|S_{2}\right\|+\left\|S_{3}\right\| \leq \frac{1}{\gamma_{R H}}+2 \Upsilon\left(1+\frac{2 \mu}{\gamma_{R H}}\right)+\Upsilon^{2}\left(\frac{4 \mu^{2}}{\gamma_{R H}}+2 \mu\right)
$$

Without loss of generality, we suppose $\Upsilon \geq 4$ and $\mu \geq 2\left(\gamma_{R H}+1\right)$. Then

$$
\|S\| \leq \frac{1}{\gamma_{R H}}+\frac{6 \Upsilon \mu}{\gamma_{R H}}+2 \mu \Upsilon^{2}+\frac{4 \Upsilon^{2} \mu^{2}}{\gamma_{R H}} \leq \frac{\Upsilon^{2} \mu^{2}}{\gamma_{R H}}+\frac{4 \Upsilon^{2} \mu^{2}}{\gamma_{R H}} \leq \frac{5 \Upsilon^{2} \mu^{2}}{\gamma_{R H}}
$$

This completes the proof.

D Proof of Theorem 4.5

We drop off the index t for simplicity. By the definition of $\mathcal{L}_{\eta}(\cdot)$ in (5), we have

$$
\nabla^{2} \mathcal{L}_{\eta}(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{\lambda}} ; \overline{\boldsymbol{x}})=\left(\begin{array}{cc}
H+\eta_{2} \nabla_{\tilde{\boldsymbol{z}}}\left(H \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}\right)+\eta_{1} \nabla_{\tilde{\boldsymbol{z}}}\left(G^{T} \nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}\right) & \eta_{2} \nabla_{\tilde{\boldsymbol{\lambda}}}^{T}\left(H \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}\right)+G^{T} \\
\eta_{2} \nabla_{\tilde{\boldsymbol{\lambda}}}\left(H \nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}\right)+G & \eta_{2} G G^{T}
\end{array}\right)
$$

Using Assumption 4.2, (16), and Theorem 4.4, we know

$$
\left\|\nabla^{2} \mathcal{L}_{\eta}(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{\lambda}} ; \overline{\boldsymbol{x}})\right\| \leq 4 \bar{\eta}_{1} \Upsilon \leq \frac{32^{2} \rho^{2} \mu^{2} \Upsilon^{5}}{\gamma_{R H}}=: \mu^{2} \Upsilon^{\prime}
$$

Therefore, by Taylor expansion

$$
\begin{equation*}
\mathcal{L}_{\tilde{\eta}}^{1} \leq \mathcal{L}_{\tilde{\eta}}^{0}+\alpha\binom{\nabla_{\tilde{z}} \mathcal{L}_{\bar{\eta}}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\tilde{\eta}}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}+\frac{\mu^{2} \Upsilon^{\prime} \alpha^{2}}{2}\left\|\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}\right\|^{2} \tag{23}
\end{equation*}
$$

Moreover, by Lemma B.1 and the condition (7), we further have

$$
\left\|\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}\right\|^{2} \leq \frac{25 \mu^{4} \Upsilon^{4}}{\gamma_{R H}^{2}}\left\|\binom{\nabla_{\tilde{z}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}\right\|^{2} \leq-\frac{100 \mu^{4} \Upsilon^{4}}{\bar{\eta}_{2} \gamma_{R H}}\binom{\nabla_{\tilde{z}} \mathcal{L}_{\tilde{\eta}}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\tilde{\eta}}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}
$$

Plugging the above display into (23),

$$
\mathcal{L}_{\bar{\eta}}^{1} \leq \mathcal{L}_{\bar{\eta}}^{0}+\alpha\left(1-\frac{50 \mu^{6} \Upsilon^{\prime} \Upsilon^{4}}{\bar{\eta}_{2} \gamma_{R H}} \alpha\right)\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}_{\bar{\eta}}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\bar{\eta}}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}}
$$

Thus, as long as

$$
1-\frac{50 \mu^{6} \Upsilon^{\prime} \Upsilon^{4}}{\bar{\eta}_{2} \gamma_{R H}} \alpha \geq \beta \Longleftrightarrow \alpha \leq \frac{(1-\beta) \bar{\eta}_{2} \gamma_{R H}}{50 \mu^{6} \Upsilon^{\prime} \Upsilon^{4}} \Longleftarrow \alpha \leq \frac{(1-\beta) \gamma_{R H}^{2}}{32 \cdot 50 \mu^{6} \Upsilon^{\prime} \Upsilon^{6}}=: \bar{\alpha}^{\prime}
$$

then Armijo condition (6) is satisfied. Thus, if we use backtracking line search, the selected stepsize $\alpha \geq \nu \bar{\alpha}^{\prime}=: \bar{\alpha}$ for some $\nu \in(0,1)$. Moreover, by Armijo condition,

$$
\mathcal{L}_{\tilde{\eta}}^{1} \leq \mathcal{L}_{\bar{\eta}}^{0}+\alpha \beta\binom{\nabla_{\tilde{\boldsymbol{z}}} \mathcal{L}_{\tilde{\eta}}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}_{\bar{\eta}}^{0}}^{T}\binom{\Delta \tilde{\boldsymbol{z}}}{\Delta \tilde{\boldsymbol{\lambda}}} \leq \mathcal{L}_{\bar{\eta}}^{0}-\frac{\bar{\eta}_{2} \bar{\alpha} \beta}{4}\left\|\binom{\nabla_{\tilde{\tilde{z}}} \mathcal{L}^{0}}{\nabla_{\tilde{\boldsymbol{\lambda}}} \mathcal{L}^{0}}\right\|^{2}
$$

This completes the proof.

E Proof of Lemma 4.6

By the definition (5), we know

$$
\begin{align*}
& \mathcal{L}_{\bar{\eta}}^{t, 1}-\mathcal{L}_{\bar{\eta}}^{t+1,0} \\
& =\mathcal{L}^{t, 1}-\mathcal{L}^{t+1,0}+\frac{\bar{\eta}_{1}}{2}\left(\left\|\nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t, 1}\right\|^{2}-\left\|\nabla_{\tilde{\lambda}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2}\right)+\frac{\bar{\eta}_{2}}{2}\left(\left\|\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t, 1}\right\|^{2}-\left\|\nabla_{\tilde{\boldsymbol{z}}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2}\right) \\
& =\text { Term }_{1}+\text { Term }_{2}+\text { Term }_{3} . \tag{24}
\end{align*}
$$

Let us deal with each term separately. For Term_{1}, we apply the definition of Lagrangian function, the transition (8), and the fact that $g(\mathbf{0}, \mathbf{0})=0$. Then

$$
\begin{aligned}
\mathcal{L}^{t+1,0}= & \sum_{k=t+1}^{M_{t}}\left\{g_{k}\left(\boldsymbol{z}_{k, t+1}^{0}\right)+\left(\boldsymbol{\lambda}_{k-1, t+1}^{0}\right)^{T} \boldsymbol{x}_{k, t+1}^{0}-\left(\boldsymbol{\lambda}_{k, t+1}^{0}\right)^{T} f_{k}\left(\boldsymbol{z}_{k, t+1}^{0}\right)\right\}+g_{M_{t}+1}\left(\boldsymbol{x}_{M_{t}+1, t+1}^{0}, \mathbf{0}\right) \\
& +\frac{\mu}{2}\left\|\boldsymbol{x}_{M_{t}+1, t+1}^{0}\right\|+\left(\boldsymbol{\lambda}_{M_{t}, t+1}^{0}\right)^{T} \boldsymbol{x}_{M_{t}+1, t+1}^{0}-\left(\boldsymbol{\lambda}_{t, t+1}^{0}\right)^{T} \overline{\boldsymbol{x}}_{t+1} \\
= & \sum_{k=t+1}^{M_{t}-1}\left\{g_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)+\left(\boldsymbol{\lambda}_{k-1, t}^{1}\right)^{T} \boldsymbol{x}_{k, t}^{1}-\left(\boldsymbol{\lambda}_{k, t}^{1}\right)^{T} f_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)\right\}+g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\left(\boldsymbol{\lambda}_{M_{t}-1, t}^{1}\right)^{T} \boldsymbol{x}_{M_{t}, t}^{1} \\
& -\left(\boldsymbol{\lambda}_{t, t}^{1}\right)^{T} f_{t}\left(\boldsymbol{z}_{t, t}^{1}\right) .
\end{aligned}
$$

Using the above display, we further have

$$
\begin{align*}
\text { Term }_{1}= & \mathcal{L}^{t, 1}-\mathcal{L}^{t+1,0} \\
= & \sum_{k=t}^{M_{t}-1}\left\{g_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)+\left(\boldsymbol{\lambda}_{k-1, t}^{1}\right)^{T} \boldsymbol{x}_{k, t}^{1}-\left(\boldsymbol{\lambda}_{k, t}^{1}\right)^{T} f_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)\right\}+g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \\
& +\left(\boldsymbol{\lambda}_{M_{t}-1, t}^{1}\right)^{T} \boldsymbol{x}_{M_{t}, t}^{1}-\left(\boldsymbol{\lambda}_{t-1, t}^{1}\right)^{T} \overline{\boldsymbol{x}}_{t}-\mathcal{L}^{t+1,0} \\
= & g_{t}\left(\boldsymbol{z}_{t, t}^{1}\right)+\left(\boldsymbol{\lambda}_{t-1, t}^{1}\right)^{T}\left(\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right)+\frac{\mu}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \\
\geq & -\left\|\boldsymbol{\lambda}_{t-1, t}^{1}\right\|\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|+\frac{\mu}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \\
\geq & -C\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|^{2}+\frac{\mu}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \tag{25}
\end{align*}
$$

where the last inequality is due to Assumption 4.3 (ii). For Term $_{2}$, we apply the formula (14) and the transition (8). We have

$$
\begin{aligned}
\left\|\nabla_{\tilde{\boldsymbol{\lambda}}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2} & =\sum_{k=t+1}^{M_{t}}\left\|\boldsymbol{x}_{k+1, t+1}^{0}-f_{k}\left(\boldsymbol{z}_{k, t+1}^{0}\right)\right\|^{2}+\left\|\boldsymbol{x}_{t+1, t+1}^{0}-\overline{\boldsymbol{x}}_{t+1}\right\|^{2} \\
& =\sum_{k=t+1}^{M_{t}-1}\left\|\boldsymbol{x}_{k+1, t}^{1}-f_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)\right\|^{2}+\left\|f_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)\right\|^{2}+\left\|\boldsymbol{x}_{t+1, t}^{1}-f_{t}\left(\boldsymbol{z}_{t, t}^{1}\right)\right\|^{2} \\
& =\sum_{k=t}^{M_{t}-1}\left\|\boldsymbol{x}_{k+1, t}^{1}-f_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)\right\|^{2}+\left\|f_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)\right\|^{2}
\end{aligned}
$$

Using the above display, we further have

$$
\begin{align*}
\operatorname{Term}_{2} & =\frac{\bar{\eta}_{1}}{2}\left(\left\|\nabla_{\tilde{\boldsymbol{\lambda}}_{t}} \mathcal{L}^{t, 1}\right\|^{2}-\left\|\nabla_{\tilde{\boldsymbol{\lambda}}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2}\right)=\frac{\bar{\eta}_{1}}{2}\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|^{2}-\frac{\bar{\eta}_{1}}{2}\left\|f_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)\right\|^{2} \\
& \geq \frac{\bar{\eta}_{1}}{2}\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|^{2}-\frac{\bar{\eta}_{1} \Upsilon^{2}}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \tag{26}
\end{align*}
$$

where the last inequality is due to Assumption 4.2. Last, for Term $_{3}$, we apply the formula (14) and the transition (8). We have

$$
\begin{aligned}
\left\|\nabla_{\tilde{\boldsymbol{z}}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2}= & \sum_{k=t+1}^{M_{t}}\left\|\binom{\nabla_{\boldsymbol{x}_{k}} g_{k}\left(\boldsymbol{z}_{k, t+1}^{0}\right)+\boldsymbol{\lambda}_{k-1, t+1}^{0}-A_{k}^{T}\left(\boldsymbol{z}_{k, t+1}^{0}\right) \boldsymbol{\lambda}_{k, t+1}^{0}}{\nabla_{\boldsymbol{u}_{k}} g_{k}\left(\boldsymbol{z}_{k, t+1}^{0}\right)-B_{k}^{T}\left(\boldsymbol{z}_{k, t+1}^{0}\right) \boldsymbol{\lambda}_{k, t+1}^{0}}\right\|^{2} \\
& +\left\|\nabla_{\boldsymbol{x}_{M_{t}+1}} g_{M_{t}+1}\left(\boldsymbol{x}_{M_{t}+1, t+1}^{0}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}, t+1}^{0}+\mu \boldsymbol{x}_{M_{t}+1, t+1}^{0}\right\|^{2} \\
= & \sum_{k=t+1}^{M_{t}-1}\left\|\binom{\nabla_{\boldsymbol{x}_{k}} g_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)+\boldsymbol{\lambda}_{k-1, t}^{1}-A_{k}^{T}\left(\boldsymbol{z}_{k, t}^{1}\right) \boldsymbol{\lambda}_{k, t}^{1}}{\nabla_{\boldsymbol{u}_{k}} g_{k}\left(\boldsymbol{z}_{k, t}^{1}\right)-B_{k}^{T}\left(\boldsymbol{z}_{k, t}^{1}\right) \boldsymbol{\lambda}_{k, t}^{1}}\right\|^{2} \\
& +\left\|\binom{\nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}-1, t}^{1}}{\nabla_{\boldsymbol{u}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)}\right\|^{2} .
\end{aligned}
$$

Using the above display, we further have

$$
\begin{aligned}
\operatorname{Term}_{3} & =\frac{\bar{\eta}_{2}}{2}\left(\left\|\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t, 1}\right\|^{2}-\left\|\nabla_{\tilde{\boldsymbol{z}}_{t+1}} \mathcal{L}^{t+1,0}\right\|^{2}\right) \\
& \geq \frac{\bar{\eta}_{2}}{2}\left(\left\|\nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}-1, t}^{1}+\mu \boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2}-\|\left(\begin{array}{c}
\nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}-1, t}^{1} \\
\nabla_{\boldsymbol{u}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)
\end{array} \|^{2}\right)\right. \\
& \geq \frac{\bar{\eta}_{2}\left(\mu^{2}-\Upsilon^{2}\right)}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2}+\bar{\eta}_{2} \mu\left(\left(\boldsymbol{x}_{M_{t}, t}^{1}\right)^{T} \nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)+\left(\boldsymbol{x}_{M_{t}, t}^{1}\right)^{T} \boldsymbol{\lambda}_{M_{t}-1, t}^{1}\right) \\
& \geq \frac{\bar{\eta}_{2}\left(\mu^{2}-\Upsilon^{2}-2 \mu \Upsilon\right)}{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2}+\bar{\eta}_{2} \mu\left(\boldsymbol{x}_{M_{t}, t}^{1}\right)^{T} \boldsymbol{\lambda}_{M_{t}-1, t}^{1},
\end{aligned}
$$

where the second inequality is due to the definition of $\nabla_{\tilde{\boldsymbol{z}}_{t}} \mathcal{L}^{t, 1}$; and the third and the fourth inequalities are due to Assumption 4.2, which implies $\left\|\nabla_{\boldsymbol{z}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{1}, \mathbf{0}\right)\right\| \leq \Upsilon\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|$. Noting that $\boldsymbol{\lambda}_{M_{t}-1, t}^{0}=\mathbf{0}$ and, by (3),

$$
\mu \Delta \tilde{\boldsymbol{x}}_{M_{t}, t}+\Delta \tilde{\boldsymbol{\lambda}}_{M_{t}-1, t}=-\left(\nabla_{\boldsymbol{x}_{M_{t}}} g_{M_{t}}\left(\boldsymbol{x}_{M_{t}, t}^{0}, \mathbf{0}\right)+\boldsymbol{\lambda}_{M_{t}-1, t}^{0}+\mu \boldsymbol{x}_{M_{t}, t}^{0}\right)=\mathbf{0}
$$

we then have

$$
\left(\boldsymbol{x}_{M_{t}, t}^{1}\right)^{T} \boldsymbol{\lambda}_{M_{t}-1, t}^{1}=-\alpha_{t} \mu\left(\boldsymbol{x}_{M_{t}, t}^{1}\right)^{T} \Delta \tilde{\boldsymbol{x}}_{M_{t}, t}=-\mu\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2}
$$

Suppose $\mu \geq 4 \Upsilon$, then $\mu^{2}-\Upsilon^{2}-2 \mu \Upsilon \geq \mu^{2} / 2$. Together with the above three displays,

$$
\begin{equation*}
\operatorname{Term}_{3} \geq-\bar{\eta}_{2} \mu^{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \tag{27}
\end{equation*}
$$

Combining (24, , 25), 26, and 27), and noting that $\bar{\eta}_{2} \mu^{2} \leq \mu^{2} \leq \bar{\eta}_{1} \Upsilon^{2} / 2$, we have

$$
\begin{aligned}
\mathcal{L}_{\bar{\eta}}^{t, 1}-\mathcal{L}_{\bar{\eta}}^{t+1,0} & \geq\left(\frac{\bar{\eta}_{1}}{2}-C\right)\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|^{2}+\left(\frac{\mu}{2}-\frac{\bar{\eta}_{1} \Upsilon^{2}}{2}-\bar{\eta}_{2} \mu^{2}\right)\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \\
& \geq\left(\frac{\mu^{2}}{2}-C\right)\left\|\boldsymbol{x}_{t, t}^{1}-\overline{\boldsymbol{x}}_{t}\right\|^{2}-\bar{\eta}_{1} \Upsilon^{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} \geq-\bar{\eta}_{1} \Upsilon^{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2}
\end{aligned}
$$

where the last inequality holds if $C \leq \mu^{2} / 2$. By Lemma B.1. Theorem 4.4 and Assumption 4.3 i),

$$
\begin{aligned}
\bar{\eta}_{1} \Upsilon^{2}\left\|\boldsymbol{x}_{M_{t}, t}^{1}\right\|^{2} & \leq \frac{32^{2} \rho^{2} \Upsilon^{6}}{\gamma_{R H}^{4}} \mu^{2} \alpha_{t}^{2}\left\|\Delta \tilde{\boldsymbol{x}}_{M_{t}, t}\right\|^{2}=\frac{32^{2} \rho^{2} \Upsilon^{6}}{\gamma_{R H}^{4}} \alpha_{t}^{2}\left\|\Delta \tilde{\boldsymbol{\lambda}}_{M_{t}-1, t}\right\|^{2} \\
& \leq \frac{32^{2} \rho^{2} \Upsilon^{6}}{\gamma_{R H}^{4}} c^{2}\left\|\left(\Delta \tilde{\boldsymbol{z}}_{t}, \Delta \tilde{\boldsymbol{\lambda}}_{t}\right)\right\|^{2} \leq \frac{32^{2} \rho^{2} \Upsilon^{6} c^{2}}{\gamma_{R H}^{4}}\left\|\nabla \mathcal{L}^{t, 0}\right\|^{2}
\end{aligned}
$$

We require

$$
\begin{aligned}
\frac{32^{2} \rho^{2} \Upsilon^{6} c^{2}}{\gamma_{R H}^{4}} \leq \frac{\bar{\eta}_{2} \bar{\alpha} \beta}{8} & \Longleftarrow \frac{32^{2} \rho^{2} \Upsilon^{6} c^{2}}{\gamma_{R H}^{4}} \leq \frac{\beta \gamma_{R H} \bar{\alpha}}{8 \times 32 \rho \Upsilon^{2}} \\
& \Longleftarrow \frac{32^{2} \rho^{2} \Upsilon^{6} c^{2}}{\gamma_{R H}^{4}} \leq \frac{\beta(1-\beta) \gamma_{R H}^{3}}{20^{2} \times 32^{2} \rho \mu^{6} \Upsilon^{\prime} \Upsilon^{8}} \\
& \Longleftrightarrow c^{2} \lesssim \frac{\gamma_{R H}^{2}}{\kappa^{6}}
\end{aligned}
$$

where the first implication is due to Theorem 4.4, and the second implication is due to Theorem 4.5 Then, we have

$$
\mathcal{L}_{\bar{\eta}}^{t, 1}-\mathcal{L}_{\bar{\eta}}^{t+1,0} \geq-\frac{\bar{\eta}_{2} \bar{\alpha} \beta}{8}\left\|\nabla \mathcal{L}^{t, 0}\right\|^{2}
$$

This completes the proof.

F Proof of Theorem 4.7

Summing over t from τ to ∞ on both sides of (11), we have

$$
\frac{\bar{\eta}_{2} \bar{\alpha} \beta}{8} \sum_{t=\tau}^{\infty}\left\|\nabla \mathcal{L}^{t, 0}\right\|^{2} \leq \mathcal{L}_{\bar{\eta}}^{0, \tau}-\min _{\mathcal{Z} \otimes \Lambda} \mathcal{L}_{\bar{\eta}}(\tilde{\boldsymbol{z}}, \tilde{\boldsymbol{\lambda}} ; \overline{\boldsymbol{x}})<\infty .
$$

Thus, $\left\|\nabla \mathcal{L}^{t, 0}\right\|^{2} \rightarrow 0$ as $t \rightarrow \infty$. We complete the proof.

