
A Additional numerical experiments

In this section, we introduce some additional numerical experiments. We perform numerical sim-
ulations on an environment represented as an MDP with 12 states and 4 actions, i.e. S = 12 and
A = 4. The environment is a 4-by-4 grid world. The action space A is given by {North = 1, South =
2, West = 3, East = 4}. The terminal state is at cell [4, 4] (blue cell). If the agent at the terminal state
and chooses any actions, the next state will be the beginning state at cell [1, 1] and the agent receives
reward +1. The agent is blocked by obstacles in cells [2, 2], [2, 3], [2, 4] and [3, 2] (black cells). The
environment contains a special jump from cell [1, 3] to cell [3, 3] with +1 reward. When the agent at
the cell [1, 3] and chooses action "South", the agent will jump to the cell [3, 3]. Actions that would
take the agent off the grid leave its location unchanged.

Figure 2: 2-d grid world

To add some randomness of the environment, we set that the states transit randomly. After the
environment receives the action signal, the next state may generated by following any of the other
three actions with probability 0.1 separately. For example, if the agent at cell [4, 3] and chooses
action "North", the next state will be [3, 3] with probability 0.7, [4, 2] with probability 0.1, [4, 3] with
probability 0.1, or [4, 4] with probability 0.1. The mean rewards of actions that would take the agent
off the grid or towards the obstacle are 0. The mean rewards of other state-action pairs are 0.2 or
0.4. In this paper, we assume the rewards are bounded by [0, 1]. Thus, we use Bernoulli distribution
to randomize the reward signal. The optimal policy encourages the agent to take the special jump
and reach the terminal state. In the target policy, the agent will reach the terminal state as soon as
possible but avoid to take the special jump. We set the total number of steps H = 10 and the total
number of episodes K = 109. We empirically evaluate the performance of LCB-H attacks against
three efficient RL agents, namely UCB-H [Jin et al., 2018], UCB-B [Jin et al., 2018] and UCBVI-CH
[Azar et al., 2017], respectively.

In Figure 3, we illustrate 1
H -portion white-box attack and LCB-H black-box attack against three

different agents separately and compare the loss and cost of these two attack schemes. For comparison
purposes, we also add the curves for the regret of three agents under no attack. The x-axis uses a
base-10 logarithmic scale and represents the time step t with the total time step T = KH . As same
as the results in Figure 1 the results show that the loss and cost of 1

H -portion white-box attack and
LCB-H black-box attack scale as log(T ). Furthermore the performances of our black-box attack
scheme, LCB-H, nearly matches those of the 1

H -portion white-box attack scheme.

1



10
6

10
7

10
8

10
9

10
10

Time step (t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
10

8

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-H under no attack

(a) Attack UCB-H

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

5

10

15
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCB-B under no attack

(b) Attack UCB-B

10
6

10
7

10
8

10
9

10
10

Time step (t)

0

1

2

3

4

5

6
10

7

Loss of LCB-H black-box attack

Cost of LCB-H black-box attack

Loss of 1/H-portion white-box attack

Cost of 1/H-portion white-box attack

Non-optimal action pull count under no attack

Regret of UCBVI under no attack

(c) Attack UCBVI-CH

Figure 3: Action poisoning attacks against RL agents

B Proofs for the white-box attack

B.1 Proof of Lemma 1

We assume that the agent does not know the attacker’s manipulations and the presence of the attacker.
We can consider the combination of the attack and the environment as a new environment, and the RL
agent interacts with the new environment in the attack setting. We define Q and V as the Q-values
and value functions of the new environment that the RL agent observes. The optimal policy can be
given from the the Bellman optimality equations. Suppose the target policy π† is optimal at step h+ 1

in the observation of the agent. Then, V
∗
h+1(s) = V

†
h+1(s) for all state s, where V represents the

value function in the observation of the agent. Similarly, we set Q as the Q-values in the observation
of the agent. As the attacker does not attack when the agent pick the target action, V

†
h+1 = V †h+1.

For any a 6= π†h(s), from the equation (3), (4) and (6), Q
∗
h is given by

Q
∗
h(s, a) =(1− α)(Rh(s, π†h(s)) + PhV

∗
h+1(s, π†h(s)))

+ α(Rh(s, π−h (s)) + PhV
∗
h+1(s, π−h (s)))

=(1− α)Q†h(s, π†h(s)) + αQ†h(s, π−h (s))

<Q†h(s, π†h(s)) = V †h (s) = Q
†
h(s, π†h(s)).

(13)

We can conclude that if the target policy π† is optimal at step h+ 1 in the observation of the agent,
the target policy π† is also optimal at step h in the observation of the agent. Since V πH+1 = 0 and
QπH+1 = 0, the target policy π† is the optimal policy, from induction on h = H,H − 1, · · · , 1.

B.2 Proof of Theorem 1

Here, we follows the idea of error decomposition proposed in [Yang et al., 2021, He et al., 2020].
We first decomposed the expected regret Regret(K) into the gap of Q-values. Denote by ∆k

h =

V †h (skh)−mina∈AQ
†
h(skh, a) and ∆

k

h = V
†
h(skh)−Q†h(skh, a

k
h).

As shown in Lemma 1, the target policy π† is optimal in the observation of the agent. Thus,

Regret(K) =

K∑
k=1

[V
∗
1(sk1)− V π

k

1 (sk1)] =

K∑
k=1

[V
†
1(sk1)− V π

k

1 (sk1)]. (14)
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For episode k,

V
†
1(sk1)− V π

k

1 (sk1)

=V
†
1(sk1)− Ea∼πk

1 (·|sk1 )[Q
†
1(sk1 , a)|Fk1 ] + Ea∼πk

1 (·|sk1 )[Q
†
1(sk1 , a)|Fk1 ]− V π

k

1 (sk1)

=E[∆
k

1 |Fk1 ] + Es′∼P1(·|sk1 ,a∼πk
1 (·|sk1 ))[(V

†
2 − V

πk

2 )(s′)]

= · · · = E[

H∑
h=1

∆
k

h|Fk1 ]

¬
=E[

H∑
h=1

α∆k
h1(akh 6= π†h(skh))|Fk1 ]

≥α∆minE[

H∑
h=1

1
(
ãkh 6= akh

)
],

(15)

where Fkh represents the σ-field generated by all the random variables until episode k, step h begins,
and the equation ¬ holds due to Q

†
h(skh, a

k
h) = (1− α)Q†h(skh, π

†
h(skh)) + αQ†h(skh, π

−
h (skh)) when

akh 6= π†h(skh), and V
†
h(skh) = V †h (skh).

In the α-portion attack, the attacker attacks only when the agent picks a non-target arm. Thus,
1
(
ãkh 6= akh

)
≤ 1

(
akh 6= π†h(skh)

)
and Cost(K,H) ≤ Loss(K,H).

We can conclude that

E[Cost(K,H)] ≤ E[Loss(K,H)] ≤ Regret(K)

α∆min
. (16)

Before the proof of the upper bound on the loss and the cost, we first introduce an important lemma,
which shows the connections between the expected regret to the loss and the cost.
Lemma 3. For any MDPM = (S,A, H, P,R) and any p ∈ (0, 1), with probability at least 1− p,
we have

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑
k=1

(
V
†
h(skh)− V π

k

h (skh)

)
+ 2H2

√√√√log(1/p)

K∑
k=1

(
V
†
h(skh)− V π

k

h (skh)
)
. (17)

The proof of Lemma 3 is based on the Freedman inequality [Freedman, 1975, Tropp et al., 2011].

Since E[
∑H
h=1 ∆

k

h|Fk1 ] = V
†
1(sk1)−V π

k

1 (sk1), denote byXk =
∑H
h=1 ∆

k

h−
(
V
†
h(skh)− V π

k

h (skh)

)
,

then {Xk}Kk=1 is a martingale difference sequence w.r.t the filtration {Fk1 }k≥1. The difference
sequence is uniformly bounded by |X2

k | ≤ H2. Define the predictable quadratic variation process of
the martingale WK :=

∑K
k=1 E[X2

k |Fk1 ], which is bounded by

WK ≤
K∑
k=1

E
[(

∆
k

h

)2

|Fk1
]
≤

K∑
k=1

H2E
[
∆
k

h|Fk1
]

=

K∑
k=1

H2

(
V
†
h(skh)− V π

k

h (skh)

)
. (18)

By the Freedman’s inequality, we have

P

 K∑
k=1

Xk > 2H2

√√√√log(1/p)

K∑
k=1

(
V
†
h(skh)− V π

k

h (skh)
)

≤ exp


−2H4 log(1/p)

∑K
k=1

(
V
†
h(skh)− V π

k

h (skh)

)
WK +H2 ∗ 2H2

√
log(1/p)

∑K
k=1

(
V
†
h(skh)− V π

k

h (skh)
)
/3


≤ exp {− log(1/p)} = p.

(19)
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Theorem 1 is directly from Lemma 3 and ∆
k

h ≥ α∆min1(π†h(skh) 6= πkh(skh)).

C Proofs for LCB-H attack

C.1 Proof of Lemma 2

At the beginning of the episode k, for any step h ∈ [H] and any (s, a) ∈ S ×A with Nk
h (s, a) 6= 0,

according to Algorithm 1, the estimate of Q-values under the target policy π† are given by

Q̂†h,k(s, a) =
1

Nk
h (s, a)

k−1∑
i=1

1
(
(ãkh, s

k
h) = (s, a)

) (
rkh + ρkh+1:H+1G

k
h+1:H+1

)
. (20)

Note that for any
(
(ãkh, s

k
h) = (s, a)

)
, we have

E[rkh + ρkh+1:H+1G
k
h+1:H+1|ãkh, skh] = Rh(s, a) + Es′∼Ph(·|s,a)[V

†
h+1(s′)] = Q†h(s, a). (21)

Thus, we can apply Hoeffding’s inequality here to bound |Q̂†h,k(s, a)−Q†h(s, a)|. The cumulative
reward is bounded by 0 ≤ Gkh+1:H+1 ≤ H − h and the important sampling ratio is bounded by
0 ≤ ρkh+1:H+1 ≤ e because

ρkh+1:H+1 ≤
(

1

(1− 1
H )

)H−h
≤
(

1

(1− 1
H )

)H−1

≤ e. (22)

By Hoeffding’s inequality, since |rkh + ρkh+1:H+1G
k
h+1:H+1| ≤ e(H − h) + 1, we have

P
(
|Q̂†h,k(s, a)−Q†h(s, a)| > η

)
≤ 2 exp

− η2

2Nk
h (s, a)

(
H−h+1
Nk

h (s,a)

)2

 . (23)

To hold a high-probability confidence bound for any state s, any action a, any step h and any episode k,
set the right hand side of the above inequality to p/SAT . Then, we have η = (e(H−h)+1)

√
2ι

Nk
h (s,a)

and ι = log(2SAT/p).

C.2 Proof of Theorem 2

From Lemma 3, for any MDPM = (S,A, H, P,R) and any p ∈ (0, 1), with probability at least
1− p, we have

K∑
k=1

H∑
h=1

∆
k

h ≤
K∑
k=1

(
V
k,†
h (skh)− V k,π

k

h (skh)

)
+ 2H2

√√√√log(1/p)

K∑
k=1

(
V
†
h(skh)− V k,π

k

h (skh)
)

≤
K∑
k=1

(
V
k,∗
h (skh)− V k,π

k

h (skh)

)
+ 2H2

√√√√log(1/p)

K∑
k=1

(
V
k,∗
h (skh)− V k,π

k

h (skh)
)

=D-Regret(K) + 2H2
√

log(1/p)D-Regret(K).
(24)

Since the LCB-H attacker dose not attack the target action, V
k,†
h (skh) = V †h (skh). Thus, we have

∆
k

h = V
k,†
h (skh) − Qk,†h (skh, a

k
h) = V †h (skh) − Qk,†h (skh, a

k
h). When the agent picks a target action

akh = π†(skh), the attacker does not attack and Q
k,†
h (skh, a

k
h) = V

k,†
h (skh) = V †h (skh). Thus, the left

hand side of the equation (24) can be written as
K∑
k=1

H∑
h=1

∆
k

h =

K∑
k=1

H∑
h=1

1(akh 6= π†h(skh))∆
k

h =
∑

(k,h)∈τ

∆
k

h, (25)
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where τ = {(k, h) ∈ [K]× [H]|akh 6= π†h(skh)}.
At episode k and step h, after the agent picks an action, since the attack scheme is given, we have
Q
k,†
h (skh, a

k
h) = E[Q†h(skh, ã

k
h)|Fk1 , skh, akh]. Furthermore, E[V †h (skh)−Q†h(skh, ã

k
h)|Fk1 , skh, akh] = ∆

k

h.
By the Hoeffding inequality, since |V †h (skh)−Q†h(skh, ã

k
h)| ≤ H , we have

P

 ∑
(k,h)∈τ

(
V †h (skh)−Q†h(skh, ã

k
h)−∆

k

h

)
> η

 ≤ exp

(
− η2

2|τ |H2

)
. (26)

Set the left hand side of the above inequality to p. With probability 1− p, we have,

K∑
k=1

H∑
h=1

∆
k

h ≥
∑

(k,h)∈τ

(
V †h (skh)−Q†h(skh, ã

k
h)
)
−H

√
2|τ | log(1/p). (27)

If ãkh 6= π†h(s) holds, the attacker attacked the agent, and from Lemma 2, we have with probability
1− p,

Q†h(s, π−h (s)) ≥ Lkh(s, π−h (s)) ≥ Lkh(s, ãkh) ≥ Q†h(s, ãkh)− 2(e(H − h) + 1)

√
2ι

Nk
h (skh, ã

k
h)
,

(28)

and 0 ≤ Q†h(s, ãkh)−Q†h(s, π−h (s)) ≤ 2(e(H−h)+1)
√

2ι
Nk

h (skh,ã
k
h)

. If ãkh 6= π†h(s) holds, V †h (skh) =

Q†h(skh, ã
k
h). For the second item in the right hand side of inequality (27), we have with probability

1− p,

∑
(k,h)∈τ

(
V †h (skh)−Q†h(skh, ã

k
h)
)

≥
∑

(k,h)∈τ

1

(
ãkh 6= π†h(s)

)(
∆k
h − 2(e(H − h) + 1)

√
2ι

Nk
h (skh, ã

k
h)

)
.

(29)

For (k, h) ∈ τ , E[1(ãkh 6= π†h(s))|Fkh , (k, h) ∈ τ ] = 1/H . By the Hoeffding inequality, we have
with probability 1− p,

∑
(k,h)∈τ

∣∣∣1(ãkh 6= π†h(s)
)
− 1/H

∣∣∣ ≤√2|τ |log(2/p). (30)
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We regroup the right hand side of inequality (29) in a different way and further∑
(k,h)∈τ

1

(
ãkh 6= π†h(s)

)√
1/Nk

h (skh, ã
k
h)

=
∑
h∈[H]

∑
s∈S

∑
a6=π†h(s)

NK+1
h (s,a)∑
n=1

√
1/n

≤
∑
h∈[H]

∑
s∈S

∑
a6=π†h(s)

(
1 +

∫ NK+1
h (s,a)

n=1

√
1/ndn

)

≤
∑
h∈[H]

∑
s∈S

∑
a6=π†h(s)

2

√
NK+1
h (s, a)

¬
≤2SAH

√∑
h∈[H]

∑
s∈S

∑
a6=π†h(s)N

K+1
h (s, a)

SAH

=2

√
SAH

∑
(k,h)∈τ

1

(
ãkh 6= π†h(s)

)
­
≤2

√
SAH

(
|τ |/H +

√
2|τ |log(2/p)

)
≤2
√
SA|τ |+ 2

√
2SAH|τ |log(2/p),

(31)

where ¬ holds due to the property of the concave function
√
n and ­ holds due to the inequality (30).

In addition, ∑
(k,h)∈τ

1

(
ãkh 6= π†h(s)

)
∆k
h ≥

(
|τ |/H −

√
2|τ |log(2/p)

)
∆min. (32)

Combing (24), (27), (29), (31) and (32), we have

∆min|τ |/H ≤D-Regret(K) + 2H2
√

log(1/p)D-Regret(K) + (H + ∆min)
√

2|τ | log(1/p)

2(e(H − h) + 1)
√

2ι
(

2
√
SA|τ |+ 2

√
2SAH|τ |log(2/p)

)
,

(33)

which is equivalent to

|τ | ≤ H

∆min

(
D-Regret(K) + 2H2

√
log(1/p)D-Regret(K)

)
+

307SAH4ι

∆2
min

. (34)

In addition, Cost(K,H) ≤ Loss(K,H) =
∑K
k=1

∑H
h=1 1(akh 6= π†h(skh)) = |τ |. The proof is

completed.

D Proof of LCB-H attacks on UCB-H

For completeness, we describe the main steps of UCB-H algorithm in Algorithm 2.

Before the proof of Theorem 3, we first introduce our main technical lemma.

We denote by Q
k

h, V
k

h, N
k

h the observations of UCB-H agent at the beginning of episode k. The
lemma below is our main technical lemma that shows the difference between the agent’s observations
Q
k

h and the true Q-values Q†h can be bounded by quantities from the next step.
Lemma 4. Assume the attacker follows the LCB-H attack strategy on the UCB-H agent. Suppose
the constant c in UCB-H algorithm satisfies c > 0. Let βh(t) = (cH + 2(H − h) + 2)

√
Hι/t

when t > 0 and βh(0) = 0 for any step h, and let Bh(t) = (e(H − h) + 1)
√

2ι
t when t > 0

6



Algorithm 2: Q-learning with UCB-Hoeffding [Jin et al., 2018]
1: Initialize Qh(s, a) = 0 and Nh(s, a) = 0 for all state s ∈ S, all action a ∈ A and all step
h ∈ [H].

2: Define αt = H+1
H+t , ι = log(2SAT/p), and set a constant c.

3: for episode k = 1, 2, . . . ,K do
4: Receive s1.
5: for step h = 1, 2, . . . ,H do
6: Take action ah ← arg maxa′ Qh(sh, a

′), and observe sh+1 and rh.
7: t = Nh(sh, ah)← Nh(sh, ah) + 1; bt = c

√
H3ι/t.

8: Qh(sh, ah) = (1− αt)Qh(sh, ah) + αt[rh + Vh+1(sh+1) + bt].
9: Vh(sh)← min{H,maxa′ Qh(sh, a

′)}.
10: end for
11: end for

and Bh(0) = H for any step h. For any p ∈ (0, 1), with probability at least 1− 3p, the following
confidence bounds hold simultaneously for all (s, a, h, k) ∈ S ×A× [H]× [k]:

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
≤ Qkh(s, π†h(s))−Q†h(s, π†h(s))

≤ α0
tH +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+ βh(t),

(35)

and

Q
k

h(s, a)−Q†h(s, π†h(s)) = Q
k

h(s, a)−Q†h(s, π−h (s))−∆h(s)

≤α0
tH +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+ βh(t)

+

t∑
i=1

αit1
(
ãkih 6= π†h(s)

)(
2Bh

(
Nki
h (s, ãkih )

)
−∆h(s)

)
,

(36)

where t = N
k

h(s, a), ∆h(s) := Q†h(s, π†h(s)) − Q†h(s, π−h (s)), and k1, k2, . . . , kt < k are the
episodes in which (s, a) was previously taken by the agent at step h.

By recursing the results in Lemma 4, we can obtained Theorem 3.

D.1 Proof of Lemma 4

Lemma 4 shows the result of the LCB-H attacks on the UCB-H algorithm. Thus, we need to refer
the readers to some settings and the Lemma 4.1 in [Jin et al., 2018]. Note that UCB-H chooses
the learning rate as αt := H+1

H+t . For notational convenience, define α0
t :=

∏t
j=1(1 − αt) and

αit := αi
∏t
j=i+1(1− αt). Here, we introduce some useful properties of αit which were proved in

[Jin et al., 2018]:
(1)
∑t
i=1 α

i
t = 1 and α0

t = 0 for t ≥ 1;
(2)
∑t
i=1 α

i
t = 0 and α0

t = 1 for t = 0;

(3) 1√
t
≤
∑t
i=1

αi
t√
t
≤ 2√

t
for every t ≥ 1;

(4)
∑t
i=1(αit)

2 ≤ 2H
t for every t ≥ 1;

(5)
∑∞
t=i α

i
t ≤ (1 + 1

H ) for every i ≥ 1.

As shown in [Jin et al., 2018], at any (s, a, h, k) ∈ S ×A× [H]× [K], let t = N
k

h(s, a) and suppose
(s, a) was previously taken by the agent at step h of episodes k1, k2, . . . , kt < k. By the update
equations in the UCB-H Algorithm and the definition of αit, we have

Q
k

h(s, a) = α0
tH +

t∑
i=1

αit

(
rkih + V

ki
h+1(skih+1) + bi

)
. (37)
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Then we can bound the difference between Q
k

h and Q†h.

Q
k

h(s, a)−Q†h(s, π−h (s))

=α0
t

(
H −Q†h(s, π−h (s))

)
+

t∑
i=1

αit

(
rkih + V

ki
h+1(skih+1) + bi −Q†h(s, π−h (s))

)
=α0

t (H −Q
†
h(s, π−h (s)) +

t∑
i=1

αit

(
rkih − rh(s, ãkih ) + bi

)
+

t∑
i=1

αit

(
rh(s, ãkih ) + V

ki
h+1(skih+1).−Q†h(s, π−h (s))

)
.

(38)

We can rewrite the third term in the RHS of (38) as follows

rh(s, ãkih ) + V
ki
h+1(skih+1)−Q†h(s, π−h (s))

=rh(s, ãkih ) + V
ki
h+1(skih+1)−Q†h(s, ãkih ) +Q†h(s, ãkih )−Q†h(s, π−h (s))

=V
ki
h+1(skih+1)− PhV †h+1(s, ãkih ) +Q†h(s, ãkih )−Q†h(s, π−h (s))

=V
ki
h+1(skih+1)− V †h+1(skih+1) + V †h+1(skih+1)− PhV †h+1(s, ãkih )

+Q†h(s, ãkih )−Q†h(s, π−h (s)).

(39)

As the result, the difference between Q
k

h and Q†h can be rewritten as

Q
k

h(s, a)−Q†h(s, π−h (s))

=α0
t (H −Q

†
h(s, π−h (s)) +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+

t∑
i=1

αit

(
rkih − rh(s, ãkih ) + V †h+1(skih+1)− PhV †h+1(s, ãkih ) + bi

)
+

t∑
i=1

αit

(
Q†h(s, ãkih )−Q†h(s, π−h (s))

)
(40)

Since E[V †h+1(skh+1)|Fkh ∪ {skh, akh}] = E[V †h+1(skh+1)|skh, akh] = PhV
†
h+1(s, a) for any state-action

pair (skh, a
k
h) = (s, a),

∑t
i=1 α

i
t

(
V †h+1(skih+1)− PhV †h+1(s, ãkih )

)
is the weighted sum of a martin-

gale difference sequence w.r.t the filtration {Fkih }i≥1. By Azuma-Hoeffding inequality, we have

P

(∣∣∣∣∣
t∑
i=1

αit

(
V †h+1(skih+1)− PhV †h+1(s, ãkih )

)∣∣∣∣∣ ≥ η
)
≤ 2 exp

(
− η2

2(H − h)2 2H
t

)
, (41)

where we used
∑t
i=1(αit)

2 ≤ 2H
t a property of αit . By setting the right hand side of the above

equation to p/(SAT ) and t = N
k

h(s, a), we have for each fixed state-action pair (s, a, h) ∈ S ×A×
[H], with probability at least 1− p/(SAH), event E1 holds, where E1 is defined as

E1 := {∀k ∈ [K],∣∣∣∣∣
t∑
i=1

αit

(
V †h+1(skih+1)− PhV †h+1(s, ãkih )

)∣∣∣∣∣ ≤ (H − h)

√
4H log(2SAT/p)

N
k

h(s, a)

}
.

(42)
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Similarly, for each fixed state-action-step pair (s, a, h) ∈ S × A × [H], with probability at least
1− p/(SAH), we have event E2 holds with

E2 :=

{
∀k ∈ [K],

∣∣∣∣∣
t∑
i=1

αit

(
rkih − rh(s, ãkih )

)∣∣∣∣∣ ≤
√

4H log(2SAT/p)

N
k

h(s, a)

}
. (43)

Then if the agent chooses bt = c
√
H3ι/t for some constant c and ι = log(2SAT/p), by the property

(3) of αit, we have bt ≤
∑t
i=1 α

i
tbt ≤ 2bt. Under events E1 and E2, for t ≥ 1,the third term of the

RHS of equation (40) can be bounded by

(cH − 2(H − h)− 2)
√
Hι/t

≤
t∑
i=1

αit

(
rkih − rh(s, ãkih ) + V †h+1(skih+1)− PhV †h+1(s, ãkih ) + bi

)
≤ (cH + 2(H − h) + 2)

√
Hι/t.

(44)

For notational simplicity, let βh(t) = (cH + 2(H − h) + 2)
√
Hι/t when t > 0 and βh(0) = 0 for

any step h.

We split the fourth term of the RHS of equation (40) into two cases.

If ãkh = π†h(s) holds,we have

Q†h(s, ãkh)−Q†h(s, π−h (s)) = Q†h(s, π†h(s))−Q†h(s, π−h (s)). (45)

Let Bh(t) = (e(H − h) + 1)
√

2Sι
t when t > 0 and Bh(0) = H for any step h.

If ãkh 6= π†h(s) holds, the attacker attacked the agent, and from Lemma 2, we have with probability
1− p,

Q†h(s, π−h (s)) ≥ Lkh(s, π−h (s)) ≥ Lkh(s, ãkh) ≥ Q†h(s, ãkh)− 2Bh
(
Nk
h (s, ãkh)

)
, (46)

and 0 ≤ Q†h(s, ãkh)−Q†h(s, π−h (s)) ≤ 2Bh
(
Nk
h (s, ãkh)

)
.

If a = π†h(s), the attacker does not attack so ãkih = a = π†h(s). Then by combining (40) and (44), we
have for c ≥ 2

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
≤ Qkh(s, π†h(s))−Q†h(s, π†h(s))

≤ α0
tH +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+ βh(t).

(47)

Since V
ki
H+1 = V †H+1 = 0, from induction on h = H,H − 1, . . . , 1, we have V

k

h(s) ≥
min{Qkh(s, π†h(s)), H} ≥ V †h (s) for all state s, step h and episode k with probability 1− 2p.

If a 6= π†h(s), the attacker attacks by changing the action to the target action or a possible worst
action. From (40) and (44), we have

Q
k

h(s, a)−Q†h(s, π−h (s))

≤α0
tH +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+ βh(t)

+

t∑
i=1

αit1
(
ãkih = π†h(s)

)(
Q†h(s, π†h(s))−Q†h(s, π−h (s))

)
+

t∑
i=1

αit1
(
ãkih 6= π†h(s)

)
2Bh

(
Nki
h (s, ãkih )

)
,

(48)
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and

Q
k

h(s, a)−Q†h(s, π†h(s)) = Q
k

h(s, a)−Q†h(s, π−h (s))−∆h(s)

≤α0
tH +

t∑
i=1

αit

(
V
ki
h+1(skih+1)− V †h+1(skih+1)

)
+ βh(t)

+

t∑
i=1

αit1
(
ãkih 6= π†h(s)

)(
2Bh

(
Nki
h (s, ãkih )

)
−∆h(s)

)
,

(49)

where ∆h(s) := Q†h(s, π†h(s))−Q†h(s, π−h (s)).

D.2 Proof of Theorem 3

In this section, we assume the two events E1, E2 hold. For any state s ∈ S and any step h ∈ [H],
Lemma 4 shows that in the agent’s observations, Q

k

h(s, π†h(s)) ≥ Q†h(s, π†h(s)) for all episodes k ∈
[K] with probability 1−3p. Since UCB-H takes action by the function akh = arg maxa∈AQ

k

h(skh, a),

we have that with probability 1 − 3p, Q
k

h(skh, a
k
h) ≥ Q

k

h(skh, π
†
h(skh)) ≥ Q†h(skh, π

†
h(skh)) for all

episodes k ∈ [K] and all steps h ∈ [H]. Thus, we can bound the loss and cost functions by

K∑
k=1

H∑
h=1

1
(
akh 6= π†(skh)

)
∆h(skh)

=

K∑
k=1

H∑
h=1

1
(
akh 6= π†(skh)

) (
Q†h(skh, π

†
h(skh))−Q†h(skh, π

−
h (skh))

)
≤

K∑
k=1

H∑
h=1

1
(
akh 6= π†(skh)

) (
Q
k

h(skh, a
k
h)−Q†h(skh, π

−
h (skh))

)
.

(50)

First consider a fixed step h. The contribution of step h to the loss function can be written as
Lossh(K) =

∑K
k=1 1

(
akh 6= π†(skh)

)
. For notational convenience, denote

φkh,h := 1
(
akh 6= π†(skh)

)
and δkh := Q

k

h(skh, a
k
h)−Q†h

(
skh, π

†
h(skh)

)
. (51)

From the update equation of V -values in UCB-H algorithm, we have

V
k

h(skh)− V †h(skh) = min{H,max
a∈A

Q
k

h(skh, a)} − V †h(skh) ≤ δkh. (52)

From Lemma 4, with probability 1− 3p, we have

K∑
k=1

φkh,hδ
k
h ≤

K∑
k=1

φkh,hα
0

N
k
h(skh,a

k
h)
H +

K∑
k=1

φkh,hβh

(
N
k

h(skh, a
k
h)
)

+

K∑
k=1

φkh,h

N
k
h(skh,a

k
h)∑

i=1

αi
N

k
h(skh,a

k
h)
δ
ki(s

k
h,a

k
h,h)

h+1

+

K∑
k=1

φkh,h

N
k
h(skh,a

k
h)∑

i=1

αi
N

k
h(skh,a

k
h)
1

(
ã
ki(s

k
h,a

k
h,h)

h 6= π†h(s
ki(s

k
h,a

k
h,h)

h )
)
·(

2Bh

(
N
ki(s

k
h,a

k
h,h)

h (s
ki(s

k
h,a

k
h,h)

h , ã
ki(s

k
h,a

k
h,h)

h )
)
−∆h(s

ki(s
k
h,a

k
h,h)

h )
)
,

(53)

where ki(s, a, h) represents the episode where (s, a) was taken by the agent at step h for the ith time.

The key step is to upper bound the third term in the RHS of (53). Note that for any episode k, the third
term takes all the prior episodes ki < k where (skh, a

k
h) was taken into account. In other words, for any

episode k′, the term δk
′

h+1 appears in the second term at all posterior episodes k > k′ where (sk
′

h , a
k′

h )
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was taken. The first time it appears we have N
k

h(skh, a
k
h) = N

k

h(sk
′

h , a
k′

h ) = N
k′

h (sk
′

h , a
k′

h ) + 1 and

the second time it appears we have N
k

h(skh, a
k
h) = N

k

h(sk
′

h , a
k′

h ) = N
k′

h (sk
′

h , a
k′

h ) + 2, and so on.
Thus, we exchange the order of summation and have

K∑
k=1

φkh,h

N
k
h(skh,a

k
h)∑

i=1

αi
N

k
h(skh,a

k
h)
δ
ki(s

k
h,a

k
h,h)

h+1

=

K∑
k′=1

δk
′

h+1

N
K
h (sk

′
h ,a

k′
h )∑

t=N
k′
h (sk

′
h ,a

k′
h )+1

φ
kt(s

k′
h ,a

k′
h ,h)

h,h α
N

k′
h (sk

′
h ,a

k′
h )+1

t .

(54)

For any k ∈ [K], let φkh,h+1 =
∑N

K
h (skh,a

k
h)

t=N
k
h(skh,a

k
h)+1

φ
kt(s

k
h,a

k
h)

h,h α
N

k
h(skh,a

k
h)+1

t . The third term in the RHS

of (53) can be simplified as
∑K
k=1 φ

k
h,h+1δ

k
h+1. The fourth term in the RHS of (53) can be simplified

as
K∑
k=1

φkh,h+11

(
ãkh 6= π†h(skh)

) (
2Bh

(
Nk
h (skh, ã

k
h)
)
−∆h(skh)

)
. (55)

Since α0
t = 0 when t ≥ 1,

∑K
k=1 φ

k
h,hα

0

N
k
h(skh,a

k
h)
H ≤ SAH . Thus, we can rewrite (53) as

K∑
k=1

φkh,hδ
k
h ≤SAH +

K∑
k=1

φkh,h+1δ
k
h+1 +

K∑
k=1

φkh,hβh

(
N
k

h(skh, a
k
h)
)

+

K∑
k=1

φkh,h+11

(
ãkh 6= π†h(skh)

) (
2Bh

(
Nk
h (skh, ã

k
h)
)
−∆h(skh)

)
.

(56)

Recursing the result for h′ = h, h + 1, . . . ,H , and using the fact δkH+1 = 0 for all episode k, we
have

K∑
k=1

φkh,hδ
k
h ≤SAH(H − h+ 1) +

H∑
h′=h

K∑
k=1

φkh,h′βh′
(
N
k

h′(s
k
h′ , a

k
h′)
)

+

H∑
h′=h

K∑
k=1

φkh,h′+11

(
ãkh′ 6= π†h′(s

k
h)
)

2Bh′
(
Nk
h′(s

k
h′ , ã

k
h′)
)

−
H∑

h′=h

K∑
k=1

φkh,h′+11

(
ãkh′ 6= π†h′(s

k
h)
)

∆h(skh′).

(57)

Here, we present some important properties of φkh,h′ for all step h′ ≥ h when step h are fixed:

(1)
∑K
k=1 φ

k
h,h =

∑K
k=1 1

(
akh 6= π†(s)

)
= Lossh(K);

(2)
∑K
k=1 φ

k
h,h′ =

∑K
k=1 φ

k
h,h, for all step h′ ≥ h;

(3)maxk∈[K] φ
k
h,h′+1 ≤ (1 + 1

H ) maxk∈[K] φ
k
h,h′ for all step h′ ≥ h;

(4)maxk∈[K] φ
k
h,h = 1, and maxk∈[K] φ

k
h,h′ ≤ e for all step h′ ≥ h.

Property (1) is from the definition of N
k

h(s). Properties (2) and (3) can be proved by the properties of
αit. In particular, for all step h′ ≥ h,

K∑
k=1

φkh,h′+1 =

K∑
k=1

φkh,h′

N
k
h′ (s

k
h′ ,a

k
h′ )∑

i=1

αi
N

k
h′ (s

k
h′ ,a

k
h′ )

=

K∑
k=1

φkh,h′ , (58)
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and for all step h′ ≥ h and all episode k ∈ [K],

φkh,h′+1 =

N
K
h′ (s

k
h′ ,a

k
h′ )∑

t=N
k
h′ (s

k
h′ ,a

k
h′ )+1

φ
kt(s

k
h′ ,a

k
h′ ,h

′)

h,h′ α
N

k
h′ (s

k
h′ ,a

k
h′ )+1

t

≤
N

K
h′ (s

k
h′ ,a

k
h′ )∑

t=N
k
h′ (s

k
h′ ,a

k
h′ )+1

α
N

k
h′ (s

k
h′ ,a

k
h′ )+1

t max
k∈[K]

φkh,h′

≤(1 +
1

H
) max
k∈[K]

φkh,h′ .

(59)

Property (4) is from Property (3) and the fact (1 + 1
H )H ≤ e.

Now we are ready to prove Theorem 3. At first, we bound the second term of the RHS of (57). We
regroup the summands in a different way.

H∑
h′=h

K∑
k=1

φkh,h′ · βh′
(
N
k

h′(s
k
h′ , a

k
h′)
)

=

H∑
h′=h

∑
(s,a)∈S×A

N
K
h′ (s,a)∑
t=1

φ
kt(s,a,h

′)
h,h′ βh′(t− 1)

=

H∑
h′=h

∑
(s,a)∈S×A

N
K
h′ (s,a)∑
t=2

φ
kt(s,a,h

′)
h,h′ βh′(t− 1),

(60)

because βh′(0) = 0. Define φ(s,a)
h,h′ =

∑N
K
h′ (s,a)

t=1 φ
kt(s,a,h)
h,h′ . Since

√
1
t is a monotonically decreasing

positive function for n ≥ 1 and φkt(s,a,h
′)

h,h′ ≤ e, by the rearrangement inequality, for h′ ≥ h, we have

N
K
h′ (s,a)∑
t=1

φ
kt(s,a,h)
h,h′

√
1

t
≤
bφ(s,a)

h,h′ /ec∑
t=1

e

√
1

t
+ (φ

(s,a)
h,h′ − bφ

(s,a)
h,h′ /ec)

√
1

dφ(s,a)
h,h′ /ee

≤ e
√

1

1
+

∫ φ
(s,a)

h,h′ /e

1

e

√
1

t
dt ≤ 2

√
eφ

(s,a)
h,h′ .

(61)

By plugging (61) back into (60) we have

H∑
h′=h

K∑
k=1

φkh,h′ · βh′
(
N
k

h′(s
k
h′ , a

k
h′)
)
≤

H∑
h′=h

2(cH + 2(H − h′) + 2)

√√√√eSAHι

K∑
k=1

φkh,h

≤H(cH + 2H + 2)

√√√√eSAHι

K∑
k=1

φkh,h

=H(cH + 2H + 2)
√
eSAHιLossh(K),

(62)

where the first inequality holds due to
∑

(s,a)∈S×A φ
(s,a)
h,h′ =

∑K
k=1 φ

k
h,h′ and

√
t is a concave

function for t ≥ 0.
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Similarly, we can bound a part of the third term of the RHS of (57) by

H∑
h′=h

K∑
k=1

φkh,h′+11

(
ãkh′ 6= π†h′(s

k
h)
)

2Bh′
(
Nk
h′(s

k
h′ , ã

k
h′)
)

¬
≤

H∑
h′=h

∑
(s,ã)∈S×A

NK
h′ (s,ã)∑
t=1

φ
kt(s,ã,h

′)
h,h′+1 2Bh′(t− 1)

­
≤

H∑
h′=h

∑
(s,ã)∈S×A

NK
h′ (s,ã)∑
t=2

φ
kt(s,ã,h

′)
h,h′+1 2Bh′(t− 1) + 2e(H − h+ 1)SAH

®
≤H2e

√√√√SAι

K∑
k=1

φkh,h + 2e(H − h+ 1)SAH

=H2e
√
SAιLossh(K) + 2e(H − h+ 1)SAH

(63)

where kt(s, ã, h) represents the episode where (s, ã) was taken by the attacker at step h for the ith
time. Here, ¬ comes from deleting the indicator function and regrouping the summands; ­ follows
φkh,h′ ≤ e and Bh(0) = H; ® follows the same steps in (61) and (62).

As shown in (50), we have

0 ≤
K∑
k=1

φkh,h

(
Q
k

h(skh, a
k
h)−Q†h

(
skh, π

−
h (skh)

))
−

K∑
k=1

φkh,h∆h(skh) ≤
K∑
k=1

φkh,hδ
k
h. (64)

Thus, we need to find the lower bound of the fourth term of the RHS of (57). Since ∆h(skh) >
∆min > 0, we have

H∑
h′=h

K∑
k=1

φkh,h′+11

(
ãkh′ 6= π†h′(s

k
h)
)

∆h(skh′)

≥
K∑
k=1

φkh,h+11

(
ãkh 6= π†h(skh)

)
∆h(skh)

≥∆min

K∑
k=1

φkh,h+11

(
ãkh 6= π†h(skh)

)
=∆min

(
Lossh(K)−

K∑
k=1

φkh,h+11

(
ãkh = π†h(skh)

))
.

(65)

Recall the definition of φkh,h+1 and the property (5) of αit, we have

K∑
k=1

φkh,h+11

(
ãkh = π†h(skh)

)

=

K∑
k=1

N
K
h (skh,a

k
h)∑

t=N
k
h(skh,a

k
h)+1

φ
kt(s

k
h,a

k
h,h)

h,h α
N

k
h(skh,a

k
h)+1

t 1

(
ãkh = π†h(skh)

)

=
∑
s∈S

K∑
k=1

1
(
skh = s

)
1

(
ãkh = π†h(s)

)
1

(
akh 6= π†h(s)

) N
K
h (s,akh)∑

t=N
k
h(s,akh)+1

α
N

k
h(s,akh)+1

t

≤(1 +
1

H
)

K∑
k=1

1

(
ãkh = π†h(skh)

)
1

(
akh 6= π†h(skh)

)
.

(66)
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Recall the inequality (30). We have with probability 1− p, for all h ∈ [H]

K∑
k=1

1

(
akh 6= π†h(skh)

)
1

(
ãkh 6= π†h(s)

)

≥ 1

H

K∑
k=1

1

(
akh 6= π†h(skh)

)
−

√√√√2log(2H/p)

K∑
k=1

1

(
akh 6= π†h(skh)

)
,

(67)

which is equivalent to

K∑
k=1

1

(
akh 6= π†h(skh)

)
1

(
ãkh = π†h(s)

)

≤(1− 1

H
)

K∑
k=1

1

(
akh 6= π†h(skh)

)
+

√√√√2log(2H/p)

K∑
k=1

1

(
akh 6= π†h(skh)

)
,

(68)

Plugging these back into (66) and further (65), we have

H∑
h′=h

K∑
k=1

φkh,h′+11

(
ãkh′ 6= π†h′(s

k
h)
)

∆h(skh′)

≥ ∆min

 1

H2
Lossh(K)− (1 +

1

H
)

√√√√2log(2H/p)

K∑
k=1

Lossh(K)

 .

(69)

Combining (57), (62), (63) and (69), we have

∆min

 1

H2
Lossh(K)− (1 +

1

H
)

√√√√2log(2H/p)

K∑
k=1

Lossh(K)


≤H2e

√
SAιLossh(K) + 2e(H − h+ 1)SAH

+ SAH(H − h+ 1) +H(cH + 2H + 2)
√
eSAHιLossh(K),

(70)

which is equivalent to

Lossh(K) ≤2(H2 +H)2 log(2H/p) +
1

∆min
SAH2(H − h+ 1)

+
1

∆2
min

e2H8SAι+
1

∆2
min

eH7(cH + 2H + 2)2SAι.
(71)

This establishes

Cost(K,H) ≤ Loss(K) ≤ O(H5 log(2H/p) +
1

∆min
SAH4 +

1

∆2
min

H10SAι). (72)
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