
Appendix for Evaluating Efficient Performance
Estimators of Neural Architectures

Xuefei Ning1] Changcheng Tang2 Wenshuo Li1 Zixuan Zhou1

Shuang Liang2 Huazhong Yang1† Yu Wang1‡

Department of Electronic Engineering, Tsinghua University1
Novauto Technology Co. Ltd.2

]foxdoraame@gmail.com, †yanghz@tsinghua.edu.cn, ‡yu-wang@tsinghua.edu.cn

Tab. A1 gives out the basic information and main distinct characteristics of the search spaces.

Table A1: Properties of the five benchmarking search spaces.

Search Space Search Space Size Op on Edge
or Node

#Nodes,
#Edges

#Shared
Positions

#Operation
Types Main Characteristics

NB101
(NB1shot-3)

14.6k
(w.o. isomorphic ones) Node 7, 9 5 3 Operation on node

(larger sharing extent)

NB201 6.5k / 15.6k
(w.o. / w. isomorphic ones) Edge 4, 6 6 5 Large proportion of

isomorphic architectures

NB301 1018

(w. isomorphic ones) Edge 6, 8 14 7
1. Large search space size

2. The GT accuracy difference
between architectures is small

Search Space Search Space Size #Choices of Architectural Decisions Main CharacteristicsDepth Width Ratio Group Number

NDS ResNet 1260k 9 12 - - Non-topological

NDS ResNeXt 11391k 5 5 3 3
1. Non-topological

2. Contain convolution group
number in the search space

A Discussions and Results about One-shot Estimators

A.1 Evaluation of One-shot Estimators

A.1.1 Trend of P@top/bottom K & BR/WR@K

Fig. A1 shows the P@top/bottom K, B/WR@K for multiple Ks on NB101-1shot, NB201, and
NB301. On NB101-1shot, the performances of OSEs converge quickly, and OSEs are capable of
distinguishing good architecture relatively well (P@top5%≈ 0.49). On NB201, OSEs can distinguish
bad architectures very well (P@bottom 5% ≈ 0.8772), while relatively speaking, their ability in
distinguishing good architectures is weaker (P@top 5% ≈ 0.4675). On the harder NB301 search
space, the P@top Ks are not that high as those on NB201, and the P@bottomKs are still worse than
P@topKs.

The second column in the figure shows the best GT ranking (Best/WorstR@Ks) & accuracy
(Best/WorstAcc@Ks) in the top-K-proportion of OSE ranked architectures, and the third column in
the figure shows the worst GT ranking (Best/WorstR@Ks) & accuracy (Best/WorstAcc@Ks). On
NB201, BR@5% converges very fast to 0, which means only after tens of epochs of training, one can
find the best architecture in the top 5% of the OSE-ranked architectures. BR/Acc@0.1%, the best GT
ranking and accuracy of the top-6 (6466× 0.1%) OSE ranked architectures, have a large variance
across temporal epochs and multiple supernets. In a NAS flow where one takes out several top-ranked

35th Conference on Neural Information Processing Systems (NeurIPS 2021).

Figure A1: Trend of P@topK, P@bottomK, BR@K, WR@K. Top / Middle / Bottom: NB101-1shot /
NB201 / NB301.

architectures and conducts final training, the stability of BR/Acc@K is of concern. Although the
BR/Acc@Ks criteria converge very fast, the WR/Acc@Ks become better and better as the training
progresses. This indicates that on NB201, OSE is mainly learning to reduce its chance of regarding
bad architectures as good ones in the middle and late training stages.

On NB301, although WR@5% gets better (the average WR@5% across the 3-supernet decreases
from 0.9909 at 100 epoch to 0.9460 at 1000 epoch), it is still very high (lower is better). Nevertheless,
the NB201 and NB301 search spaces have distinct properties. Since the GT accuracy distribution of
NB301 is more concentrated, and the architectures are more similar, the worst accuracy of top-5%
OSE-ranked architectures (WorstAcc@5%) at epoch 1000 (0.9327) is actually better than that on
NB201 (0.9191). Even the WorstAcc@5% at epoch 100 (0.9249) on NB301 is better than that on
NB201 at epoch 1000. Therefore, although the ranking quality criteria on NB301 are worse than
those on NB201, OSEs can still help find architectures with satisfying accuracy on the harder and
better NB301 search space. When analyzing the ranking quality, we still need to consider the absolute
accuracy distribution.

In our experiments, we observe some differences in the behaviors of OSEs across search spaces:

• The phenomena on NB101 are different from those on NB201 and NB301: 1) P@top
5% is higher than P@bottom 5%, and 2) longer training after the first 20 epochs does
not improve the ranking quality. These two distinct phenomena might arise from two
aspects, respectively: 1) As shown in Fig. A2, the GT distribution of the top GT accuracies
on NB101 is less concentrated than that on NB201 and NB301, and thus it is easier to
distinguish the top architectures on NB101. 2) Different from NB201 and NB301, NB101 is
an operation-on-node search space. The sharing extent of supernet on operation-on-node

2

NB301 Bottom 5%

Figure A2: GT accuracy distribution on NB101, NB201 and NB301.

search spaces is larger than that on operation-on-edge search spaces, since for each node, no
matter which input connections are chosen, the same parameters are used. A larger sharing
extent would limit the potential ranking quality of OSEs, and thus longer training might not
bring additional improvements in the ranking quality.

• Using OS loss as the estimated score achieves much better ranking quality than OS accuracy
on NB301, but is not better on NB101 and NB201. We analyze that this is because the GT
accuracy distribution on NB301 is concentrated, as shown in Fig. A2. In other words, many
architectures have similar GT accuracies. Consequently, OS accuracies of these architectures
are also close (as shown in Fig. 2 in the main paper), while the OS loss values provide more
information on prediction confidences for better architecture ranking.

A.1.2 Effect of Validation Data Size

NAS-Bench-301 NAS-Bench-201

Figure A3: Criteria vary as the batch number (X axis) changes (batch size=128).

We evaluate the influences of the validation data batch number (batch size=128) on the OSE ranking
quality, and the full results on NB301 and NB201 are shown in Fig. A3. We can see that with sufficient
training, more validation data helps increase the ranking quality. More specifically, on NB301, the
estimation quality increases as the number of validation data batches increases. And on NB201, at
Epoch 1000, although the trend is not monotonically increasing when the batch number increases
from 1 to 10, the estimation quality using few validation batches is a lot worst than using the full
validation data (KD≈0.5 V.S. KD≈0.76).

3

On NB301, we observe another interesting phenomenon: In the early training stage of the supernet,
the ranking quality of using OS accuracy shows an obvious decreasing trend as the batch number
increases from 1 to 10. As we have analyzed in the main paper (Sec. 4.1), this is because using only
one validation data batch results in fewer levels (smaller resolution) of OS accuracy and gives many
ties. And when the supernet is under-trained, its ability in distinguishing the intra-level architectures
is weak, thus using more data might bring negative effects. The intra-level KD histogram shown
next to the ranking quality plots verifies our speculation. At Epoch 200, negative intra-level KDs
occur more often than positive ones. As the training progresses, the distribution of intra-level KDs
moves towards positive, indicating that the supernet is becoming better at distinguishing similar
architectures.

A.1.3 Other Datasets

Besides CIFAR-10, NB201 provides GT accuracies on other two datasets: CIFAR-100, ImageNet-16-
120 [4]. We run OS training on these two datasets, and calculate the KD and P@top 5% between the
OS and GT accuracies across multiple datasets. The results are shown in Fig. A4.

C1
0-

GT

C1
00

-G
T

IN
12

0-
GT

C1
0-

OS

C1
00

-O
S

IN
12

0-
OS

C10-GT

C100-GT

IN120-GT

C10-OS

C100-OS

IN120-OS

1 0.85 0.79 0.74 0.67 0.7

0.85 1 0.8 0.71 0.64 0.65

0.79 0.8 1 0.68 0.62 0.64

0.74 0.71 0.68 1 0.75 0.78

0.67 0.64 0.62 0.75 1 0.71

0.7 0.65 0.64 0.78 0.71 1

KD

0.0

0.2

0.4

0.6

0.8

1.0

C1
0-

GT

C1
00

-G
T

IN
12

0-
GT

C1
0-

OS

C1
00

-O
S

IN
12

0-
OS

C10-GT

C100-GT

IN120-GT

C10-OS

C100-OS

IN120-OS

1 0.72 0.54 0.47 0.44 0.52

0.72 1 0.6 0.38 0.34 0.39

0.54 0.6 1 0.32 0.26 0.27

0.47 0.38 0.32 1 0.59 0.56

0.44 0.34 0.26 0.59 1 0.6

0.52 0.39 0.27 0.56 0.6 1

P@top 5%

0.0

0.2

0.4

0.6

0.8

1.0

Figure A4: KD and P@top 5% across different datasets on NB201. “C10” refers to CIFAR-10,
“C100” refers to CIFAR-100, “IN120” refers to ImageNet-16-120.

A counter-intuitive observation from Fig. A4 (Left) is that no matter of which dataset the GT accuracy
we use, the KD of using OS accuracy on CIFAR-10 is the highest. We speculate that since the number
of classes on CIFAR-100 and ImageNet-16-120 is larger than that on CIFAR-10 (100 V.S. 10), the
classification head might become a parameter-sharing bottleneck. For example, when the init channel
number is 16, the classification head on these two datasets is constructed by a global average pooling
layer and a single linear layer that convert 16× 22 = 64 units to 100 units. This compact FC layer
might lack the representational capability to be shared by lots of architectures, which can cause all
architectures to be too under-trained to reflect their standalone rankings correctly. Motivated by this
speculation, we conduct a simple experiment to train supernets with enlarged channel numbers (32 or
64), and show the average validation accuracy, KD, and P@top 5% of the supernets in Fig. A5. We
can see that, intuitively, as the init channel number increases, the average OS validation accuracy
increases. On CIFAR-10, although the absolute OS accuracy increases, the ranking quality degrades,
which is reasonable as using different init channel numbers induces additional search-final gaps. In
contrast, on CIFAR-100 and ImageNet-16-120, the KD increases as the init channel number increases,
and this might be due to the alleviated representational bottleneck in the classification head. However,
the P@top 5% cannot benefit from an increasing supernet channel number on these two datasets.

A.1.4 Influences of Proxy Model

Due to memory and time constraints, it is common to use a shallower or thinner proxy model in the
search process. The common practice is to search using small proxy models with fewer channels and
layers, and then augment the discovered architecture to a larger one for final training. We conduct
a small experiment to inspect the correlation gaps brought by using proxy models on NB201 for
the CIFAR-10 dataset. From the results shown in Fig. A6(a)(b), we can see that channel proxy has
little influence while layer proxy reduces the reliability of search results. Thus, for cell-based search
spaces, proxy-less search w.r.t the layer number is worth studying [2, 3].

4

16 32 64

0.2

0.4

0.6

0.8

Oneshot Average

16 32 64
0.64

0.66

0.68

0.70

0.72

0.74
KD
CIFAR-10
CIFAR-100
ImageNet-16-120

16 32 64
0.25

0.30

0.35

0.40

0.45

P@top 5%

Figure A5: Oneshot Average, KD and P@top 5% when using larger init channels on NB201. X
axis: Init channel number. The horizontal dashed lines in the leftmost figure mark the average GT
validation accuracy.

11 14 17
Layers

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LC
/K

en
da

ll's
 T

au
/S

C/
P@

5%

Linear Correlation
Kendall's Tau
Spearman Correlation
P@5%
BR@5%

0

1

2

3

4

5

BR
@

5%

1e 3

(a)

8 12 16
Initial Channels

0.3

0.4

0.5

0.6

0.7

0.8

0.9

LC
/K

en
da

ll's
 T

au
/S

C/
P@

5%
Linear Correlation
Kendall's Tau
Spearman Correlation
P@5%
BR@5%

0

1

2

3

4

5

BR
@

5%

1e 3

(b)

Figure A6: (a) Influence of layer proxy. (b) Influence of channel proxy.

A.2 Bias of One-shot Estimators

A.2.1 Complexity-level Bias

Fig. A7 shows the complexity-level bias on NB101 and NB301, where the five complexity groups
are grouped by the parameter size. Note that as the parameter rankings and FLOPs rankings on
NB101 and NB201 are identical, thus we only plot one of the RD & KD plots on these two search
spaces (the plot of NB201 is in Fig. 5 in the main paper). On NB301, as the training progresses, the
underestimation phenomenon of larger architectures gradually vanishes, and the intra-group KD is
consistently increasing. While on NB101-1shot, the training after 200 epochs can neither alleviate
the bias on NB101, nor improve the intra-group KD.

Apart from the summary statistics (average RD & KD τ) of each complexity group in the above
analysis, we also show the scatter plot of GT/OS accuracies and the parameter sizes in Fig. A8
(NB201) and in Fig. A9 (NB301). From the left subplot in the two figures, again, we can witness that
in early training stages, OSEs underestimate large architectures since their training is not sufficient.
As the training goes on, the parameter sizes of top-ranked architectures by the OSEs become larger.

We visualize the Pareto frontiers discovered by OSEs in the right subplots of the two figures.
The blue lines with square markers show the one-shot scores of the GT Pareto frontier, while the
orange/green/red lines show the GT scores of the OS Pareto frontier. On NB301, the orange line
on the blue (GT) scatter show that the OS Pareto frontier architectures with smaller parameter sizes
(0.6-1.2×106) have a larger absolute accuracy difference with the architectures on the GT Pareto
frontier. However, in the range with the smaller parameter size, there are fewer architecture points
between the blue line (GT Pareto architectures) and the black line (OS Pareto architectures) on the
orange scatter (OS 1000 epoch). This means that by taking multiple levels of the OS Pareto frontier,
the large GT accuracy differences of the architectures with small parameter sizes on the OS Pareto
frontier can be mitigated. To visualize this observation more clearly, we plot the absolute GT accuracy
difference between the GT best and the OS Pareto best w.r.t. the number of Pareto levels in Fig. A10.

5

20% 40% 60% 80% 100%

0.425

0.450

0.475

Ep
oc

h
20

0

NAS-Bench-101 (Param)

0.0

0.1KD
Rank Diff

20% 40% 60% 80% 100%
0.35

0.40

0.45

Ep
oc

h
60

0
0.0

0.1

20% 40% 60% 80% 100%
0.34

0.36

0.38

0.40

Ep
oc

h
10

00

0.0

0.1

20% 40% 60% 80% 100%
0.2

0.0

NAS-Bench-301 (Param)

0.1

0.0

20% 40% 60% 80% 100%

0.0

0.2

0.05

0.00

0.05

20% 40% 60% 80% 100%
0.2

0.3

0.02

0.00

0.02

Figure A7: Complexity-level bias (grouped by Param) of one-shot estimators on NB101 and NB301.
Y axis left/right: KD τ / Average RD within the complexity group.

Figure A8: The oneshot front, oneshot-param pareto front, oneshot-inverse param front on NB201.
Left: Black circles in each scatter group mark the architectures with the best accuracy. Right: Pareto
curves on the scatter plot.

Indeed, in both the OSEs at 200 epoch and 1000 epoch, taking multiple levels of Pareto frontier is
effective in shrinking the absolute differences between GT Pareto best accuracy and OS Pareto best
accuracy. When the supernet is sufficiently trained (1000 epoch), the GT accuracy differences in
Param group 1 can be reduced from ∼ 0.6 to ∼ 0.2.

A.2.2 Operation-level Bias

To study the operation-level bias of OSEs, we inspect the changes of GT accuracy, OS accuracy,
and OS loss when one operation is mutated to another operation. Fig. A11(a) shows the histogram
of GT accuracy and OS score changes of mutation pairs (edit distance=1) on NB301, and each
legend gives out the ratio of mutation pairs (#Mutation pairs with accuracy increase/#All mutation
pairs) that get GT/OS accuracy increases or OS loss decreases. We can see that on NB301, the OSE
overestimates the effects brought by dilation (Dil) convolutions (Convs), i.e., dil_conv_3x3/5x5: All
mutation types from other operations to DilConvs witness a higher OS increase ratio than the GT
one. And the skip_connect operation is underestimated: All mutation pairs from skip_connect cause
the OS increase ratio to be higher than the GT one. For example, when mutating one skip_connect
operation to dil_conv_5x5, only 39.0% out of 2336 pairs get GT increases, while 94.9% get OS
accuracy increases and 90.0% get OS loss decreases.

To take the complexity-level bias and the op-level bias into consideration in the meantime, we show
the histogram of GT and OS accuracy changes in the largest complexity group (out of five groups in
total) in Fig. A11(b). We can see that the over- and under-estimation phenomenon of DilConvs and
skip_connect are even more remarkable within the largest complexity group (grouped by Param): For

6

94.39%93.89% 94.37%

Figure A9: The oneshot front, oneshot-param pareto front, oneshot-inverse param front on NB301.
Left: Black circles in each scatter group mark the architectures with the best accuracy. Right: Pareto
curves on the scatter plot.

2 4 6 8 10
#Pareto level

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Param group 0
Param group 1
Param group 2
Param group 3
Param group 4

2 4 6 8 10
#Pareto level

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Figure A10: Absolute GT accuracy difference (%) between the GT best and the OS pareto best w.r.t
the number of pareto levels (NB301). Left: 200 epoch; Right: 1000 epoch. Different lines: Five
architecture groups ordered by Param (Architectures in Param group 0 has the smallest #Param).

example, when mutating one skip_connect operation to dil_conv_5x5, only 15.3% of 569 pairs get GT
increases, while 92.3% get OS accuracy increases and 82.4% get OS loss decreases. Fig. A12 shows
the GT/OS increase ratios in the five complexity groups. We can see that changing a skip_connect to
a DilConv on a large architecture brings negative impacts in most cases (GT increase ratio < 0.5).
In the largest complexity group (group 4), the mutation pairs that change a skip_connect to any
of the four parametrized operations witness a GT increase ratio < 0.5. However, the OS accuracy
still increases in most cases. Actually, when changing one non-parametrized operation to another
parametrized operation, the increasing ratio of OS accuracy is always larger than 0.75.

On NB201, based on a similar inspection of the mutation pairs in Fig. A13, we find that OSE
estimations slightly overestimate avgpool3x3 and underestimate conv3x3. As the mutation pairs to
avgpool3x3 have a larger chance of getting OS increases than GT increases, and the mutation pairs to
conv3x3 have a smaller chance of OS increase than GT increase. Generally speaking, the histograms
of GT and OS changes are similar in all mutation types, which means that the op-level bias on NB201
is not that obvious as on NB301.

A.3 Mitigations

A.3.1 Gradient Visualization

Since different architectures require different values for supernet parameters, as the side effect of
acceleration, parameter sharing serves as the intrinsic reason for the OSE correlation gap. Fig. A15
shows the distribution of the gradient similarity between architecture pairs on NB201 and NB301.
We can see that the gradient similarity between different architecture pairs varies from -0.75 to 1.0,
and one common phenomenon is that the mean similarity between architecture pairs is lower in the
middle-stage layers and the architectures’ gradients in the very first and last layers are more similar.
For example, the 15 normal cells on NB201 ordered from the smallest mean gradient similarity to
the largest are S2C8, S2C7, S2C9, S2C6, S2C5, S1C3, S1C4, S1C2, S310, S1C1, S1C0, S3C11,
S3C12, S3C13, S3C14, where “S” denotes “stage” numbered from 1 to 3 (3 stages in total), and “C”

7

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

av
g_

po
ol

_3
x3

1620 pairs

sep_conv_3x3
GT inc. ratio 99.7%
OS acc inc. ratio 92.5%
OS loss dec. ratio 96.5%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

m
ax

_p
oo

l_3
x3

1913 pairs

GT inc. ratio 96.7%
OS acc inc. ratio 88.2%
OS loss dec. ratio 93.2%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

sk
ip

_c
on

ne
ct

2336 pairs

GT inc. ratio 73.5%
OS acc inc. ratio 90.9%
OS loss dec. ratio 90.7%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1620 pairs

sep_conv_5x5
GT inc. ratio 100.0%
OS acc inc. ratio 95.7%
OS loss dec. ratio 96.4%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1913 pairs

GT inc. ratio 98.3%
OS acc inc. ratio 93.7%
OS loss dec. ratio 96.9%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

2336 pairs

GT inc. ratio 72.3%
OS acc inc. ratio 95.3%
OS loss dec. ratio 91.0%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1620 pairs

dil_conv_3x3
GT inc. ratio 82.0%
OS acc inc. ratio 89.8%
OS loss dec. ratio 93.6%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1913 pairs

GT inc. ratio 70.4%
OS acc inc. ratio 85.3%
OS loss dec. ratio 90.4%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

2336 pairs

GT inc. ratio 34.3%
OS acc inc. ratio 91.4%
OS loss dec. ratio 87.4%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1620 pairs

dil_conv_5x5
GT inc. ratio 80.0%
OS acc inc. ratio 93.5%
OS loss dec. ratio 94.7%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

1913 pairs

GT inc. ratio 69.1%
OS acc inc. ratio 90.3%
OS loss dec. ratio 92.2%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500

2336 pairs

GT inc. ratio 39.0%
OS acc inc. ratio 94.9%
OS loss dec. ratio 90.0%

(a) All 23476 pairs

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

av
g_

po
ol

_3
x3

233 pairs

sep_conv_3x3
GT inc. ratio 97.9%
OS acc inc. ratio 86.3%
OS loss dec. ratio 90.6%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

233 pairs

sep_conv_5x5
GT inc. ratio 100.0%
OS acc inc. ratio 90.6%
OS loss dec. ratio 90.6%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

233 pairs

dil_conv_3x3
GT inc. ratio 58.8%
OS acc inc. ratio 80.3%
OS loss dec. ratio 88.4%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

233 pairs

dil_conv_5x5
GT inc. ratio 54.1%
OS acc inc. ratio 86.7%
OS loss dec. ratio 88.4%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

m
ax

_p
oo

l_3
x3

372 pairs

GT inc. ratio 84.1%
OS acc inc. ratio 90.3%
OS loss dec. ratio 92.2%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

372 pairs

GT inc. ratio 93.0%
OS acc inc. ratio 91.1%
OS loss dec. ratio 93.8%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

372 pairs

GT inc. ratio 43.0%
OS acc inc. ratio 82.5%
OS loss dec. ratio 90.3%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

372 pairs

GT inc. ratio 40.6%
OS acc inc. ratio 86.6%
OS loss dec. ratio 88.7%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

sk
ip

_c
on

ne
ct

569 pairs

GT inc. ratio 44.3%
OS acc inc. ratio 84.9%
OS loss dec. ratio 80.8%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

569 pairs

GT inc. ratio 46.2%
OS acc inc. ratio 92.6%
OS loss dec. ratio 81.9%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

569 pairs

GT inc. ratio 12.8%
OS acc inc. ratio 86.6%
OS loss dec. ratio 80.3%

0.01 0.00 0.01 0.02 0.03 0.04 0.050

100

200

300

400

569 pairs

GT inc. ratio 15.3%
OS acc inc. ratio 92.3%
OS loss dec. ratio 82.4%

(b) 4696 mutation pairs within the architecture group with the largest complexity (grouped by Param). There are
five groups in total, and each group has 4695/4696 (≈23476/5) architectures

Figure A11: (NAS-Bench-301) The histogram of GT accuracy increases, OS accuracy increases and
OS loss decreases when one non-parametrized operation is mutated to another parametrized operation.
Rows: Mutation from avg_pool_3x3, max_pool_3x3, and skip_connect. Columns: Mutation to
sep_conv_3x3, sep_conv_5x5, dil_conv_3x3 and dil_conv_5x5. 23476 mutation pairs in total are
examined, and each pair has an edit distance=1.

denotes “cell” numbered from 0 to 14 (15 normal cells in total). And the cells before the second
downsampling, S2C7-S2C9, have the lowest mean similarity. Another slightly counter-intuitive fact
is that the gradient directions become more similar as the training goes on, especially on NB201.

A.3.2 Variance Reduction

Tab. A2 compares the results of using different MC sample numbers S in supernet training. We
adapt the Fair-NAS [5] sampling strategy to the NB201/301 spaces (a special case of MC sample
5 and 7 for NB201 and NB301, respectively), and show the pseudocode in Alg. 1. Tab. A2 shows
that using multiple MC samples have different influences on different spaces. Using multiple MC

8

0 1 2 3 4

0.25

0.50

0.75

1.00

av
g_

po
ol

_3
x3

sep_conv_3x3

0 1 2 3 4

0.25

0.50

0.75

1.00
sep_conv_5x5

0 1 2 3 4

0.25

0.50

0.75

1.00
dil_conv_3x3

0 1 2 3 4

0.25

0.50

0.75

1.00
dil_conv_5x5

0 1 2 3 4

0.25

0.50

0.75

1.00
m

ax
_p

oo
l_3

x3

0 1 2 3 4

0.25

0.50

0.75

1.00

0 1 2 3 4

0.25

0.50

0.75

1.00

0 1 2 3 4

0.25

0.50

0.75

1.00

0 1 2 3 4

0.25

0.50

0.75

1.00

sk
ip

_c
on

ne
ct

0 1 2 3 4

0.25

0.50

0.75

1.00

0 1 2 3 4

0.25

0.50

0.75

1.00

0 1 2 3 4

0.25

0.50

0.75

1.00

GT increase ratio
OS increase ratio

Figure A12: (NAS-Bench-301) The ratio of mutation pairs (#Mutation pairs with accuracy in-
crease/#All mutation pairs) that get GT/OS accuracy increases. X axis: Complexity groups grouped
by Param (the architecture group with the fewest parameters is 0, and the architecture group with the
most parameters is 4).

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000

no
ne

Fig 0-1

skip connect
54.8%
57.6%
0.097%
0.193%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 0-2

conv 1x1
79.2%
68.2%
0.523%
0.692%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 0-3

conv 3x3
85.5%
74.0%
1.280%
1.534%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 0-4

avgpool 3x3
40.5%
49.9%
-0.161%
-0.002%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000

sk
ip

 c
on

ne
ct

Fig 1-2
73.3%
67.4%
0.450%
0.305%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 1-3

83.6%
75.2%
1.250%
0.979%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 1-4

18.0%
25.5%
-0.670%
-1.166%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000

co
nv

 1
x1 Fig 2-3

79.7%
75.6%
0.490%
0.563%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000
Fig 2-4

11.8%
20.2%
-1.275%
-1.792%

0.10 0.05 0.00 0.05 0.100

2500

5000

7500

10000

co
nv

 3
x3 Fig 3-4

7.7%
14.1%
-2.220%
-2.573%

18750 pairs every plot
GT Acc Increase Ratio
OS Acc Increase Ratio
GT Acc Increase Median
OS Acc Increase Median

Figure A13: (NAS-Bench-201) The histogram of GT and OS accuracy changes when one operation
is mutated to another operation. For each of the NUM_OP× (NUM_OP− 1)/2 = 5 × 4/2 = 10

mutation types, all the NUM_EDGE × NUM_OPNUM_EDGE−1 = 6 × 56−1 = 18750 pairs are
examined, and each pair has an edit distance=1.

samples on NB101/NB301 brings slight KD improvements, while the estimation quality on NB201
decreases slightly as the MC sample number increases. Note that in Tab. A2, the training epochs of
all experiments are set so that all training experiments have similar run time to 1000-epoch training
with S=1.

The performances when the model converges are shown in Tab. A3 (the learning rate is decayed to
less than 1e-5). On NB101, the training epochs for S=1/3/5/7 are 1000/350/340/380. On NB201, the
training epochs for S=1/3/5 and FairNAS are all 1000 epochs. On NB301, the training epochs for
S=1/3/5 and FairNAS are 3000/1100/600/600, respectively.

On NB201, we witness that when the training is sufficient, the KD of OS estimations slightly degrades
when S>1. We try using the OS losses as the scores, and the phenomenon of degrading KDs still

9

100 200 300 400 500 600 700 800 900 1000
Epochs

0.06

0.04

0.02

0.00

0.02

0.04

Ac
cu

ra
cy

 D
iff

id
en

ce

(a) NasBench-101

100 200 300 400 500 600 700 800 900 1000
Epochs

0.04

0.02

0.00

0.02

Ac
cu

ra
cy

 D
iff

id
en

ce

(b) NasBench-201

100 200 300 400 500 600 700 800 900 1000
Epochs

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

Ac
cu

ra
cy

 D
iff

id
en

ce

(c) NasBench-301

Figure A14: Multi-model forgetting phenomenon.

D1 D2

Figure A15: Gradient (cosine) similarity between architecture pairs of different layers at different
epochs. On average, architectures tend to have more dissimilar gradients in the middle-stage layers.

exists. To analyze this phenomenon, we plot the histogram of OS accuracy and the scatter of GT-OS
scores on NB201 in Fig. A16. We can see from the figure that the average OS accuracy (“avg” in
the legend) keeps increasing as the training progresses, and using larger MC samples can bring
improvements to the OS accuracy when the training converges. However, too sufficient training can

Table A2: Results of MC sample num (S) and FairNAS. Our adapted version of FairNAS samples
5/7 archtectures in each step onNB201/NB301. The training epochs for S=1/3/5/7 on NB101
are 1000/330/200/140 (All have similar run time to 1000-epoch training with S=1). The training
epochs for S=1/3/5 and FairNAS on NB201 are 1000/330/200/200 (All have similar run time to
1000-epoch training with S=1). And the training epochs for S=1/3/5 and FairNAS on NB301 are
1500/500/300/214 (All have similar run time to 1500-epoch training with S=1).

Criteria NAS-Bench-101 (OS accuracy) NAS-Bench-201 (OS accuracy) NAS-Bench-301 (OS loss)

S=1 S=3 S=5 S=7 S=1 S=3 S=5 FairNAS S=1 S=3 S=5 FairNAS

OS avg 0.586 0.578 0.604 0.585 0.691 0.658 0.628 0.603 0.818 0.824 0.827 0.820
KD τ 0.384 0.405 0.442 0.446 0.744 0.709 0.714 0.706 0.530 0.515 0.548 0.527

SpearmanR 0.541 0.568 0.616 0.624 0.910 0.890 0.895 0.887 0.720 0.705 0.739 0.715
BR@0.5% 0.003 0.002 0.005 0.025 0.002 0.002 0.016 0.009 0.001 0.000 0.000 0.000
P@top 5% 0.509 0.515 0.396 0.244 0.467 0.349 0.206 0.292 0.495 0.253 0.403 0.380

10

Table A3: Results of MC sample num (S) and FairNAS when the training converges (the learning
rate is decayed to less than 1e-5). Our adapted version of FairNAS samples 5/7 archtectures in each
step on NB201/NB301. The training epochs for S=1/3/5/7 on NB101 are 1000/350/340/380. The
training epochs for S=1/3/5 and FairNAS on NB201 are all 1000 epochs. And the training epochs for
S=1/3/5 and FairNAS on NB301 are 3000/1100/600/600.

Criteria NAS-Bench-101 (OS accuracy) NAS-Bench-201 (OS accuracy) NAS-Bench-301 (OS loss)

S=1 S=3 S=5 S=7 S=1 S=3 S=5 FairNAS S=1 S=3 S=5 FairNAS

OS avg 0.586 0.578 0.614 0.661 0.691 0.763 0.766 0.740 0.817 0.823 0.827 0.830
KD τ 0.384 0.405 0.446 0.489 0.744 0.673 0.659 0.711 0.530 0.540 0.543 0.531

SpearmanR 0.541 0.568 0.622 0.672 0.910 0.854 0.877 0.887 0.723 0.729 0.735 0.718
BR@0.5% 0.003 0.003 0.007 0.040 0.002 0.004 0.009 0.000 0.001 0.000 0.000 0.000
P@top 5% 0.509 0.516 0.316 0.193 0.467 0.377 0.379 0.458 0.443 0.440 0.436 0.377

Algorithm 1 Our adapted FairNAS [5] sampling strategy for NB201 / NB301.
S: the number of rollout samples each iteration
N : the number of operation choices in the search space
M : the number of operations in a cell
oi: the i-th operation in the operation choices list
S = N
Initialization: P ← Array(M,N), i← 0, j ← 0, Samples← ∅
while i < M do
P [i]← random permute (o0, o1, ..., oN−1)
i+ +

end while
while j < S do
Samples.add(P [∗, j])
j + +

end while
Output: Samples (each row is an M -dim array representing an architecture)

be detrimental to the ranking quality when S > 1. For example, the KDs of S = 3/5 and FairNAS
at epoch 1000 (the third row in Fig. A16) decrease from 0.749/0.742/0.747 to 0.673/0.659/0.711,
respectively. This is because, in the later training stages, the OSEs are mainly increasing the scores
of relatively poor architectures. And when the distribution of the OS scores are concentrated (See
“std” in the legend), the overall KD degrades. Luckily, on NB201, we do not witness significant
degradation of OSEs’ ability in distinguishing the top architectures (See “P@top 5%” in the legends).
On NB201, the best ranking quality achieved by S = 3/5 and FairNAS is comparable to that of
S = 1. In addition, using S = 1 does not suffer from the degradation phenomenon1. With everything
considered, using S = 1 achieves the best results on NB201.

As for NB101/NB301, although using multiple MC samples brings small KD improvements, it cannot
improve the OSE’s ability in distinguishing good architectures (See “P@top 5%” row). To summarize,
there is no need to use multiple MC samples on these search spaces.

A.3.3 De-Isomorphic Sampling

We show the average standard deviations (stds) of the OS scores and rankings within isomorphic
groups during the training process in Fig. A17. As the training progresses, the intra-(isomorphic-
)group std gradually shrinks, which indicates that more sufficient training enables OSE to handle
isomorphic architectures better.

Nevertheless, as we have demonstrated in the main paper Fig. 9, even with rather sufficient training,
the supernet still overestimates some simple architectures significantly. We have shown in the paper
that some simple architectures with many isomorphic counterparts are overestimated, and we analyze
that this is because the equivalent sampling probability of architectures in larger isomorphism groups
is higher, thus the shared parameters are trained towards their desired directions. We propose to
conduct deiso sampling during supernet training to mitigate this type of bias, and Tab. A4 shows the

1We also experiment with S = 1 / LR decay patience=60, and do not witness the degradation phenomenon.

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

Ep
oc

h
20

0

S=1
avg: 0.431+-0.009
kd: 0.464+-0.103
P@top 5%: 0.349+-0.133
std: 0.059+-0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350
Ep

oc
h

60
0

avg: 0.620+-0.003
kd: 0.730+-0.021
P@top 5%: 0.463+-0.063
std: 0.109+-0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

Ep
oc

h
10

00

avg: 0.691+-0.008
kd: 0.744+-0.025
P@top 5%: 0.467+-0.042
std: 0.099+-0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

Ep
oc

h
12

0

S=3
avg: 0.529+-0.006
kd: 0.668+-0.003
P@top 5%: 0.469+-0.071
std: 0.085+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

Ep
oc

h
50

0

avg: 0.709+-0.012
kd: 0.749+-0.016
P@top 5%: 0.375+-0.044
std: 0.121+-0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

Ep
oc

h
10

00

avg: 0.763+-0.014
kd: 0.673+-0.049
P@top 5%: 0.377+-0.032
std: 0.094+-0.005

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

Ep
oc

h
12

0

S=5
avg: 0.602+-0.015
kd: 0.702+-0.017
P@top 5%: 0.397+-0.073
std: 0.115+-0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

Ep
oc

h
40

0

avg: 0.721+-0.015
kd: 0.742+-0.013
P@top 5%: 0.410+-0.018
std: 0.117+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100

200

300

400

500

600

Ep
oc

h
10

00

avg: 0.766+-0.019
kd: 0.659+-0.021
P@top 5%: 0.379+-0.112
std: 0.096+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

Ep
oc

h
80

FairNAS
avg: 0.530+-0.012
kd: 0.647+-0.033
P@top 5%: 0.363+-0.078
std: 0.091+-0.001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

Ep
oc

h
40

0

avg: 0.698+-0.012
kd: 0.747+-0.003
P@top 5%: 0.389+-0.077
std: 0.115+-0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

50

100

150

200

250

300

350

Ep
oc

h
10

00

avg: 0.740+-0.000
kd: 0.711+-0.000
P@top 5%: 0.458+-0.000
std: 0.095+-0.000

(a) Histogram plot of the OS scores

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
20

0

S=1

avg: 0.431+-0.009
kd: 0.464+-0.103
P@top 5%: 0.349+-0.133
std: 0.059+-0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
60

0

avg: 0.620+-0.003
kd: 0.730+-0.021
P@top 5%: 0.463+-0.063
std: 0.109+-0.002

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
10

00

avg: 0.691+-0.008
kd: 0.744+-0.025
P@top 5%: 0.467+-0.042
std: 0.099+-0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
12

0

S=3

avg: 0.529+-0.006
kd: 0.668+-0.003
P@top 5%: 0.469+-0.071
std: 0.085+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
50

0

avg: 0.709+-0.012
kd: 0.749+-0.016
P@top 5%: 0.375+-0.044
std: 0.121+-0.004

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
10

00

avg: 0.763+-0.014
kd: 0.673+-0.049
P@top 5%: 0.377+-0.032
std: 0.094+-0.005

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
12

0

S=5

avg: 0.602+-0.015
kd: 0.702+-0.017
P@top 5%: 0.397+-0.073
std: 0.115+-0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
40

0

avg: 0.721+-0.015
kd: 0.742+-0.013
P@top 5%: 0.410+-0.018
std: 0.117+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
10

00

avg: 0.766+-0.019
kd: 0.659+-0.021
P@top 5%: 0.379+-0.112
std: 0.096+-0.003

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
80

FairNAS

avg: 0.530+-0.012
kd: 0.647+-0.033
P@top 5%: 0.363+-0.078
std: 0.091+-0.001

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
40

0

avg: 0.698+-0.012
kd: 0.747+-0.003
P@top 5%: 0.389+-0.077
std: 0.115+-0.006

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ep
oc

h
10

00
avg: 0.740+-0.000
kd: 0.711+-0.000
P@top 5%: 0.458+-0.000
std: 0.095+-0.000

(b) Scatter plot of the GT-OS scores

Figure A16: The histogram plot of the OS scores and the scatter plot of the GT-OS scores on NB201.
If the training is too sufficient when S > 1, the ranking quality of OSEs degrades. Legend: “avg”
stands for the average one-shot scores; “std” stands for the standard deviation of all one-shot scores.

0

1nor_conv_3x3

2skip_connect
3

nor_conv_3x3

avg_pool_3x3 skip_connect

0
3

skip_connect

1
nor_conv_3x3

nor_conv_1x1

2
nor_conv_3x3 avg_pool_3x3

0
3

skip_connect

1
nor_conv_3x3

nor_conv_3x3

2
nor_conv_1x1 avg_pool_3x3

Rank 1: 78.28/93.43, 1

Rank 2: 78.28/93.67, 1

Rank 3: 78.24/93.53, 1

Iso sampling strategy: One-shot/GT (%), ISO group size

Rank 1: 83.55/92.55, 1

Rank 2: 83.51/91.96, 31

Rank 3: 83.49/92.05, 31

0
3

nor_conv_3x3

1nor_conv_1x1 2

skip_connect

avg_pool_3x3 nor_conv_1x1

0 1nor_conv_3x3

3

skip_connect

2
avg_pool_3x3

0
3

nor_conv_3x3

1

2
nor_conv_1x1

Deiso sampling One-shot/GT (%), ISO group sizeInter-ISO group std of accuracy & rank

Figure A17: Intra&Inter-Iso group std of accuracy&ranking.

detailed comparison of deiso sampling, iso sampling, and the post-deiso technique. We can see that
the supernet trained with the deiso sampling strategy provides better estimations when the training
converges. And post-deiso testing achieves slight improvements over “no post-deiso”, which might
owe to the decreased estimation variances.

It is worth noting that if the deiso sampling strategy is not used, the quality of the estimations on
top architectures decreases as the training progresses. For example, with iso sampling, P@5% is
21.259% at Epoch 1000, while it is 36.945% at Epoch 200. This indicates that sufficient training
exacerbates the bias caused by the imbalance isomorphic group sizes, which is different from the
other types of bias analyzed in our study (e.g. complexity-level bias can be alleviated with sufficient

12

training). This type of bias belongs to the Type-2 bias that we have analyzed in the main paper
(Sec. 6), and cannot be mitigated with longer training: Architecture are sampled from an unfair
distribution, i.e., some architectures have undesirable higher probabilities. In order to diagnose and
mitigate this type of bias, augmenting the sampling strategy is necessary.

Table A4: Comparison of (no) de-isomorphism sampling in supernet training. τ /P@K: Higher is
better. BR/WR@K: Lower is better.

Epochs criterion 200 400 600 800 1000

No De-isomorphism
(iso)

τ
P@10%
P@5%

BR@1%
BR@0.1%
WR@0.1%

0.5341
37.874%
36.945%
0.541%
1.299%
21.471%

0.6425
38.854%
28.586%
1.547%
1.655%

22.843%

0.7049
43.756%
25.284%
1.706%

11.780%
32.096%

0.7045
37.926%
18.369%
2.454%
3.758%
39.092%

0.7150
39.422%
21.259%
1.887%
5.903%

39.886%

Post-De-isomorphism
(post-deiso)

τ
P@10%
P@5%

BR@1%
BR@0.1%
WR@0.1%

0.5330
38.545%
38.080%
0.541%
0.588%
21.456%

0.6431
40.712%
31.682%
0.670%
1.660%

23.662%

0.7087
45.769%
27.864%
1.696%
4.217%

30.864%

0.7077
40.454%
21.053%
1.495%
3.737%
21.739%

0.7178
41.383%
24.045%
1.371%
4.346%

30.297%

De-isomorphism
(deiso)

τ
P@10%
P@5%

BR@1%
BR@0.1%
WR@0.1%

0.4639
37.616%
34.778%
0.938%
3.531%
23.461%

0.6141
44.943%
34.985%
0.144%
6.470%

25.853%

0.7296
55.831%
46.440%
0.052%
0.784%

11.604%

0.7410
54.180%
37.668%
1.794%
4.944%
19.141%

0.7439
55.986%
46.749%
0.227%
2.938%
8.985%

Conduct de-isomorphic sampling in practice To conduct isomorphic sampling, we first design a
simple encoding method, which can canonicalize computationally isomorphic architectures to the
same string and non-isomorphic architectures to different strings. In our paper, we use the encoding
method to find out all isomorphic groups in the search space and make them as a table. Then, during
the supernet training process, we sample architecture groups from this table uniformly. This method
is feasible since the benchmark search space is not large. In practice, one can use lazy table-making
and rejection sampling to conduct de-isomorphic sampling, by only accepting new or representative
architecture samples. Specifically, one first encodes each sampled architecture into a canonical
string. If this canonical string has not appeared before, this string stands for a new isomorphic group,
and the architecture is recorded as the representative architecture for this isomorphic group. This
architecture sample is also accepted. If this canonical string has been recorded before, we only accept
the architecture sample if it is the representative architecture for its canonical string.

The encoding method goes as follows. Denoting the expression of the i-th node as Si, and the
operation in the directed edge (j, i) as Aji, the expression Si can be written as

Si = Concat(Sort({“(” + Sj + “)” + “%” +Aji}j∈P (i))),

where P (i) denotes the set of predecessor nodes of i, and Sort sorts the strings in dictionary order.
For NB201, we calculate Si(i = 1, · · · , 4) in topological order, and the expression S4 at the final
output node is used as the encoding string of the architecture.

A.3.4 Sharing Extent Reduction

To reduce the sharing extent of the supernet, we experiment with two types of pruning methods (i.e.
per-architecture pruning and per-decision pruning). Per-architecture pruning means to throw out
certain architectures based on the architecture-level scores, and the outcome of the pruning process
is a sub search space (SS) containing the remaining architectures. In contrast, per-decision pruning
refers to pruning the space of architectural decisions (e.g., the available operation primitives at some
position) instead of directly pruning the architecture space. In the following, we experiment with
some cases of these two types of methods.

Operation Pruning Operation pruning is a case of per-decision pruning methods. We remove one
or two operations in the search space and conduct supernet training on the resulting sub-SS. After

13

training the supernet, we compare the OS estimations on the sub-SS provided by the supernets trained
on full SS and the sub-SS. The results on NB301 and NB201 are shown in Fig. A18 and Tab. A5,
respectively.

On NB301, as shown in Fig. A18, compared with the full-SS training, removing one operation
in the supernet training process brings non-negative improvements on the average OS accuracies
of the remaining architectures, especially in the early training stages. This is intuitive as when
fewer architectures are sampled for training, the training for these architectures is more sufficient.
Nevertheless, removing parameterized operations (sep_conv_3x3/5x5, dil_conv_3x3/5x5) leads to
better ranking quality on the sub-SS, while removing non-parameterized operations (avg_pool,
max_pool, skip_connect) only has slight positive effects in the early training stages.

On NB201, in general, removing one operation can bring positive or negative impacts on the average
OS accuracies on the sub-SS, and the effect is in general positive from -0.011 to +0.0916. However,
as for ranking quality on the sub-SS, removing any operations decreases the KD τ on the sub-SS by
0.014-0.098. Tab. A6 shows the GT accuracy of the top-ranked architectures by OSEs trained on the
sub-SS and full-SS. We can see that a very coarse op-level pruning can neither help the OSE find
better architectures (Tab. A6), nor help improving the OSE ranking quality on the sub-SS (Tab. A5).

Table A5: Operation pruning on NB201. The column of “#Archs” shows the number of remaining
architectures from 6466 non-isomorphic ones. Note that the tests are conducted on the sub-SS.

Removed
Operation #Archs Mean One-shot Accuracy Kendall’s Tau

Full-SS training Sub-SS training Full-SS training Sub-SS training

skip_connect 2155 0.6991±0.0043 0.6881±0.0117 (-0.0110) 0.7430±0.0088 0.7244±0.0040 (-0.0186)
nor_conv_1x1 1219 0.6299±0.0133 0.6266±0.0128 (-0.0033) 0.8100±0.0234 0.7120±0.0260 (-0.0980)

none 3131 0.6960±0.0102 0.7132±0.0198 (0.0172) 0.7656±0.0306 0.7253±0.0255 (-0.0403)
nor_conv_3x3 1215 0.5883±0.0099 0.6153±0.0064 (0.0270) 0.6709±0.0301 0.6567±0.0305 (-0.0142)
avg_pool_3x3 1219 0.7240±0.0007 0.8156±0.0080 (0.0916) 0.6072±0.0346 0.5816±0.0565 (-0.0256)

avg_pool & skip_connect 114 0.6925±0.0056 0.7646±0.0237 (0.0721) 0.6952±0.0142 0.6510±0.0506 (-0.0442)

Table A6: Operation pruning on NB201: GT accuracy of top-ranked architectures by OSEs trained in
the sub-SS and full-SS. The column of “#Archs” shows the number of remaining architectures from
6466 non-isomorphic ones.

Removed
Operation #Archs BestAcc@top-1 / BestAcc@top-10 (%)

Full-SS training (Full-SS test) Full-SS training (Sub-SS test) Sub-SS training (Sub-SS test)

skip_connect 2155

0.9355±0.0020 / 0.9394±0.0004

0.9309±0.0001 / 0.9360±0.0023 0.9318±0.0011 / 0.9360±0.0001
nor_conv_1x1 1219 0.9347±0.0018 / 0.9390±0.0020 0.9351±0.0014 / 0.9363±0.0008

none 3131 0.9355±0.0020 / 0.9417±0.0017 0.9358±0.0054 / 0.9396±0.0020
nor_conv_3x3 1215 0.9038±0.0012 / 0.9102±0.0025 0.9055±0.0029 / 0.9107±0.0022
avg_pool_3x3 1219 0.9350±0.0020 / 0.9419±0.0013 0.9350±0.0030 / 0.9382±0.0040

avg_pool & skip_connect 114 0.9367±0.0015 / 0.9425±0.0016 0.9371±0.0008 / 0.9419±0.0025

In summary, sharing extent reduction by removing operations can bring improvements to the average
OS scores, especially in the early training stages. However, whether the improved absolute OS scores
can bring ranking quality improvements or help find better architectures is questionable.

Per-architecture Hard Pruning We conduct SS pruning on NB201 by selecting the top 10%, 25%,
50% ranked by the OS scores of supernet (epoch 600 seed 20) out of the 6466 non-isomorphic
architectures. We continue to finetune the supernet to 1000 epoch with only the selected architecture
samples. The estimation qualities on the sub-SS of the OSEs trained on the full-SS and sub-SS are
shown in Tab. A7. We can see that OS pruning brings consistent improvements on both the average
OS score and ranking quality in the sub-SS: 2.2%/1.3%/0.1% average OS score improvements and
0.189/0.046/0.086 KD improvements when the sub-SS contains 10%/25%/50% architectures. Also,
the top-ranked (top-1 and top-10) architectures of the OSEs trained on the sub-SS have better GT
performances. This shows that reducing the sharing extent by OS pruning can improve the OSE
quality on good architectures, and thus enable the OSE to find better architectures.

The above results reveal the potential of dynamic SS pruning for improving the OSE quality, especially
for good architectures. However, the per-architecture hard pruning scheme based on the OS scores
need an exhaustive test of the full search space, which is not practical for actual use. There are two
directions for developing practical dynamic SS pruning methods: 1) Per-architecture (soft) pruning

14

200 400 600 800 1000

0.2

0.4

0.6

0.8
Without sep_conv_3x3 (480 archs)

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8
Without sep_conv_5x5 (510 archs)

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8
Without dil_conv_3x3 (868 archs)

200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8
Without dil_conv_5x5 (832 archs)

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8
Without avg_pool_3x3 (1071 archs)

200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8
Without max_pool_3x3 (869 archs)

200 400 600 800 1000

0.2

0.4

0.6

0.8
Without skip_connect (539 archs)

Sub-SS training
Full-SS training
Oneshot average
Spearman correlation
Kendall's tau
P@top10%

(a) Ranking quality.

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without sep_conv_3x3 (480 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without sep_conv_5x5 (510 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without dil_conv_3x3 (868 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without dil_conv_5x5 (832 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without avg_pool_3x3 (1071 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without max_pool_3x3 (869 archs)

250 500 750 1000
0.9325

0.9350

0.9375

0.9400

0.9425

0.9450

0.9475Without skip_connect (539 archs)

Sub-SS training (Sub-SS test)
Full-SS training (Full-SS test)
Full-SS training (Full-SS test)

(b) BestAcc@top-10: Best GT accuracy of top-10 ranked architectures by OS scores.

Figure A18: Operation pruning on NB301.

with a jointly updated controller, where the controller would give higher sampling probability to the
architectures with higher OS scores. 2) Per-decision pruning with a jointly updated controller, where
the controller learns to assign different probabilities to architectural decisions instead of architectures.
Next, we present a case study on NB301 that jointly updates an evolutionary controller and the
supernet, which follows the first direction (i.e. Per-architecture soft pruning).

Case study: Per-architecture Soft Pruning (with an evolutionary-based controller)

We use an evolutionary controller, and update the controller along with the supernet training process.
We experiment with two types of evolutionary controllers: single-evo and pareto-evo. The controller
update is based on the OS rewards/scores estimated by the current supernet, which is very similar
to that in non-one-shot NAS methods. There are two alternative phases in a typical non-one-shot
parameter-sharing NAS process: Controller update and supernet update. In the supernet update phase,
the controller samples S architecture in each step, and the supernet is updated using the accumulated
gradients of the S architectures. In the controller update phase of evolutionary controllers, the
controller sample Sc architectures, and then the estimated rewards of the Sc architectures (by
supernet) are utilized to update the population. And the controller update phase is conducted once
every Tc epochs. We summarize how the algorithm works in Tab. A8. And we can see that the
only difference between the single-evo controller and the pareto-evo controller lies in the population
update step. In the population update, the single-evo controller keeps 100 architectures with the

15

Table A7: (Per-architecture) one-shot pruning on NB201. The column of “#Archs” shows the number
of remaining architectures from 6466 non-isomorphic ones. The number between the parenthesis
“()” in the “BestAcc@top-1 / BestAcc@top-10” column is the best (absolute, 1 is the best, 6466
is the worst) GT ranking in the top-1 and top-10 OS ranked architectures (the average result of
multi-seed trained supernets is rounded to integer). Note that in the “BestAcc” column, the test is on
the full-SS instead of the sub-SS, which is different from the results in “Mean One-shot Accuracy”
and “Kendall’s Tau”.

Keep
Proportion #Archs

Mean One-shot Accuracy Kendall’s Tau BestAcc@top-1 / BestAcc@top-10 (%)

Full-SS
training

Sub-SS
training

Full-SS
training

Sub-SS
training

Full-SS
training

Sub-SS
training

10% 646 0.7669 0.7890 (+0.0221) 0.2643 0.4532 (+0.1889)
93.55 (298) / 93.94 (48)

94.29 (8) / 94.37 (1)
25% 1616 0.7597 0.7722 (+0.0126) 0.3526 0.4386 (+0.0861) 94.37 (1) / 94.37 (1)
50% 3233 0.7476 0.7563 (+0.0088) 0.5074 0.5532 (+0.0046) 94.11 (22) / 94.37 (1)

highest OS rewards from the sampled-and-estimated 200 architectures as the new population. And the
pareto-evo controller keeps 100 architectures from the OS-Param Pareto frontier and the OS-Inverse
Param Pareto frontier. Our construction of the pareto-evo controller is very similar to that in [16].
The motivation of including the OS-Inverse Param frontier into the population is that since the OSEs
might underestimate small architectures in the early training phase, the architectures with the largest
parameter sizes should also be put in the population for further training.

Table A8: The detailed settings in our evolutionary-based per-architecture soft pruning study. Random

Components & Interfaces Single-evo Pareto-evo
Population size 100

Controller
update

Sampling
Sc = 200

Whole population for 100 +
50% random, 25% crossover, 25% mutate for another 100

Population
update

Keep 100 with the
highest OS rewards

Keep 100 from the pareto &
inverse param pareto frontier

Update every Tc epoch 10†

Supernet
update

Sampling 1) 100% population 2) 50% random, 50% population

Warmup epochs 50†

†: We also experiment with Tc = 5 and warmup epochs=100/200, and do not observe consistent improve-
ments over the setting Tc = 10,warmup epochs = 50. The training process with Tc = 5 is about 2× slower
than the training process with Tc = 10, thus we only demonstrate the results obtained with Tc = 10.

M
ea
n

M
ax

Figure A19: Per-architecture soft pruning with evolutionary-based controllers on NB301: Quality
comparison of the OSE estimations after one-shot training and controller-guided training.

For the vanilla one-shot training, we run a tournament-based evolutionary method [12] on the trained
supernet at Epoch 200, 400, 600, 800, 1000. For the supernet trained jointly with the evolutionary

16

controllers, instead of directly taking the controller population at each epoch, we also run the same
tournament-based evolutionary method [12] on the supernet at Epoch 200/400/600/800/1000 for
a fair comparison. After running the tournament-based evolutionary method, the mean and max
GT accuracy of N architectures with the best one-shot scores in the tournament-based controller’s
population are shown in Fig. A19.

As described in Tab. A8, we experiment with two options of sampling architectures in the supernet
update phase: 1) 100% population: Random sample from the population; 2) 50% random, 50%
population: Random sample from the whole search space with 50% probability, and random sample
from the population otherwise. The first option is the original one adopted by [16], and as shown
by the orange lines in Fig. A19, they cannot achieve satisfying results. In this case, even when the
supernet is trained longer, the supernet cannot help find better architectures. We analyze that this is
because only training the supernet using the population architectures leads to local optimum trapping
that the search zooms in onto some architectures too quickly.

As a quick remedy, we experiment with the second option, which is an intermediate between fully
random sampling (one-shot) and controller-guided sampling (green lines). We can see that the
supernet-update sampling option 2 with half random sample (green lines) is generally better than
the original option 1 (orange lines) [16], and the mean/max GT accuracy of the discovered top
architectures increase as the training goes on. Also, the pareto-evo controller (green/orange dashed
lines) is slightly better than single-evo controller (green/orange solid lines). However, compared with
the one-shot trained supernet (blue line), jointly training the supernet with a per-architecture controller
can only bring small improvements in the early training stages. We analyze that this is because the SS
is too large such that it is hard for a per-architecture controller to balance the exploration (sufficient
training of supernet on lots of architectures) and exploitation (low sharing extent).

Based on the above case study, we regard the per-decision pruning scheme as a more promising choice
to dynamically reduce the sharing extent for better OSE training, since the factorized decision spaces
are much smaller to assign a proper sampling distribution. Several studies have proposed per-decision
search space pruning methods. Hu et al. [8] propose an angle-based metric to shrink the search space
progressively. A recent work [6] presents a search space evolving scheme. In each iteration, the
supernet is tuned on a sub-search space with only a subset of decision values for each decision (one
decision for each layer). Then, after a time-consuming process to get the one-shot Pareto frontier, the
union of decision values (type of operations) from all P Pareto-optimal architectures, together with
some newly included decision values, are used to assemble the sub search space in the next iteration.

Figure A20: Effect of BN affine operations in OSE. Top / Bottom: NB201 / NB301.

Influences of BN Affine Fig. A20 compares the ranking quality of the OSEs that are trained with or
without affine operations in BNs.

17

B Discussions and Results about Zero-shot Estimators

Our work evaluates six parameter-level ZSEs [1] and two architecture-level ZSEs [9, 10]:

1. Abdelfattah et al.[1] uses the summation of parameter-wise sensitivity as the architecture-
level score. The parameter-wise sensitivity calculation methods are from zero-shot pruning
literatures: grad_norm simply sums up gradients norms of all parameters; plain, snip, plain
and grasp take the Hadamard product of gradients and parameters into account; synflow is
proposed to avoid layer-collapse in zero-shot pruning without using any mini-batch data;
fisher considers the loss changes when removing certain activation channels. Denoting
the parameters, activations, and loss as θ, z, and L, the formula of these parameter-wise
sensitivity indicators can be written as

plain : S(θ) =
∂L
∂θ
� θ; snip : S(θ) = |∂L

∂θ
� θ|; grasp : S(θ) = −(H

∂L
∂θ

)� θ;

synflow : R = 1
T (

∏
θi∈θ

|θi|)1,S(θ) =
∂R
∂θ
� θ; fisher : S(z) =

∑
zi∈z

(
∂L
∂z

z)2.

(1)
2. Mellor et al. [9] measures the architecture’s discriminability of different inputs by

S = −
N∑
i=1

[log(σJ,i + k) + (σJ,i + k)−1] (2)

where σJ,1, σJ,2, · · ·σJ,N is the eigenvalues of the covariance matrix ΣJ of the input ja-
cobian J : ΣJ = cov(J, J). J = (∂f1∂x1

, ∂f2∂x2
, · · · , ∂fN∂xN

) is the jacobian of N images
x1, x2, · · · , xN in a batch.

3. Mellor et al. [10] propose another zero-shot measure of the architecture discriminability.
Instead of utilizing the high-order gradients at the input data, they measure the activation
differences at all ReLU layers between different input images as the architecture score:

s = log ||KH ||

where KH =

NA − dH(c1, c1) · · · NA − dH(c1, cN)
...

. . .
...

NA − dH(cN , c1) · · · NA − dH(cN , cN)

 ,
(3)

where ci is a binary mask indicating whether each feature value is larger than 0 at all ReLU
layers for input data i. And dH(ci, cj) is the Hamming distance between the binarized
activation code of the i-th and the j-th data.

Besides the results shown in the manuscript, this section demonstrates more detailed results and
analysis of these ZSEs.

B.1 Evaluation of Zero-shot Estimators

As shown in Tab. A9 and Fig. A21, ZSEs perform very poorly on NB101-1shot. For most of ZSEs
(except relu_logdet), their ranking quality is not only worse than the OSEs, but even worse than
directly using parameters or FLOPs as the estimation score. synflow, snip, and grad_norm estimators
even have negative KD.

As shown in Tab. A9, on all three search spaces, the ranking qualities of OSEs surpass all ZSEs
(except relu_logdet on NB301), and the best KD achieved by the ZSEs except relu_logdet cannot
even beat the KD between the GT accuracies and the parameter sizes. The situation on the easiest
NB201 is the best for the ZSEs: Both relu_logdet and jacob_cov achieve comparable KDs and
SpearmanRs as the GT-Param correlations (KD: 0.611 & 0.608 V.S. 0.606; SpearmanR: 0.798 &
0.788 V.S. 0.784). And the best ZSE based on parameter-wise analysis, synflow, can only achieve
a KD of 0.573. On harder search spaces, the ranking qualities of ZSEs based on parameter-wise
analysis are more questionable. Another thing is that, although relu_logdet and jacob_cov achieve
relatively good KD on NB201, their ability in distinguishing the top architectures is weak: P@top 5%

18

GT

FL
OP

s

Pa
ra

m
s 1k

re
lu

_lo
gd

et

ja
co

b_
co

v

sy
nf

lo
w

sn
ip

gr
ad

_n
or

m

gr
as

p

pl
ai

n

vo
te

GT

FLOPs

Params

1k

relu_logdet

jacob_cov

synflow

snip

grad_norm

grasp

plain

vote

1 0.27 0.27 0.37 0.29 0.066 -0.063 -0.21 -0.28 0.27 0.24 0.25

0.27 1 1 0.1 0.31 -0.27 0.25 0.1 0.062 -0.018 0.17 0.17

0.27 1 1 0.1 0.31 -0.27 0.25 0.1 0.062 -0.018 0.17 0.17

0.37 0.1 0.1 1 0.3 0.23 -0.28 -0.46 -0.57 0.45 0.21 0.25

0.29 0.31 0.31 0.3 1 0.15 0.03 -0.13 -0.27 0.33 0.6 0.71

0.066 -0.27 -0.27 0.23 0.15 1 -0.41 -0.41 -0.47 0.41 0.053 0.24

-0.063 0.25 0.25 -0.28 0.03 -0.41 1 0.7 0.54 -0.37 0.17 0.0049

-0.21 0.1 0.1 -0.46 -0.13 -0.41 0.7 1 0.83 -0.61 -0.055 -0.15

-0.28 0.062 0.062 -0.57 -0.27 -0.47 0.54 0.83 1 -0.72 -0.21 -0.28

0.27 -0.018 -0.018 0.45 0.33 0.41 -0.37 -0.61 -0.72 1 0.35 0.37

0.24 0.17 0.17 0.21 0.6 0.053 0.17 -0.055 -0.21 0.35 1 0.64

0.25 0.17 0.17 0.25 0.71 0.24 0.0049 -0.15 -0.28 0.37 0.64 1
0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure A21: Kendall’s Tau between GT, FLOPs/Params, OSEs (1k epoch) and ZSEs on NB101-1shot.

of jacob_cov (8.7%) is the lowest among all ZSEs, and P@top 5% of relu_logdet (15.8%) is also low.
As a comparison, synflow’s P@top 5% is 32.5%, and OSE’s P@top 5% is 53.3%.

The formula of relu_logdet in Eq. 3 indicates that the relu_logdet score would be highly correlated to
the number of ReLU layers. Based on this speculation, we compute the number of ReLU layers in
each architecture and denoted this value as the relu score. relu is a data-independent score purely
calculated according the structure information, thus we list it in Tab. A9 together with Param and
FLOPs. We can see that simply counting the number of ReLU layers as the architecture score is also
a competitive data-independent baseline of ZSEs on these topological search spaces. And we also
observe that the KDs between relu_logdet and relu on these three topological benchmarks are rather
high: 0.60 on NB101, 0.88 on NB201, and 0.88 on NB301.

Table A9: Comparison of ZSEs’ and OSEs’ KD / SpearmanR / P@top 5% / P@bottom 5% / BR@5%.
OS accuracy is used as the OS score on NB101 / NB201, and OS loss is used as the OS score on NB301.
Best-performing ZSEs are chosen as the voting experts in the vote ZSE: relu_logdet/grasp/plain on
NB101, relu_logdet/jacob_cov/synflow on NB201, plain/grasp/relu_logdet on NB301.

ZSE NAS-Bench-101-1shot NAS-Bench-201 NAS-Bench-301

synflow -0.063 / -0.090 / 0.016 / 0.024 / 0.028 0.573 / 0.769 / 0.325 / 0.489 / 0.000 0.201 / 0.299 / 0.020 / 0.265 / 0.030
grad_norm -0.276 / -0.397 / 0.000 / 0.016 / 0.123 0.401 / 0.546 / 0.108 / 0.539 / 0.011 0.070 / 0.105 / 0.017 / 0.095 / 0.030

snip -0.206 / -0.305 / 0.000 / 0.008 / 0.123 0.402 / 0.547 / 0.115 / 0.536 / 0.011 0.050 / 0.075 / 0.010 / 0.095 / 0.030
grasp 0.266 / 0.378 / 0.052 / 0.148 / 0.002 0.348 / 0.496 / 0.102 / 0.031 / 0.008 0.365 / 0.525 / 0.082 / 0.214 / 0.004
fisher - 0.362 / 0.495 / 0.093 / 0.514 / 0.011 -0.158 / -0.239 / 0.010 / 0.051 / 0.030
plain 0.240 / 0.346 / 0.012 / 0.100 / 0.030 0.311 / 0.458 / 0.096 / 0.121 / 0.002 0.394 / 0.565 / 0.068 / 0.286 / 0.007

jacob_cov 0.066 / 0.100 / 0.196 / 0.012 / 0.000 0.608 / 0.788 / 0.087 / 0.734 / 0.002 0.230 / 0.339 / 0.041 / 0.201 / 0.007
relu_logdet 0.290 / 0.421 / 0.252 / 0.144 / 0.000 0.611 / 0.798 / 0.158 / 0.799 / 0.003 0.539 / 0.736 / 0.296 / 0.357 / 0.006

vote 0.253 / 0.369 / 0.132 / 0.104 / 0.001 0.587 / 0.777 / 0.241 / 0.613 / 0.000 0.372 / 0.533 / 0.082 / 0.238 / 0.003
relu 0.208 / 0.278 / 0.072 / 0.124 / 0.001 0.613 / 0.755 / 0.223 / 0.647 / 0.000 0.521 / 0.709 / 0.238 / 0.354 / 0.006

Param 0.274 / 0.394 / 0.112 / 0.152 / 0.000 0.606 / 0.784 / 0.282 / 0.551 / 0.000 0.515 / 0.709 / 0.286 / 0.347 / 0.006
FLOPs 0.274 / 0.394 / 0.112 / 0.152 / 0.000 0.606 / 0.784 / 0.282 / 0.551 / 0.000 0.487 / 0.678 / 0.282 / 0.350 / 0.006

OS (1k epoch) 0.369 / 0.521 / 0.480 / 0.260 / 0.000 0.766 / 0.925 / 0.533 / 0.882 / 0.000 0.515 / 0.708 / 0.330 / 0.395 / 0.002
OS (1500 epoch) - - 0.534 / 0.726 / 0.435 / 0.398 / 0.000

Since NB201 also provides the architecture GT performances on CIFAR-100 and ImageNet-16-120
datasets, we conduct several experiments to evaluate the ranking quality of ZSEs on these two datasets.
As shown in Tab. A10, ZSEs can get a relatively stable performance on NB201, no matter what
dataset is used. Then we explore whether the rankings provided by ZSEs change when using different
input data distribution (i.e., using data batches from different datasets). We summarize the KD of
the GT accuracies and ZSE scores on the three datasets in Fig. A22. And we can see that most ZSEs
except plain are not sensitive to the input data distribution: their rankings on different datasets are

19

highly correlated. Actually, most ZSEs get similar architecture rankings even when using uniform
and Gaussian random noises as the input. And the ranking quality of ZSEs on a certain dataset might
be suboptimal when using its own data batches. This indicates that the architecture performance
estimations provided by most ZSEs except plain have small and nonideal dependencies on the input
distribution.

Table A10: Comparison of ZSEs’ and OSEs’ KD / SpearmanR / P@top 5% / P@bottom 5% /
BR@5% across the CIFAR-10, CIFAR-100, ImageNet-16-120 datasets on NB201. OS accuracy is
used as the OS score.

ZSE CIFAR-10 CIFAR-100 ImageNet-16-120

synflow 0.573 / 0.769 / 0.325 / 0.489 / 0.000 0.549 / 0.743 / 0.362 / 0.433 / 0.000 0.511 / 0.695 / 0.347 / 0.492 / 0.001
snip 0.402 / 0.547 / 0.115 / 0.536 / 0.011 0.401 / 0.539 / 0.102 / 0.529 / 0.268 0.346 / 0.463 / 0.115 / 0.396 / 0.446
plain 0.311 / 0.458 / 0.096 / 0.121 / 0.002 0.415 / 0.591 / 0.087 / 0.173 / 0.018 0.299 / 0.441 / 0.118 / 0.053 / 0.020

jacob_cov 0.608 / 0.788 / 0.087 / 0.734 / 0.002 0.641 / 0.821 / 0.118 / 0.746 / 0.016 0.585 / 0.766 / 0.074 / 0.697 / 0.057
relu_logdet 0.611 / 0.798 / 0.158 / 0.799 / 0.003 0.636 / 0.819 / 0.201 / 0.799 / 0.011 0.597 / 0.780 / 0.316 / 0.656 / 0.004

Param 0.606 / 0.784 / 0.282 / 0.551 / 0.000 0.569 / 0.745 / 0.356 / 0.529 / 0.000 0.507 / 0.675 / 0.238 / 0.498 / 0.002
FLOPs 0.606 / 0.784 / 0.282 / 0.551 / 0.000 0.569 / 0.745 / 0.356 / 0.529 / 0.000 0.507 / 0.675 / 0.238 / 0.498 / 0.002

OS (1k epoch) 0.766 / 0.925 / 0.533 / 0.882 / 0.000 0.645 / 0.837 / 0.350 / 0.601 / 0.000 0.640 / 0.832 / 0.269 / 0.774 / 0.000

C10 C100 IN120 C10-Z C100-Z IN120-Z U-Z G-Z

C1
0

C1
00

IN
12

0
C1

0-
Z

C1
00

-Z
IN

12
0-

Z
U-

Z
G-

Z

1 0.85 0.79 0.31 0.4 0.31 -0.18 -0.23

0.85 1 0.8 0.33 0.41 0.32 -0.19 -0.24

0.79 0.8 1 0.32 0.37 0.3 -0.19 -0.24

0.31 0.33 0.32 1 0.38 0.27 -0.24 -0.27

0.4 0.41 0.37 0.38 1 0.29 -0.2 -0.24

0.31 0.32 0.3 0.27 0.29 1 -0.18 -0.2

-0.18 -0.19 -0.19 -0.24 -0.2 -0.18 1 0.19

-0.23 -0.24 -0.24 -0.27 -0.24 -0.2 0.19 1

plain

C10 C100 IN120 C10-Z C100-Z IN120-Z U-Z G-Z

C1
0

C1
00

IN
12

0
C1

0-
Z

C1
00

-Z
IN

12
0-

Z
U-

Z
G-

Z

1 0.85 0.79 0.4 0.41 0.41 0.43 0.43

0.85 1 0.8 0.39 0.4 0.41 0.42 0.42

0.79 0.8 1 0.32 0.33 0.35 0.35 0.35

0.4 0.39 0.32 1 0.95 0.91 0.87 0.87

0.41 0.4 0.33 0.95 1 0.93 0.88 0.88

0.41 0.41 0.35 0.91 0.93 1 0.89 0.89

0.43 0.42 0.35 0.87 0.88 0.89 1 0.97

0.43 0.42 0.35 0.87 0.88 0.89 0.97 1

snip

C10 C100 IN120 C10-Z C100-Z IN120-Z U-Z G-Z

C1
0

C1
00

IN
12

0
C1

0-
Z

C1
00

-Z
IN

12
0-

Z
U-

Z
G-

Z

1 0.85 0.79 0.4 0.41 0.41 0.43 0.43

0.85 1 0.8 0.39 0.4 0.41 0.43 0.42

0.79 0.8 1 0.33 0.34 0.35 0.36 0.35

0.4 0.39 0.33 1 0.94 0.91 0.87 0.87

0.41 0.4 0.34 0.94 1 0.93 0.87 0.87

0.41 0.41 0.35 0.91 0.93 1 0.88 0.88

0.43 0.43 0.36 0.87 0.87 0.88 1 0.97

0.43 0.42 0.35 0.87 0.87 0.88 0.97 1

grad_norm

0.0

0.2

0.4

0.6

0.8

1.0

C10 C100 IN120 C10-Z C100-Z IN120-Z U-Z G-Z

C1
0

C1
00

IN
12

0
C1

0-
Z

C1
00

-Z
IN

12
0-

Z
U-

Z
G-

Z

1 0.85 0.79 0.61 0.61 0.58 0.52 0.51

0.85 1 0.8 0.64 0.64 0.61 0.54 0.54

0.79 0.8 1 0.61 0.61 0.58 0.54 0.53

0.61 0.64 0.61 1 0.93 0.86 0.79 0.78

0.61 0.64 0.61 0.93 1 0.85 0.77 0.76

0.58 0.61 0.58 0.86 0.85 1 0.79 0.79

0.52 0.54 0.54 0.79 0.77 0.79 1 0.95

0.51 0.54 0.53 0.78 0.76 0.79 0.95 1

jacob_cov

C10 C100 IN120 C10-Z C100-Z IN120-Z U-Z G-Z

C1
0

C1
00

IN
12

0
C1

0-
Z

C1
00

-Z
IN

12
0-

Z
U-

Z
G-

Z

1 0.85 0.79 0.61 0.61 0.61 0.61 0.58

0.85 1 0.8 0.64 0.64 0.64 0.64 0.61

0.79 0.8 1 0.59 0.59 0.6 0.61 0.59

0.61 0.64 0.59 1 0.98 0.98 0.92 0.88

0.61 0.64 0.59 0.98 1 0.97 0.91 0.87

0.61 0.64 0.6 0.98 0.97 1 0.93 0.89

0.61 0.64 0.61 0.92 0.91 0.93 1 0.92

0.58 0.61 0.59 0.88 0.87 0.89 0.92 1

relu_logdet

Figure A22: KDs between GT accs and ZSE scores on three datasets. “C10”, “C100” and “IN120”
represent the GTs on CIFAR-10, CIFAR-100 and ImageNet-16-120, respectively, while “C10-Z”,
“C100-Z” and “IN120-Z” represent the ZSE scores on these datasets. “U-Z” and “G-Z” represent the
ZSE scores using uniform and Gaussian noises as the input, respectively.

We explore whether ZSEs can benefit from OS training and show the results in Tab. A11. We can see
that the quality of ZSEs except relu_logdet significantly decreases as the training process goes on.
That is to say, ZSEs that utilize high-order information (i.e., gradients) provide the best estimations
with randomly initialized weights. One possible explanation is that the gradients are noisier and
of smaller magnitudes in trained models, so that the ranking quality of these gradient-based ZSEs
degrades.

20

Table A11: Quality of zero-shot estimations as training processes.

ZSE NAS-Bench-101 (Epoch 0/200/800) NAS-Bench-201 (Epoch 0/40/1000) NAS-Bench-301 (Epoch 0/200/800)

KD τ P@top5% KD τ P@top5% KD τ P@top5%

synflow -0.063 / -0.015 / 0.128 0.016 / 0.008 / 0.008 0.573 / 0.565 / 0.423 0.321 / 0.337 / 0.297 0.200 / -0.379 / -0.241 0.020 / 0.000 / 0.000
grad_norm -0.276 / -0.265 / -0.302 0.000 / 0.000 / 0.000 0.403 / 0.261 / -0.149 0.106 / 0.009 / 0.006 0.069 / -0.027 / -0.060 0.017 / 0.013 / 0.006

snip -0.206 / -0.105 / -0.215 0.000 / 0.000 / 0.000 0.405 / 0.231 / 0.083 0.106 / 0.006 / 0.018 0.050 / -0.412 / -0.314 0.010 / 0.000 / 0.000

jacob_cov 0.066 / -0.165 / 0.009 0.196 / 0.004 / 0.196 0.608 / 0.437 / -0.044 0.086 / 0.024 / 0.000 0.230 / -0.317 / -0.285 0.040 / 0.000 / 0.000
relu_logdet 0.290 / 0.325 / 0.325 0.252 / 0.236 / 0.264 0.611 / 0.556 / 0.628 0.158 / 0.183 / 0.201 0.539 / 0.531 / 0.528 0.296 / 0.241 / 0.248

B.2 Bias of Zero-shot Estimators

Architecture-level & Op-level Bias We show the top ranked architectures of various ZSEs on
NB201, NB301 and NB101 in Fig. A25, Fig. A27, and Fig. A28, respectively. The operation-level
bias on NB201 can also be witnessed from Fig. A26 that shows the scatter plot of GT-ZS scores.

0 10 20 30 40 50
Convolution index

0

2

4

6

8

Lo
g

sn
ip

 sc
or

e

log snip (arch without skip)
log snip (arch with skip)
average batch variance in BN

0

1

2

3

4

5

6

Av
er

ag
e

BN
 v

ar
ia

nc
e

Figure A23: Convolution-wise snip values (logarithm) of architectures with / without a 0-3 skip
connection. The dashed lines give out the average batch variance in BNs. And the peaks on the
orange dashed line correpond to the BNs after the 0-3 skip connections in all the 15 searchable cells.

From Fig. A25 and Fig. A26, we can see that synflow clearly prefer the largest architectures on
NB201, and we show a more formal explanation of why it is the case in Sec. B.3. Three other
ZSEs, snip, grad_norm and fisher, give similar rankings of architecture. These three ZSEs and grasp
all show improper preference on architectures with gradient explosion. More specifically, these
ZSEs show a clear preference for architectures without skip connections, which are far from optimal.
For example, the top-1 architectures ranked by snip, grad_norm and fisher is a linear architecture
with three 3x3 convolutions, and the ZS scores are 3063, 1922, and 454.8, respectively. This linear
architecture has a GT accuracy of 88.52%, and when a skip connection is added from node 0 to
node 3, the GT accuracy increases to 93.99%. However, the ZS scores of the architecture with a
0-3 skip connection degrades to 36.66, 18.74, and 0.019, respectively. We plot the logarithm of
convolution-wise snip values of these two architectures in Fig. A23 when inputting a random data
batch, and we can see that in the architecture without 0-3 skip connections, the snip score grows by
almost three orders of magnitudes ∼ 405× from the last convolution (8.44) to the first convolution in
cell (3.42×103). While in the architecture with 0-3 skip connections, the snip score grows at a much
slower pace (only 4.96×) from the last convolution (3.38) to the first convolution in cell (16.75). The
phenomenon of grad_norm and fisher is similar. The skip connections prevent gradient explosion,
since that the batch variance in the BN after each skip connection is several times larger due to the
aggregated feature map, and then the backpropagated gradient would be several times smaller.

To summarize, the skip connections effectively prevent the gradient explosion issue that indicates the
inferiority of the architecture, while these ZSEs have an undesired preference on architectures with
exploding gradients. Actually, due to the exponentially increasing scores shown in Fig. A23, we can
see that these three ZS indicators designed for measuring parameter-wise sensitivity are even not
suitable for measuring layer-wise sensitivity in some architectures.

As for the relu_logdet and jacob_cov estimator, they achieve the KD of 0.611 and 0.608 on NB201,
which are the best among the ZSEs. However, both relu_logdet and jacob_cov show an improper

21

preference on 1×1 convolution over 3×3 convolution, which account for their weak performance
in identifying good architectures: As shown in Tab. A9, relu_logdet has a relatively low P@top 5%
of 15.8%, while jacob_cov has a lowest P@top 5% of 8.7% among all ZSEs, not to speak of the
comparison with OSEs (OSE at 1000 epoch achieves a P@top 5% of 53.3%). And as shown in
Fig. A26 and Fig. A25, the plain estimator overestimate the avg_pool_3x3 operation.

As shown in Fig. A27, on NB301, synflow still perfers the largest architectures, and jacob_cov
prefers shallower architectures and non-parametrized operations. Another observation is that apart
from a few outlier values for the worst architectures, most jacob_cov scores are distributed in a very
small range from -132.67 (0.1 quantile) to -132.26 (0.9 quantile) and -131.84 (1.0 quantile). The
highly concentrated distribution means that it is very difficult for jacob_cov to distinguish different
architectures on the harder NB301 space with smaller inter-architecture differences. This explains
why the P@top 5% of jacob_cov is as low as 4.1% on NB301 (Tab. A9) (the OSE at 1500 epoch
achieves a P@top 5% of 43.5%). Compared to all other ZSEs, relu_logdet performs best on NB301,
with competitive KD/SpearmanR/P@bottom 5% even with OSE (KD: 0.539 V.S. 0.534, SpearmanR:
0.736 V.S. 0.726, P@bottom 5%: 35.7% V.S. 39.8%), according to Tab. A9.

As for NB101, Fig. A28 shows that synflow still prefers the largest architectures. And jacob_cov
and relu_logdet still show an improper preference on 1×1 convolution over 3×3 convolution, which
account for their relatively low P@topKs (See Tab. A9). And the same as our observation on NB201,
plain overestimate non-parametrized operation.

Complexity-level Bias Fig. A29 shows the complexity-level bias of the ZSEs on NB101, NB201
and NB301.

B.3 Preference Analysis of the synflow ZSE

The synflow indicator [1, 14] proposes to change all parameters to their absolute values, remove
BNs and nonlinear functions, input an all-1 tensor, add up the final feature map as the loss, and then
accumulate the multiplication of the loss gradient and magnitude of all parameters. Here, we want
to demonstrate three statements when introducing new convolutions into an architecture: 1) The
expected loss gradients w.r.t. existing parameters become larger. 2) And since the synflow of each
parameter is the multiplication of the absolute parameter value and the loss gradient (also positive),
the expectation of each synflow value increases. 3) And as the number of parameters also increases,
the overall synflow of the architecture increases. Since the latter two reasoning is obvious, we only
need to prove the first statement: “When introducing new convolutions, the expected loss gradients
w.r.t. existing parameters become larger”.

For simplicity, we study the case of adding a new MLP layer into an MLP architecture to demonstrate
our intuition. After synflow’s modifications, the architecture is turned into linear transformations, with
all weights being positive. For example, an architecture takes 1i ∈ RKi×1 (the i subscript denotes
"input") as the inputs and adds up the output vector of the last MLP layer with weight WN to get the
loss L. When a new MLP layer with weight Wc is added into the architecture, Wc split the original
architecture into two parts: the previous layers W1, · · · ,Wn, and the latter layers Wn+1, ...WN .
Since all operations are linear, we use a matrix Wl = fl(W1, ...,Wn) ∈ RKl×Ki to substitute all
the previous layers, Wr = fr(Wn+1, · · · ,WN) ∈ RKo×Kl to substitute all the latter layers. Note
that whether these two parts contain multiple branches does not influence the fact that their overall
computation is linear. And when there exist other branches from the previous part to the latter part,
we can only consider the branch with Wc on it. This is because all computations are fully linear, no
matter where the branches are merged, L can be decomposed into several accumulation terms with
some shared matrices. Thus for each parameter w, either ∂L

∂w is unrelated to the newly added Wc

since they are on parallel branches, or ∂L
∂w can be written as the sum of an unchanged gradient term

and another gradient term that is changed due to Wc. We’ll show that the introduction of Wc causes
all the related parameters’ expected gradient magnitudes to become larger.

The loss term calculated by the original architecture is L = 1l
TWrWl1i, where 1l ∈ RKo×1, and

Ko is the output vector dimension. After adding a new MLP layer, the loss term related to Wc

becomes L̃ = 1Tl WrWcWl1i, where Wc ∈ RKl×Kl . Let us compare gr = ∂L
∂WT

r
= Wl(1i1

T
l)

and g̃r = ∂L̃
∂WT

r
= WcWl(1i1

T
l) = Wcgr. It is obvious that all elements in each column of gr are

identically distributed. Denoting the expection of each element in gr as m, we have E[g̃r[i, j]] =

22

E[
∑
k=1,··· ,Kl

Wc[i, k]gr[k, j]] = mKlE[wc], where E[wc] is the expectation of each parameter
in Wc. The commonly-used kaiming weight initialization distribution [7] is U [− a√

Kl
, a√

Kl
], and

by taking the absolute value, we know that wc ∼ U [0, a√
Kl

], where a is a gain hyperparameter
and usually >1. Therefore, the expectation of the absolute weight value is E[wc] = a

2
√
Kl

, thus

E[g̃r[i, j]] = mKlE[wc] = a
√
Kl

2 E[gr[i, j]]. That is to say, as long as Kl >
4
a2 = 2

3 (typical value
of a is

√
6), which is always true, the expectation of each gradient element in ∂L̃

∂WT
r

increase by a

ratio a
√
Kl

2 > 1 after adding a Wc. And for all parameters W ∈ {Wn+1, · · · ,WN}, their gradients
are amplified by this ratio according to the chain rule: ∂L̃

∂W = ∂L̃
∂WT

r

∂fr
∂W , where ∂fr

∂W is fixed, given

{Wn+1, · · · ,WN} fixed. The derivation for ∂L
∂Wl

is similar and thus omitted. In summary, the synflow
indicator prefers architectures with more layers by design.

C Results on Non-topological Search Spaces

The search spaces of NB101, NB201 and NB301 are topological search spaces that contain archi-
tectural decisions about connection patterns. In practice, non-topological search spaces are also
commonly used, especially in hardware-aware NAS [15, 13], since complex architectural connection
patterns might deteriorate the efficiency. The architectural decisions in non-topological search spaces
usually include hyperparameters of predefined blocks like ResNet or MobileNet blocks, common
searchable architectural decisions include depth, width (channel number), kernel size, group number
and so on.

200 400 600 800 1000

0.4

0.5

0.6

0.7

0.8

L1 Channel

200 400 600 800 1000

0.4

0.5

0.6

0.7

0.8

Ordinal Channel

Oneshot average
Linear correlation
Spearman correlation
Kendall's tau
P@top5%
P@bottom5%

(a) ResNet

200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9
L1 Channel

200 400 600 800 1000
0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ordinal Channel

Oneshot average
Linear correlation
Spearman correlation
Kendall's tau
P@top5%
P@bottom5%

(b) ResNeXt-A

Figure A24: Criteria trend on NDS ResNet and NDS ResNeXt-A.

In order to evaluate OSEs and ZSEs on non-topological search spaces, we use the NDS ResNet
and ResNeXt-A benchmarks provided by [11]. The ResNet search space contains depth and width
decisions, and the ResNeXt-A search space contains decisions w.r.t depth, width, bottleneck width
ratio, and number of groups. We refer the readers to the NDS paper [11], Tab. A1 and our code for
the detailed description of these two search spaces.

To conduct OS estimation (i.e., parameter-sharing estimation) of the architecture performances,
we should specify how the parameters are shared between the architectures, and which subset of
parameters are used when evaluating each architecture. For the depth decision d ∈ {d1, d2, · · · , dK}
in each stage, we initialize a stage with the maximal possible depth d̃ = max({d1, d2, · · · , dK}) =
dK , and when evaluating an architecture with depth d, only the first d blocks are forwarded. As for
the decisions about the width and bottleneck width ratio, we init each block with the maximal possible

23

channel number, and experiment with two strategies of picking channels for each architecture: 1)
Picking channels with the largest L1 norms (L1), since using the L1 norm as the channel importance
criterion is common in the pruning literature; 2) Picking the first several channels (Ordinal). As
for the group number decision g ∈ {g1, g2, · · · , gK}, the convolution layer is initialized with
g̃ = GCD(g1, g2, · · · , gK) groups, which is the greatest common divisor (GCD) of all possible
group number choices. And when the actual group number of a convolution is g, we need to pick out
parameters that correspond to g/g̃ subgroups in each original group. More specifically, for the i-th
(i ∈ {1, 2, · · · , Cout}) convolutional kernel with maximal input channel number Cin, we choose the
convolution parameters corresponding to the (b ig

Cout c mod g̃)-th subpart of the input channels (each
subpart has g̃/gCin input channels). Note that when group search is needed for a convolution, the
channel search for this convolution should use the ordinal channel picking rule, since using the L1
rule is no longer reasonable. Thus in the ResNeXt-A search space, all convolutions that need group
number and width search use ordinal channel picking rule, but for convolutions that only need width
search, we still experiment with both the L1 and Ordinal picking rules.

Table A12: Comparison of ZSEs’ and OSEs’ KD / SpearmanR / P@top 5% / P@bottom 5% /
BR@0.5% on NDS ResNet and ResNeXt-A. OS accuracy is used as the OS score.

ZSE ResNet ResNeXt-A

synflow 0.231 / 0.346 / 0.004 / 0.448 / 0.142 0.690 / 0.871 / 0.300 / 0.848 / 0.003
grad_norm 0.237 / 0.358 / 0.000 / 0.324 / 0.202 0.319 / 0.464 / 0.104 / 0.336 / 0.020

grasp -0.114 / -0.171 / 0.076 / 0.012 / 0.003 -0.262 / -0.379 / 0.068 / 0.000 / 0.007
plain 0.307 / 0.451 / 0.048 / 0.240 / 0.059 0.289 / 0.418 / 0.052 / 0.176 / 0.053

jacob_cov -0.072 / -0.114 / 0.000 / 0.020 / 0.267 0.051 / 0.077 / 0.032 / 0.076 / 0.125
relu_logdet 0.182 / 0.273 / 0.008 / 0.352 / 0.133 0.459 / 0.645 / 0.088 / 0.560 / 0.019

Param 0.334 / 0.472 / 0.032 / 0.424 / 0.172 0.479 / 0.663 / 0.080 / 0.568 / 0.075
FLOPs 0.600 / 0.781 / 0.220 / 0.680 / 0.051 0.668 / 0.848 / 0.184 / 0.744 / 0.018

OS (1k epoch) 0.635 / 0.825 / 0.496 / 0.655 / 0.003 0.712 / 0.890 / 0.436 / 0.705 / 0.006

As the OSE training goes on, the evolving trends of different criteria are shown in Fig. A24. We can
see that the L1 channel picking rule does no help, and using the ordinal channel picking rule for width
search can achieve slightly better ranking quality. The comparison of OSEs and ZSEs is summarized
in Tab. A12, where the channel picking rule of OSEs is ordinal. We can see that similar with the
results on topological search spaces, OSEs can provide consistently better estimations than current
ZSEs, and the relative effectiveness of different ZSEs vary. For example, plain performs best among
all ZSEs on ResNet, while synflow performs best among all ZSEs on ResNeXt-A, and relu_logdet
performs best among all ZSEs on topological search spaces such as NB101, NB201 and NB301.

D Training and Evaluation Settings

Training Settings We summarize the hyper-parameters used to train all the supernets in Tab. A13.
Specifically, we train the supernets via momentum SGD with momentum 0.9 and weight decay 0.0005.
The batch size is set to 256 on NB101 / NB301, 512 on NB201, and 64 on ResNet / ResNeXt-A.
The initial learning rate is set to 0.05 for NB201 / NB301 / ResNet / ResNeXt-A, and 0.025 for
NB101. And the learning rate is decayed by 0.5 each time the supernet’s average training loss stops
to decrease for 30 epochs. During training, the dropout rate before the fully connected classifier is
set to 0.1, and the gradient norm is clipped to be less than 5.0. All the training and evaluation are
conducted on CIFAR-10, which is the dataset used by the three benchmarks. 80% of the training
set are used as the training data, while the other 20% are used as the validation data. We run every
supernet training process with three random seeds (20, 2020, 202020).

Evaluation Settings On NB201, we use all the 15625 architectures (6466 non-isomorphic ones)
to evaluate the ranking quality of OSEs and ZSEs. On NB101, the supernet is trained by random
sampling from the 14580 architectures (without loose end) in search space 3 of NB101-1shot, and the
OSE quality is evaluated using 5000 architectures randomly sampled from the 14580 architectures.
NB301 provides the tabular performances of 59328 anchor architectures, and we randomly sample
5896 architectures from these architectures with tabular performances for ranking quality estimation.

24

Table A13: Supernet training hyper-parameters

optimizer SGD initial LR 0.025 (NB101)
0.05 (NB201/NB301/ResNet/ResNeXt)

momentum 0.9 LR schedule ReduceLROnPlateau†

weight decay 0.0005 LR decay 0.5

batch size
256 (NB101/NB301)
512 (NB201)
64 (ResNet/ResNeXt)

LR patience 30

dropout rate 0.1 grad norm clip 5.0
†: See https://pytorch.org/docs/stable/optim.html#torch.optim.lr_
scheduler.ReduceLROnPlateau.

As for NDS ResNet, we use the 5000 architectures that have 3 GT performances with different
training seeds. And for NDS ResNeXt-A, we choose 5000 architectures from the 25k architectures
with GT performances for ranking quality estimation.

For evaluating ZSEs on all three topological search spaces and the NDS ResNet search space, we use
a batch size of 128. For evaluating ZSEs on the NDS ResNeXt-A search space, we use a batch size of
64, which enables us to run each experiment on only one GPU. We evaluate the ZSEs with 5 batches
in total. We find that, as reported by previous zero-shot studies, the variance of ZS estimations across
different data batches is very small. And utilizing more data batches does not increase the ranking
quality of ZSEs. And the ZSE results reported in our paper are all calculated using the average score
of 5 validation batches.

Resources We run the experiments on 16 NVIDIA Geforce RTX 2080Ti GPUs, and every experiment
is run on only one GPU. By rough estimation, all the training and evaluation experiments take about
300 GPU days.

25

https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau
https://pytorch.org/docs/stable/optim.html#torch.optim.lr_scheduler.ReduceLROnPlateau

0 3

nor_conv_3x3

1nor_conv_3x3

2nor_conv_3x3

nor_conv_3x3
nor_conv_3x3 nor_conv_3x3

0 3

nor_conv_1x1

1nor_conv_1x1

2skip_connect

nor_conv_1x1
nor_conv_1x1 skip_connect

0 1nor_conv_3x3 32nor_conv_3x3 nor_conv_3x3

Synflow Snip/Grad_norm/Fisher

Jacob_cov

0
3

nor_conv_1x1

1
nor_conv_1x1

nor_conv_1x1

2
nor_conv_1x1 avg_pool_3x3

0 3

skip_connect

1nor_conv_1x1

2nor_conv_3x3

avg_pool_3x3
nor_conv_1x1 nor_conv_1x1

0 1nor_conv_1x1 32nor_conv_3x3 nor_conv_3x3

0 1nor_conv_3x3 32nor_conv_3x3 nor_conv_1x1
0 3

skip_connect

1nor_conv_3x3

2nor_conv_3x3

nor_conv_3x3
nor_conv_3x3 nor_conv_3x3

0 3

nor_conv_1x1

1nor_conv_3x3

2nor_conv_3x3

nor_conv_3x3
nor_conv_3x3 nor_conv_3x3

0 1nor_conv_1x1 32nor_conv_3x3 nor_conv_3x3

Grasp

0 1nor_conv_3x3 32nor_conv_1x1 nor_conv_1x1

0 1nor_conv_1x1 32nor_conv_1x1 nor_conv_1x1

0 3

nor_conv_3x3

1
avg_pool_3x3

2avg_pool_3x3 avg_pool_3x3

Plain

0
3

nor_conv_1x1

1
avg_pool_3x3

nor_conv_3x3

2
avg_pool_3x3 avg_pool_3x3

0 3

nor_conv_1x1

1avg_pool_3x3

2

nor_conv_1x1
avg_pool_3x3
nor_conv_3x3

0 3

nor_conv_1x1

1nor_conv_1x1

2nor_conv_1x1

nor_conv_1x1
nor_conv_1x1 nor_conv_3x3

0 3

nor_conv_1x1

1nor_conv_1x1

2nor_conv_1x1

nor_conv_1x1
nor_conv_1x1 nor_conv_1x1

0 3

nor_conv_1x1

1nor_conv_1x1

2nor_conv_1x1

nor_conv_1x1
nor_conv_3x3 nor_conv_1x1

Relu_logdet

Figure A25: Top: Top-3 zero-shot ranked architectures on NB201. Bottom: Histogram of zero-shot
scores. For synflow, we plot the histogram of the log values of synflow scores (varying from 0 to
7.55×1049). Since there are many outliers in all types of zero-shot scores, only the histogram of the
zero-shot scores between the 0.1 and 0.9 quantile are plotted.

26

Jacob_cov

Synflow

Grad_norm

Snip

Grasp

Fisher

Plain

Relu_logdet

Figure A26: The scatter plot of GT (Y axis) - ZS (X-axis) scores, different subplots stand for different
edges (6 edges in total), and different colors & markers stand for different operation type on that edge.
Logarithm are taken for synflow/grad_norm/fisher values.

27

normal_0

c_{k-2}

0

sep_conv_5x5
1sep_conv_5x5

2
sep_conv_5x5

c_{k-1} sep_conv_5x5

sep_conv_5x5
3sep_conv_5x5

c_{k}

sep_conv_5x5
sep_conv_5x5

normal_0

c_{k-2}
0

sep_conv_5x5

c_{k-1}

sep_conv_3x3

1sep_conv_5x5

2
sep_conv_3x3

3
sep_conv_3x3

sep_conv_5x5

c_{k}sep_conv_3x3

max_pool_3x3

Synflow Snip/Grad_norm/Fisher

reduce_1

c_{k-2} 0sep_conv_3x3

1sep_conv_3x3

3sep_conv_3x3

c_{k-1}

sep_conv_3x3

sep_conv_5x5

2sep_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_5x5

reduce_1

c_{k-2}

0

sep_conv_5x5
1sep_conv_5x5

c_{k-1} sep_conv_3x3

sep_conv_5x5
2dil_conv_5x5

3sep_conv_5x5
c_{k}

sep_conv_5x5

sep_conv_5x5

normal_0

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

skip_connect 3

skip_connect

c_{k-1}

skip_connect

skip_connect

skip_connect

skip_connect c_{k}

Jacob_cov

reduce_1

c_{k-2} 0skip_connect
2

sep_conv_3x3

3sep_conv_3x3

c_{k-1}
skip_connect

1skip_connect

skip_connect

skip_connect

c_{k}

skip_connect

normal_0

c_{k-2}

0
skip_connect

1sep_conv_5x5

c_{k-1} skip_connect

sep_conv_3x3

2

skip_connect

3

dil_conv_5x5
sep_conv_3x3

sep_conv_3x3
c_{k}

Grasp

reduce_1

c_{k-2}

0dil_conv_5x5

1sep_conv_5x5

2

avg_pool_3x3 3

skip_connect

c_{k-1}
sep_conv_3x3

dil_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_5x5

No
rm

al
 C

el
l

Re
du

ce
 C

el
l

normal_0

c_{k-2}

0

sep_conv_5x5
1

sep_conv_3x3

2

sep_conv_3x3

c_{k-1} skip_connect

sep_conv_3x3

sep_conv_5x5

3
dil_conv_5x5

dil_conv_3x3

c_{k}

reduce_1

c_{k-2}

0sep_conv_3x3

1sep_conv_3x3

3skip_connect

c_{k-1}

sep_conv_5x5

skip_connect 2
sep_conv_5x5

c_{k}

sep_conv_5x5

dil_conv_5x5

Plain
normal_0

c_{k-2}

0

sep_conv_5x5 3
sep_conv_3x3

c_{k-1}

sep_conv_5x5
1sep_conv_5x5

2
sep_conv_3x3

sep_conv_5x5

sep_conv_3x3

sep_conv_5x5

c_{k}

reduce_1

c_{k-2}

0

sep_conv_3x3

1
sep_conv_3x3

2

sep_conv_3x3 3

sep_conv_3x3

c_{k-1}

sep_conv_5x5

sep_conv_3x3

sep_conv_3x3

sep_conv_3x3 c_{k}

Relu_logdet

No
rm

al
 C

el
l

Re
du

ce
 C

el
l

Figure A27: Top: Top-1 zero-shot ranked architectures (normal & reduction cell) on NB301. Bottom:
Histogram of zero-shot scores. For synflow, we plot the histogram of the log values of synflow scores
(varying from 1.18×1010 to 1.18×1054). Since there are many outliers in all types of zero-shot
scores, only the histogram of the zero-shot scores between the 0.1 and 0.9 quantile are plotted.

28

Synflow Snip/Grad_norm/Fisher Grasp

Jacob_cov

input

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

output

input

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

output

input

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

output

input

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

maxpool3x3

output

input

conv3x3-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

conv3x3-bn-relu

maxpool3x3

output

input

conv1x1-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

conv3x3-bn-relu

maxpool3x3

output

input

conv1x1-bn-relu

conv1x1-bn-relu

conv1x1-bn-relu

conv1x1-bn-relu

output

maxpool3x3

input

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

output

input

conv3x3-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

conv3x3-bn-relu

conv3x3-bn-relu

output

input

conv1x1-bn-relu

conv1x1-bn-relu

output

conv3x3-bn-relu

maxpool3x3

conv1x1-bn-relu

input

conv1x1-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

output

conv1x1-bn-relu

conv1x1-bn-relu

input

conv1x1-bn-relu

conv1x1-bn-relu

output

conv1x1-bn-relu

maxpool3x3

conv1x1-bn-relu

Relu_logdet
input

conv1x1-bn-relu

output

conv1x1-bn-relu

conv1x1-bn-relu

conv1x1-bn-relu

conv3x3-bn-relu

input

conv1x1-bn-relu

conv1x1-bn-relu

output

conv1x1-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

input

conv1x1-bn-relu

output

conv1x1-bn-relu

conv3x3-bn-relu

conv1x1-bn-relu

maxpool3x3

Plain
input

maxpool3x3

conv1x1-bn-relu

maxpool3x3

maxpool3x3

maxpool3x3

output

input

maxpool3x3

conv1x1-bn-relu

output

maxpool3x3

maxpool3x3

maxpool3x3

input

maxpool3x3

conv1x1-bn-relu

maxpool3x3

maxpool3x3

maxpool3x3

output

Figure A28: Top: Top-3 zero-shot ranked architectures on NB101. Bottom: Histogram of zero-shot
scores. For synflow, we plot the histogram of the log values of synflow scores (varying from 5.31×109

to 2.06×1047). Since there are many outliers in all types of zero-shot scores, only the histogram of
the zero-shot scores between the 0.1 and 0.9 quantile are plotted.

29

20% 40% 60% 80% 100%
0.125

0.150

0.175

0.200

0.225

0.250

0.275
synflow

0.10

0.05

0.00

0.05

0.10

0.15

20% 40% 60% 80% 100%
0.55

0.50

0.45

0.40

0.35

0.30

snip

0.02

0.00

0.02

0.04

0.06

20% 40% 60% 80% 100%
0.55

0.50

0.45

0.40

0.35

0.30

grad_norm

0.02
0.00
0.02
0.04
0.06
0.08

20% 40% 60% 80% 100%

0.35

0.40

0.45

0.50

0.55
grasp

0.2

0.1

0.0

0.1

0.2

20% 40% 60% 80% 100%
0.05

0.10

0.15

0.20

0.25
jacob_cov

0.2

0.0

0.2

0.4

20% 40% 60% 80% 100%

0.14

0.16

0.18

0.20

0.22

0.24

relu_logdet

0.10

0.05

0.00

0.05

0.10

20% 40% 60% 80% 100%

0.50

0.45

0.40

0.35
plain

0.2

0.0

0.2

0.4

KD
Rank Diff

(a) NB101

20% 40% 60% 80% 100%
0.20

0.25

0.30

0.35

0.40

0.45

0.50 synflow

0.02

0.00

0.02

20% 40% 60% 80% 100%
0.0

0.1

0.2

0.3

0.4
snip

0.050

0.025

0.000

0.025

0.050

0.075

20% 40% 60% 80% 100%
0.0

0.1

0.2

0.3

0.4
grad_norm

0.050
0.025

0.000
0.025
0.050
0.075

20% 40% 60% 80% 100%
0.0

0.1

0.2

0.3

fisher

0.05

0.00

0.05

0.10

20% 40% 60% 80% 100%

0.1

0.2

0.3

grasp

0.10

0.05

0.00

0.05

0.10

0.15

20% 40% 60% 80% 100%

0.4

0.5

0.6

0.7
jacob_cov

0.15

0.10

0.05

0.00

0.05

0.10

0.15

20% 40% 60% 80% 100%
0.3

0.4

0.5

0.6

relu_logdet

0.05

0.00

0.05

0.10

20% 40% 60% 80% 100%

0.35

0.30

0.25

0.20

0.15

0.10
plain

0.4

0.2

0.0

0.2

0.4KD
Rank Diff

(b) NB201

20% 40% 60% 80% 100%
0.3

0.2

0.1

0.0

0.1
synflow

0.08

0.06

0.04

0.02

0.00

0.02

0.04

20% 40% 60% 80% 100%

0.40

0.35

0.30

0.25

0.20

0.15
snip

0.10

0.05

0.00

0.05

0.10

20% 40% 60% 80% 100%

0.40

0.35

0.30

0.25

0.20

0.15
grad_norm

0.10

0.05

0.00

0.05

20% 40% 60% 80% 100%
0.45

0.40

0.35

0.30

0.25

fisher

0.2

0.1

0.0

0.1

0.2

0.3

20% 40% 60% 80% 100%

0.200

0.225

0.250

0.275

0.300

0.325
grasp

0.15

0.10

0.05

0.00

0.05

0.10

0.15

20% 40% 60% 80% 100%

0.20

0.25

0.30

jacob_cov

0.4

0.2

0.0

0.2

0.4

20% 40% 60% 80% 100%
0.15

0.20

0.25

0.30

relu_logdet

0.10

0.05

0.00

0.05

0.10

20% 40% 60% 80% 100%
0.25

0.20

0.15

0.10

plain

0.4

0.2

0.0

0.2

0.4
KD
Rank Diff

(c) NB301

Figure A29: Complexity-level bias of zero-shot estimators on NB101 (a), NB201 (b) and NB301 (c).
The architectures are grouped by their parameter sizes (Param).

30

References
[1] Mohamed S. Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D. Lane. Zero-

Cost Proxies for Lightweight NAS. In International Conference on Learning Representations,
2021.

[2] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target
task and hardware. In International Conference on Learning Representations, 2019.

[3] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive differentiable architecture search:
Bridging the depth gap between search and evaluation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1294–1303, 2019.

[4] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A downsampled variant of imagenet as
an alternative to the cifar datasets. arXiv preprint arXiv:1707.08819, 2017.

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fairnas: Rethinking evaluation fairness
of weight sharing neural architecture search. arXiv preprint arXiv:1907.01845, 2019.

[6] Yuanzheng Ci, Chen Lin, Ming Sun, Boyu Chen, Hongwen Zhang, and Wanli Ouyang. Evolving
search space for neural architecture search. CoRR, abs/2011.10904, 2020.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1026–1034, 2015.

[8] Yiming Hu, Yuding Liang, Zichao Guo, Ruosi Wan, Xiangyu Zhang, Yichen Wei, Qingyi Gu,
and Jian Sun. Angle-based search space shrinking for neural architecture search. In Proceedings
of the European Conference on Computer Vision, pages 119–134. Springer, 2020.

[9] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search
without training. arXiv preprint arXiv:2006.04647, 2021.

[10] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J. Crowley. Neural architecture search
without training. In International Conference on Machine Learning, 2021.

[11] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo, and Piotr Dollár. On network
design spaces for visual recognition. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1882–1890, 2019.

[12] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[13] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2820–2828, 2019.

[14] Hidenori Tanaka, Daniel Kunin, Daniel LK Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. arXiv preprint arXiv:2006.05467,
2020.

[15] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang, Fei Sun, Yiming Wu, Yuandong
Tian, Peter Vajda, Yangqing Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient convnet
design via differentiable neural architecture search. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 10734–10742, 2019.

[16] Zhaohui Yang, Yunhe Wang, Xinghao Chen, Boxin Shi, Chao Xu, Chunjing Xu, Qi Tian, and
Chang Xu. Cars: Continuous evolution for efficient neural architecture search. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1829–1838, 2020.

31

	Discussions and Results about One-shot Estimators
	Evaluation of One-shot Estimators
	Trend of P@top/bottom K & BR/WR@K
	Effect of Validation Data Size
	Other Datasets
	Influences of Proxy Model

	Bias of One-shot Estimators
	Complexity-level Bias
	Operation-level Bias

	Mitigations
	Gradient Visualization
	Variance Reduction
	De-Isomorphic Sampling
	Sharing Extent Reduction

	Discussions and Results about Zero-shot Estimators
	Evaluation of Zero-shot Estimators
	Bias of Zero-shot Estimators
	Preference Analysis of the synflow ZSE

	Results on Non-topological Search Spaces
	Training and Evaluation Settings

