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A Details of MiT Series

In this section, we list some important hyper-parameters of our Mix Transformer (MiT) encoder. By
changing these parameters, we can easily scale up our encoder from B0 to B5.

In summary, the hyper-parameters of our MiT are listed as follows:

• Ki: the patch size of the overlapping patch embedding in Stage i;

• Si: the stride of the overlapping patch embedding in Stage i;

• Pi: the padding size of the overlapping patch embedding in Stage i;

• Ci: the channel number of the output of Stage i;

• Li: the number of encoder layers in Stage i;

• Ri: the reduction ratio of the Efficient Self-Attention in Stage i;

• Ni: the head number of the Efficient Self-Attention in Stage i;

• Ei: the expansion ratio of the feed-forward layer [1] in Stage i;

Table 4 shows the detailed information of our MiT series. Table 3 shows the top-1 accuracy on
ImageNet-1K. To facilitate efficient discussion, we assign the code name B0 to B5 for MiT encoder,
where B0 is the smallest model designed for real-time, while B5 is the largest model designed for
high performance.

B More Comparisons

Table 1: Results on COCO-Stuff full dataset containing
all 164K images from COCO 2017 and covers 172 classes.

Method Encoder Params mIoU

DeeplabV3+ [2] ResNet50 43.7 38.4
OCRNet [3] HRNet-W48 70.5 42.3
SETR [4] ViT 305.7 45.8

SegFormer MiT-B5 84.7 46.7

COCO-Stuff. We evaluate SegFormer on the full
COCO-Stuff dataset. For comparison, as existing meth-
ods do not provide results on this dataset, we reproduce
the most representative methods such as DeeplabV3+,
OCRNet, and SETR. In this case, the flops on this dataset
are the same as those reported for ADE20K. As shown
in Table 1, SegFormer-B5 reaches 46.7% mIoU with
only 84.7M parameters, which is 0.9% better and 4×
smaller than SETR.

Compare with CvT/Swin/PVT. We implement CvT as an encoder by combining it with our MLP
decoder, and keep the other training recipe the same as SegFormer for fair comparison. CvT achieves
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Encoder Decoder mIoU ImageNet Top-1 Encoder Params (M)

MiT-B2 (Ours) MLP (Ours) 46.5 81.4 24.2
CvT-13 MLP (Ours) 43.7 81.6 20.0
Swin-T UperNet 44.5 81.2 28.0
PVT-S SemFPN 43.2 79.8 24.5

Table 2: Compare with CvT/Swin/PVT on ADE20K segmentation and ImageNet-1K classification.

Method GFLOPs Params (M) ImageNet Top 1

MiT-B0 0.6 3.4 70.3
MiT-B1 2.1 13.1 78.5
MiT-B2 4.0 24.2 81.4
MiT-B3 6.9 44.0 83.0
MiT-B4 10.1 60.8 83.4
MiT-B5 11.8 81.4 83.7

Table 3: Top-1 Accuracy on ImageNet-1K from MiT-B0 to MiT-B5.

good performance but is lower than SegFormer. We hypothesize that the decreased performance is
caused by the fact that CvT was initially designed to solve image classification tasks. Table 2 shows
the single scale segmentation performance and the ImageNet-1K Top-1 accuracy of the corresponding
backbones. Note that all encoders here are pre-trained on ImageNet-1K with shape 224x224. The
results of Swin Transformer on semantic segmentation are reported from its paper. The results of
CvT, Swin and PVT-S on ImageNet-1K are also reported from their papers.

C More Qualitative Results on Mask Predictions

Figure 1 shows qualitative results on Cityscapes, where SegFormer provides better details than SETR
and smoother predictions than DeeplabV3+. In Figure 2, we present more qualitative results on
Cityscapes, ADE20K and COCO-Stuff, compared with SETR and DeepLabV3+.

Compared to SETR, our SegFormer predicts masks with significantly finer details near object
boundaries because our Transformer encoder can capture much higher resolution features than
SETR, which preserves more detailed texture information. Compared to DeepLabV3+, SegFormer
reduces long-range errors benefit from the larger effective receptive field of Transformer encoder than
ConvNet.

D More Visualization on Effective Receptive Field

In Figure 3, we select some representative images and effective receptive field (ERF) of DeepLabV3+
and SegFormer. Beyond larger ERF, the ERF of SegFormer is more sensitive to the context of
the image. We see SegFormer’s ERF learned the pattern of roads, cars, and buildings, while
DeepLabV3+’s ERF shows a relatively fixed pattern. The results also indicate that our Transformer
encoder has a stronger feature extraction ability than ConvNets.

E More Comparison of DeeplabV3+ and SegFormer on Cityscapes-C

In this section, we detailed show the zero-shot robustness compared with SegFormer and DeepLabV3+.
Following [5], we test 3 severities for 4 kinds of “Noise” and 5 severities for the rest 12 kinds of
corruptions and perturbations.

As shown in Figure 4, with severity increase, DeepLabV3+ shows a considerable performance
degradation. In contrast, the performance of SegFormer is relatively stable. Moreover, SegFormer
has significant advantages over DeepLabV3+ on all corruptions/perturbations and all severities,
demonstrating excellent zero-shot robustness.
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Output Size Layer Name Mix Transformer

B0 B1 B2 B3 B4 B5

Stage 1 H
4 × W

4

Overlapping
Patch Embedding

K1 = 7; S1 = 4; P1 = 3

C1 = 32 C1 = 64

Transformer
Encoder

R1 = 8
N1 = 1
E1 = 8
L1 = 2

R1 = 8
N1 = 1
E1 = 8
L1 = 2

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 4
L1 = 3

Stage 2 H
8 × W

8

Overlapping
Patch Embedding

K2 = 3; S2 = 2; P2 = 1

C2 = 64 C2 = 128

Transformer
Encoder

R2 = 4
N2 = 2
E2 = 8
L2 = 2

R2 = 4
N2 = 2
E2 = 8
L2 = 2

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 8

R2 = 4
N2 = 2
E2 = 4
L2 = 6

Stage 3 H
16 × W

16

Overlapping
Patch Embedding

K3 = 3; S3 = 2; P3 = 1

C3 = 160 C3 = 320

Transformer
Encoder

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 6

R3 = 2
N3 = 5
E3 = 4
L3 = 18

R3 = 2
N3 = 5
E3 = 4
L3 = 27

R3 = 2
N3 = 5
E3 = 4
L3 = 40

Stage 4 H
32 × W

32

Overlapping
Patch Embedding

K4 = 3; S4 = 2; P4 = 1

C4 = 256 C4 = 512

Transformer
Encoder

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

Table 4: Detailed settings of MiT series. Our design follows the principles of ResNet [6]. (1) the
channel dimension increase while the spatial resolution shrink with the layer goes deeper. (2) Stage 3
is assigned to most of the computation cost.

SegFormerSETR SegFormerDeepLabv3+

Figure 1: Qualitative results on Cityscapes. Compared to SETR, our SegFormer predicts masks with substan-
tially finer details near object boundaries. Compared to DeeplabV3+, SegFormer reduces long-range errors as
highlighted in red. Best viewed in screen.
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SegFormer SETR DeepLabV3+

Figure 2: Qualitative results on Cityscapes, ADE20K and COCO-Stuff. First row: Cityscapes. Second row:
ADE20K. Third row: COCO-Stuff. Zoom in for best view.
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Figure 3: Effective Receptive Field on Cityscapes. ERFs of the four stages and the decoder heads of both architectures are visualized.
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Figure 4: Comparison of zero shot robustness on Cityscapes-C between SegFormer and DeepLabV3+. Blue line is SegFormer and orange
line is DeepLabV3+. X-Axis means corrupt severity and Y-Axis is mIoU. Following[5], we test 3 severities for “Noise” and 5 severities for
the rest.
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