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In this supplement, we first summarize the notation & definition used in this paper
in Sec. 1, and give more thorough review about the recent efforts in fully-supervised
RGB-D salient object detection and related RGB-based SOD approaches with low-
cost annotations in Sec. 2. Then, in Sec. 3, we elaborate on the detailed network
structure of our TSM, and describe the training objective for each component of the
JSM framework. In Sec. 4, we provide more detailed information of the proposed
CapS dataset. Furthermore, we give more experimental results to demonstrate
the superiority of our method in Sec. 5. These results consistently indicate the
reasonability and effectiveness of the proposed method. Finally, we discuss the
potential limitations which can be addressed in the near future in Sec. 6.

1 Notation and Definition

Notation Definition
I The training RGB image.
Dmap The raw depth map paired with I.
Spred The saliency prediction produced by the saliency network.
Dmask The saliency-guided depth mask generated by spatial supervision generation

module in our SSM.
DS The learned depth semantics generated by the depth network.
k ∈ {1, ..,K} The image-level category label of a training sample, whereK is the total number

of salient categories.
c = {ci}nc

i=1 The caption description of a training sample.
nc The word number of the caption.
ci ∈ Rd×1 The word embedding of the i-th word in caption c, where d is its dimension.
X The position of the salient word (category) in the caption.
ĉ ∈ Rd×nc The masked version of caption where the salient word cX in caption c is masked

with a special symbol.
StD The depth-refined pseudo-label at current training round.
Stmap The pseudo-label at current training round.
St+1
map The updated pseudo-label via the JSM at the end of current training round.
SGT The pixel-level ground-truth label.
Fvis The visual features extracted by the saliency network.
λd The hyper-parameter in the SSM, to control the degree of the subtracted back-

ground noises.
τ The update interval in the JSM, i.e., the granularity of label updating.
eX ∈ RK×1 The energy vector of the masked salient word produced by transformer-like net.
SC The confidence score produced by the TSM, based on saliency-filtered visual

feature (i.e., different pseudo-labels).
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2 Related Work

2.1 Fully-supervised RGB-D Salient Object Detection

Although many works [22, 21, 24, 50, 38, 9, 44] have devoted to RGB-based salient object detection
(SOD) and have achieved appealing performance, they might fail when coping with complex scenarios,
such as cluttered background and low-intensity environment. This naturally leads to the incorporation
of depth information in addition to the conventional RGB image as input, known as RGB-D SOD.
[31, 4, 15, 14] demonstrate that depth information, containing spatial structure and 3D layout cues in
a scene, is helpful to alleviate the challenging scenarios.

With explicit pixel-level supervisions, existing RGB-D SOD methods mainly concentrate on learning
multi-modal feature representations, by designing feature fusion strategies to promote the interactions
between visual features from RGB image and complementary spatial features from depth map.
Chen et al. [11, 6] employ a two-stream CNNs-based model and perform fusion by adding or
concatenating paired features at shallow or deep layers. In [4], they design a fusion network,
where cross-level features are progressively combined. To further promote multi-modal feature
interactions, Liu et al. [23] utilize a residual fusion module to integrate depth cues into RGB
stream, and exploit self-attention and mutual attention to capture the contexts of fused features.
Li et al. [19] design a cross-modal weighting strategy to encourage comprehensive interactions
between RGB and depth information. We refer interested researchers to recent comprehensive
surveys [52, 36, 2, 49, 9, 17, 48, 47] that have well studied fully-supervised SOD field.

However, these methods often require costly pixel-level annotations, which are tedious and time-
consuming to obtain. This motivates us to consider a weakly-supervised approach. To our best
knowledge, it is the first effort to address weakly-supervised RGB-D SOD problem, i.e., only image-
level labels are available. In what follows, our focus will be mainly toward related weakly-supervised
methods, where the differences of our approach from existing methods would be clarified.

2.2 Salient Object Detection with Low-cost Annotations

2.2.1 Image-level Supervision

To avoid requiring laborious per-pixel labels, some methods attempt to learn saliency from low-
cost image-level supervisions, such as image tags (or categories), and image captions. Wang et
al. [35] introduce a foreground inference network with object category labels for learning salient
object detector, which requires less annotation efforts. Hsu et al. [12] design a category-driven
map generator to learn saliency from class activation map. Li et al. [20] develop a graphical model
combined with CNNs to perform model updating, which corrects the ambiguity of noisy labels. Due
to the limited information provided by image-level tags, the trained networks usually highlight only
the most discriminative regions, which makes it difficult to detect the whole object. Zeng et al. [42]
use image captions that describe the main content of an image, to provide more comprehensive
cues to complement image category. They utilize the pseudo-labels from classification network and
caption generation network to jointly train the target saliency models.

2.2.2 Sparse Pixel-level Supervision

Recent works [41, 45] attempt to explore other weak supervision signal, i.e, scribble annotation. It
only annotates a small set of image pixels as foreground or background annotations, which is low-cost.
However, due to the annotation sparsity, object structure and details cannot be easily inferred. Zhang
et al. [45] introduce a gated structure-aware loss function as well as an auxiliary edge detection
network to enhance the complete structure of foreground object. Meanwhile, Yu et al. [41] explore
self-consistency of multi-scale outputs and design a local coherence loss to propagate the labels to
unlabeled regions based on image features. This allows the model to detect smoother and integral
salient objects.

2.2.3 Free-cost Supervision

Compared to accurate pixel-level or low-cost supervision signals, SOD with free-cost supervision
(or unsupervised SOD) that do not rely on such annotations is naturally considered. It is generally
categorized into handcrafted methods and deep unsupervised SOD with noisy labels. For the first
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Figure 1: The detailed structure of our textual semantic modeling (TSM), during training stage.

class, handcrafted methods are mainly based on the manually-crafted human priors, including depth
cues [29, 7], global priors [32], center priors [53] and contrast priors [33]. Secondly, building
upon the powerful learning capacity of CNN, deep unsupervised SOD methods achieve appealing
performance over traditional methods. They usually use the noisy output produced by traditional
methods as pseudo-label for training saliency network. Zhang et al. [43] define a fusion strategy
to combine the pseudo-labels from handcrafted methods on super-pixel and image-level. In [46], a
noise modeling is proposed to fit the noise distribution of pseudo-label. Rather than the direct use of
noisy pseudo-labels, Nguyen et al. [26] refine pseudo-label iteratively via self-supervision technique,
and achieve better performance. Notice that, in this paper, our variant with SSM can be adapted to
unsupervised setting, which is free-cost for human annotations.

2.3 Weakly-supervised RGB-D Salient Object Detection

In this work, we systematically formulate a new problem on weakly-supervised RGB-D salient object
detection, and tackle its new challenges. (1) Considering the large variations in the raw depth map and
the lack of explicit pixel-level supervisions, our SSM is designed to capture the saliency-specific depth
semantics, to eliminate the background noises in the coarse saliency prediction, and to generate a
depth-refined pseudo-label. (2) To mitigate the noisy issue of weak supervisions, our JSM is proposed
to provide internal pixel-level supervision signals, which is progressively updated by reconciling the
multimodal input signals and the current information flow of the neural net. Meanwhile, a TSM is
introduced to estimate the confidence scores of competing pseudo-labels, from a new perspective.

3 Model Details
3.1 Detailed Structure of Textual Semantic Modeling

Previously, the mainstream use of weak labels is to train a classification network or a caption
generation network, where the by-product attention maps or Class Activation Maps [51] are leveraged
to determine the potential salient regions [42, 35]. It is very different in our textual semantic modeling
(TSM), where the main focus is to leverage side information (i.e., image-level tags and captions)
to facilitate the production of reliable training signals. Inspired by the recent success of masked
language models [8], captions with missing keywords are used as input, with the expectation of
the complete text being reconstructed as output. In the proposed TSM, innovatively taking as input
partial text with salient word being masked, as well as the saliency-filtered visual features, our TSM
is to output the reconstructed text in a fill-in-the-blank manner and to estimate the confidence scores
of competing pseudo-labels.

Formally, for each training data I, the weak labels contain caption description c = {ci}nc
i=1, image-

level category k ∈ {1, ..,K}, and the position X of the salient word (category) in the caption, where
nc is the word number of the caption. Let ci ∈ Rd×1 be the word embedding of the i-th word in
the caption, K the total number of salient categories, and X an integral number. As presented in
Fig. 1, the input is a masked version of caption ĉ ∈ Rd×nc where the salient word cX in caption c is
masked with a special symbol. In order to reconstruct the masked salient word, we filter the visual
feature Fvis from the saliency network by multiplying it with the learned saliency attention (i.e.,



Spred). We then obtain the saliency-filtered visual feature Fsal, and transform it to a feature vector
fsal ∈ Rd×1 for subsequent cross-modal fusion using a GAP (global average pooling) operation and
a fully-connected convolution layer.

The center component of the TSM module is a transformer-like encoder, composed of a stack of
layers: a multi-head self-attention sub-layer, a multi-modal fusion sub-layer, and a fully-connected
(FC) feed-forward sub-layer. The structures of the first and third sub-layers are similar to the original
Transformer [34]. In the multi-modal fusion sub-layer, we use three parallel operations to promote
sufficient cross-modal feature interactions: element-wise multiplication ⊗, element-wise addition ⊕,
and concatenation (denoted by ‖) followed by FC. Then three outputs are concatenated and followed
by a FC to change the feature dimension. Note that this fusion operation is performed word-wise, as

ĉ′i = FC ((fsal ⊗ ĉi)‖(fsal ⊕ ĉi)‖FC (fsal‖ĉi)) . (1)

Collectively, through the textual encoder, the cross-modal representation is in the following form,

ĉ′ = Enc(ĉ, fsal). (2)

To predict the masked salient word, the energy vector eX ∈ RK×1 is computed over all categories by
a fully-connected layer and softmax function σ(·), as

eX = σ(Weĉ′X + be). (3)

Here We and be are training parameters of the FC layer. Therefore, we obtain eX [k], the output
probability of salient category k. Finally, the training loss for the proposed TSM is:

Ltsm =
1

N

N∑
n=1

(−log(enXn
[kn])). (4)

where N is the number of training samples in each mini-batch. Once trained, the TSM module is
then use to estimate the confidence scores of pseudo-labels when performing pseudo-label update.

3.2 Training Objective

In the training stage, the saliency network, spatial semantic modeling (SSM) and textual semantic
modeling (TSM) are trained simultaneously, without back-propagating gradients to each other. We
use the standard binary cross entropy loss to train the saliency network, as in

Lsal =
1

N

N∑
n=1

(−Snmap · log(Snpred)− (1− Snmap) · log(1− Snpred)), (5)

where Smap is the current pseudo-label, and Spred means the prediction from saliency network.
Meanwhile, we employ the mean square error (i.e., MSE) loss between saliency-guided depth mask
Dmask and depth semantic prediction DS to train the SSM, as in

Lssm =
1

N

N∑
n=1

(Dnmask −DnS)2. (6)

In terms of the TSM, we use Ltsm of the Eq. 4 to update its training parameters.

Furthermore, the pseudo-label update operation using our joint semantic mining is iteratively con-
ducted every five training epochs, described in Sec. 3.4 of the main text. This achieves trustworthy
supervision signal to train the target saliency network.

4 The CapS Dataset

Fig. 2 presents the statistics and examples of our CapS dataset, where various image-level supervisions
are provided to augment the existing RGB-D SOD training dataset. Specifically, compared to original
RGB-D SOD benchmark with the annotated pixel-level supervisions, we further provide the image-
level categories and captions in the CapS. We summarize the 23 super-categories containing 100
salient categories tailored for SOD task. Each data corresponds to a salient category, which is included
in the caption. In terms of multiple objects with different categories in an image (1.1% cases), we
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Figure 1: Efficiency and effectiveness comparison over a wide range of unsupervised salient object
detection methods on the NLPR ? benchmark. Promoting Saliency From Depth: by taking advan-
tage of the proposed strategies in training process, our approach achieves a large-margin improvement
over the backbone, without additional computational cost during inference.

Table 1: Numerical statistics of the introduced CapS dataset, containing 23 categories with 100
sub-categories on image-level annotations.

Animal
owl dog chicken bird horse fish pigeon butterfly cat zebra bear cow duck bee tortoise
8 82 3 59 37 21 4 51 57 4 17 17 4 10 2

Animal Ball Book Building
dinosaur monkey lion snail deer giraffe leopard tiger pig crocodile panda basketball football book house

5 2 2 13 2 1 2 2 1 1 1 1 1 7 15
Building Callboard Container Dress

building tower bridge callboard vase pot bowl bottle box dustbin cup plate dress towel shoes
21 5 2 13 69 118 7 14 21 5 2 6 26 3 3

Dress Electronic equipment Food Furniture
hat suit lamp phone computer tv machine monitor telescope orange fruit apple cake bench sofa
4 1 37 6 5 5 4 1 1 3 2 2 1 14 3

Furniture Hydrant Living goods Mask People Picture Plant
door chair window hydrant paper bag pillow piano clock toy mask people picture plant tree

3 8 2 7 2 13 3 1 6 5 22 454 21 19 8
Plant Poster Road Sign Statue Stone Tool

flower bush leaf coral poster road sign statue stone stick fan knife lantern wheel handle
48 4 4 3 7 2 58 256 12 12 6 4 4 4 2

Vehicle Category: 23
truck car train airplane motorcycle boat bus bike helicopter tank Sub Category: 100

34 154 19 41 23 30 16 23 8 1 Total Number: 2185
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Figure 1: Statistics and examples of the introduced CapS dataset, which is depicted by (a)-(d). In
terms of Table (b), ‘GT’ denoting as ground truth, ‘Cap’ denoting as image caption, ‘Sem’ denoting
as image semantic, ‘S-Cat’ is salient category and ‘Cat’ is category in an image.

3 The Proposed CapS Dataset89
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saliency network achieves the noticeable performance gains due to the improvement of pseudo labels.

3

Figure 2: Statistics and examples of the introduced CapS dataset. (a) Taxonomic system and pie chart
distribution. (b) The provided annotations. GT: ground-truth; Cap: caption; S-Ctg: super-category;
Ctg: category; Pos: the position of salient word in the caption. (c) Word cloud distribution. (d) An
example of various annotations.

select the dominated object as salient category, which is discussed in Sec. 6. Next, the position of the
salient word (category) in each of the captions is also given in a semi-automatic manner, as described
in Sec. 3.5 of the main text.

The numerical statistics of our CapS is listed in Table 1. Our CapS dataset is publicly available
at https://github.com/jiwei0921/JSM. Hopefully this could encourage more contributions to
this community.

Table 1: Numerical statistics of the introduced CapS dataset, containing 23 super-categories with 100
categories on image-level annotations.

Animal
owl dog chicken bird horse fish pigeon butterfly cat zebra bear cow duck bee tortoise
8 82 3 59 37 21 4 51 57 4 17 17 4 10 2

Animal Ball Book Building
dinosaur monkey lion snail deer giraffe leopard tiger pig crocodile panda basketball football book house

5 2 2 13 2 1 2 2 1 1 1 1 1 7 15
Building Callboard Container Dress

building tower bridge callboard vase pot bowl bottle box dustbin cup plate dress towel shoes
21 5 2 13 69 118 7 14 21 5 2 6 26 3 3

Dress Electronic equipment Food Furniture
hat suit lamp phone computer tv machine monitor telescope orange fruit apple cake bench sofa
4 1 37 6 5 5 4 1 1 3 2 2 1 14 3

Furniture Hydrant Living goods Mask People Picture Plant
door chair window hydrant paper bag pillow piano clock toy mask people picture plant tree

3 8 2 7 2 13 3 1 6 5 22 454 21 19 8
Plant Poster Road Sign Statue Stone Tool

flower bush leaf coral poster road sign statue stone stick fan knife lantern wheel handle
48 4 4 3 7 2 58 256 12 12 6 4 4 4 2

Vehicle Super-category: 23
truck car train airplane motorcycle boat bus bike helicopter tank Category: 100

34 154 19 41 23 30 16 23 8 1 Total Number: 2185

5 More Experimental Results

In this section, we visually show more experimental results of our method, in both weakly-supervised
and fully-supervised settings.

Weakly-supervised setting. As shown in Fig. 3, our method can better capture salient regions in a
scene than others, and our saliency maps are closest to the ground-truth label. This benefits from the
proposed joint semantic mining framework that provides trustworthy supervisory signals to train the
saliency network.

https://github.com/jiwei0921/JSM
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Figure 3: Visual comparisons of weakly-supervised and unsupervised saliency models. ‘GT’ repre-
sents the ground-truth saliency for reference only.

Table 2: Application to existing RGB-D SOD methods.

*
TANet [5] CTMF [11] PCA [4] MMCI [6] CMWN [19]
Ori Our Ori Our Ori Our Ori Our Ori Our

Eξ .916 .938 .869 .918 .916 .929 .871 .910 .940 .951
Fwβ .789 .822 .691 .752 .772 .799 .688 .753 .856 .879
Fβ .795 .848 .723 .794 .794 .836 .729 .789 .859 .885
M .041 .032 .056 .044 .044 .039 .059 .045 .029 .023

Fully-supervised setting.
We show the visual results
of our fully-supervised
variant and several top-
ranking RGB-D models in
Fig. 4. It is observed that
our fully-supervised variant
produces better saliency
predictions. In addition, we further apply our SSM to several existing RGB-D salient object detection
methods, to verify the scalability of our method. Specifically, the learned depth semantics from the
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Figure 4: Visual comparisons of top-ranked RGB-D saliency models under the fully-supervised
setting. ‘GT’ means the ground-truth saliency.

depth network and the saliency prediction from various models (e.g., CTMF, PCA) are fed into the
background noise suppression block in SSM, which obtains improved saliency. Both the original
results of these methods and the new results of incorporating our SSM (denoted as Ori vs. Our) on
the NLPR benchmark are reported in Table 2. These results consistently demonstrate the generic
applicability and superiority of our method.

Performance on RGB benchmark. Benefiting from our additional merit, i.e., not relying on depth
during inference, we also test our weakly-supervised model on popular RGB-based SOD benchmark.
To be specific, we use our pretrained model to test on the popular RGB benchmark DUT-OMRON [40].
For MSW [42], the saliency maps provided by the authors are used for evaluation. The results are as
follows (MSW / Ours): 0.763 / 0.786 on Eξ , 0.527 / 0.563 on Fwβ , 0.609 / 0.633 on Fβ , 0.114 / 0.093
on MAE metric.

Table 3: Analysis of the long-tailed problem in RGB-D SOD.

Model Setup
NJUD [18] NLPR [29] STERE [28] DUT-D [30]
Fβ M Fβ M Fβ M Fβ M

Our JSM .717 .133 .770 .060 .778 .095 .797 .093
Our JSM with Re-sampling .728 .129 .781 .057 .792 .091 .803 .092
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Figure 5: Failure cases of the existing weakly-supervised and unsupervised saliency methods.

6 Discussion and Outlook
In this section, we summarize three potential research problems on weakly-supervised RGB-D salient
object detection. Meanwhile, the feasible solutions are given for reference. Hopefully this could
encourage more inspirations and contributions to this community and further pave the way for its
booming future. They are summarized as follows:

(1) Fine-grained problem. Due to the sparsity of weak annotations, the network is usually difficult
to identify the fine-grained object boundaries. As depicted in Fig. 5, although these models can
effectively detect the salient objects, the fine-grained details are missing. A doable solution is to
introduce auxiliary edge constraint. For example, the edge detection loss is employed to low-level
features of model, which forces model to produce the features highlighting object details [45, 21, 50].
The edge maps can be generated by classical Canny operator [3].

(2) Long-tailed problem. In natural image field, a long-tailed distribution of category frequency in
the large dataset is ubiquitous and inevitable. As shown in Table 1, existing RGB-D saliency training
set contains some rare categories. To address this problem, a widely-used re-sampling method [10]
is adopted in our JSM. It is shown in Table 3 that our method consistently achieves performance
improvements on four benchmark datasets.

(3) Multi-label problem. In terms of multi-label problem in the TSM, i.e., an image consists of
multiple salient objects with different categories, one straightforward solution is to translate it as
a single-label & multi-class task as in this work. Another way is to average the results of multiple
categories as the final score. Experiments indicates that the two ways have slight performance
difference (∆ = 0.0015 in terms of average MAE error over four benchmarks), because statistically
there exists only 1.1% multi-label cases in the existing RGB-D dataset. Besides, some interesting
ideas can be further explored, such as object rank [25] and model ensemble [37, 13].

In the future, we are planning to introduce more weak annotations in our CapS dataset, such as
bounding box, pixel-level scribble annotations. We will also apply our method to other fields, e.g.,
medical analysis [1, 16], semantic segmentation [27], object recognition [39].
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