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Abstract

Training saliency detection models with weak supervisions, e.g., image-level tags
or captions, is appealing as it removes the costly demand of per-pixel annotations.
Despite the rapid progress of RGB-D saliency detection in fully-supervised setting,
it however remains an unexplored territory when only weak supervision signals
are available. This paper is set to tackle the problem of weakly-supervised RGB-D
salient object detection. The key insight in this effort is the idea of maintaining per-
pixel pseudo-labels with iterative refinements by reconciling the multimodal input
signals in our joint semantic mining (JSM). Considering the large variations in the
raw depth map and the lack of explicit pixel-level supervisions, we propose spatial
semantic modeling (SSM) to capture saliency-specific depth cues from the raw
depth and produce depth-refined pseudo-labels. Moreover, tags and captions are
incorporated via a fill-in-the-blank training in our textual semantic modeling (TSM)
to estimate the confidences of competing pseudo-labels. At test time, our model in-
volves only a light-weight sub-network of the training pipeline, i.e., it requires only
an RGB image as input, thus allowing efficient inference. Extensive evaluations
demonstrate the effectiveness of our approach under the weakly-supervised setting.
Importantly, our method could also be adapted to work in both fully-supervised
and unsupervised paradigms. In each of these scenarios, superior performance has
been attained by our approach with comparing to the state-of-the-art dedicated
methods. As a by-product, a CapS dataset is constructed by augmenting existing
benchmark training set with additional image tags and captions. Code and dataset
are available at https://github.com/jiwei0921/JSM.

1 Introduction

As a fundamental computer vision task, salient object detection (SOD) aims at locating and segment-
ing visually distinctive objects in a scene. It plays an important role in a variety of downstream appli-
cations including image retrieval [31, 65], medical analysis [48, 28, 25], multimodal fusion [79, 80]
and video analysis [88, 81, 90]. Recent progress in supervised RGB-D SOD [5, 52, 10, 26, 89, 33] has
demonstrated significant benefits of engaging depth information in saliency detection from complex
scenes. The success of these fully-supervised methods, however, relies heavily on the large-scale, pre-
cise, pixel-level annotations, which are often laborious and time-consuming to acquire. On the other
hand, an image usually comes with additional information in its meta-data such as tags and captions
from users to describe the scene context and content, which may serve as cheap weak-supervision
signals. These weak supervision signals are nonetheless noisy and have mixed qualities. Similar
weak-supervision signals have been explored in RGB-image based SOD [63, 70, 38], where the noisy
nature of these side information is unfortunately overlooked. To further complicate the matter, the
lack of explicit pixel-level supervision brings new challenge to the RGB-D SOD task: the depth
values from raw depth maps are often noisy and sometimes inconsistent. For example, in Fig. 1,
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Caption:
A black and white cat is laying on a gray couch.

Category:
Cat

GT

The masked Caption:
A black and white <MASK> is laying on a gray couch.

Figure 1: Illustration of weakly-supervised RGB-D salient object detection. RGB and depth images,
as well as weak supervision signals such as image-level tags and captions are exploited. Initial
pseudo-label is generated by the handcrafted methods, which is then iteratively updated by our joint
semantic mining pipeline. GT is ground-truth label for reference.

similar depth values are shared by the cat and the underneath couch, making it difficult to discern the
salient object from backgrounds. Without the explicit pixel-level supervision, existing cross-modal
fusion strategies adopted by fully-supervised RGB-D methods [36, 55, 37, 27] would simply fail.

These observations motivate us to consider the new problem of weakly-supervised RGB-D salient
object detection, which takes as input the RGB and depth images, as well as weak supervision signals
such as image-level tags and captions, as illustrated in Fig. 1. By removing the demand for laborious
per-pixel annotations, it also brings new challenges: 1) how to address the noisy nature of the weak
supervision signals; 2) how to tackle the depth noise and inconsistency to facilitate proper separation
of foreground and background regions.

This leads us to propose the use of pseudo-labels with iterative refinements in training: the pseudo-
label provides internal pixel-level supervision signals, which is progressively updated by reconciling
the multimodal input signals and the current information flow of the neural net, based on the previous
pseudo-label. As illustrated in Fig. 2, this is realized by an interaction between two core modules,
namely spatial semantic modeling (SSM) and joint semantic mining (JSM): SSM is designed to
capture the saliency-specific depth semantics, to eliminate the background noises in the coarse
saliency prediction, and to generate a depth-refined pseudo-label. This simple yet effective module
is very generic, which could be easily plugged-in different setups, including unsupervised & fully-
supervised scenarios; meanwhile, the JSM module is proposed to leverage depth semantics and weak
supervision signals for attaining more reliable pseudo-labels. Specifically, a partial textual input,
i.e., image-level tag and caption with its salient word being masked, is fed into a dedicated textual
semantic modeling or TSM to estimate the confidence scores of competing pseudo-labels, and to
fill-in-the-blank. Intuitively, a semantically consistent pseudo-label should provide better context
cues to reconstruct the salient word; while a closer guess of the masked word would indicate a better
pseudo-label. The alternation between SSM and JSM modules is thus expected to give rise to more
trustworthy pseudo-labels. At test time, it is then sufficient to take an input RGB image and activate
a light-weight network to deliver its final prediction. That is, test time input involves only an RGB
image, without the need of any depth map or image-level tags and captions. This drastically simplifies
the input requirement and reduces the computation burden at deployment stage. Moreover, given the
lack of training dataset for the weakly-supervised setting, we adapt existing RGB-D training dataset
to annotate additional image-level tags and captions, which is referred to as the CapS dataset.

The main contributions of this paper are as follows. (1) A new problem of weakly-supervised RGB-D
salient object detection is considered. In this regard, a CapS dataset is curated by augmenting the
existing RGB-D SOD training dataset with image-level tagging and captioning annotations. (2) The
key ingredient of our approach involves the production of pseudo-labels with iterative refinements,
realized by iterative updates between two internal modules, SSM and JSM. Empirical experiments
demonstrate the effectiveness of our approach in weakly-supervised setting. Moreover, (3) after proper
adaptation of our approach in unsupervised and fully-supervised scenarios, superior performance is
also observed when comparing to the respective state-of-the-art methods. (4) Our test time inference
amounts to executing a light-weight saliency network: as illustrated in dotted line at Fig. 2, only an
RGB image is used as its input, thus allows efficient and effective inference.

2 Related Work
RGB-D salient object detection [87, 93, 94] has been an active field of research in the past few years,
where the incorporation of depth cues has been demonstrated [13, 34, 82, 75, 15, 35, 60, 43, 85]
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Figure 2: An overview of our approach. Its training pipeline consists of a saliency prediction network,
a SSM (Sec. 3.2) to generate depth-refined pseudo-label, a TSM (Sec. 3.3) to estimate the confidences
of different pseudo-labels, and a JSM (Sec. 3.4) to refine & update pseudo-label. Our testing process
only involves activating a saliency network delineated in dotted lines. More details of SSM and TSM
modules are illustrated in Fig. 3. The masked salient word is ‘cat’.

to improve performance especially in complex scenes. Existing RGB-D methods aim to design
effective feature fusion strategies for learning representative cross-modal features. Typically, Chen et
al. [8] employ two-stream CNNs-based models and perform fusion by adding or concatenating paired
features at shallow or deep layers. Fu et al. [19] utilize a Siamese network to jointly learn RGB
and depth inputs for mining useful complementary features. To promote multi-modal interactions,
Li et al. [37] design a cross-modal weighting strategy to encourage comprehensive interactions
between RGB and depth information. However, those methods unfortunately rely on costly pixel-
level annotations, which are tedious and time-consuming to acquire. This motivates us to consider
a weakly-supervised approach. In what follows, our focus will be mainly toward related weakly-
supervised methods developed for saliency detection from RGB images, where the differences of our
approach from existing methods would be clarified.

Instead of using costly pixel-level annotations, some recent efforts instead explore cheap alternatives
such as image-level tags (categories) [38, 63, 71, 46, 2], image captions [70], scribble labels [69, 76],
and noisy pseudo-labels from handcrafted methods [45, 72, 73, 77, 68, 47, 67, 49, 66]. The pioneering
work [63] leverage image-level tags or categories that could be augmented onto existing large-scale
dataset at low-cost. The same scenario is also considered by Li et al. [38], where a composite pipeline
combining graphical model with CNNs is designed. The trained network however tends to highlight
the most discriminative region instead of the intended salient object out of the scene due to the sparse
image-level supervisions. Image captions are examined by Zeng et al. [70] as supervision input; in
their work image classification network and caption generation network are jointly trained to obtain
pseudo-labels, which achieves descent performance. Scribble is another type of weak supervision
signal, where a tiny fraction of image pixels are labeled by users as being foreground or background.
Due to the annotation sparsity, object structure and details cannot be easily inferred. Zhang et al. [76]
introduce a gated structure-aware loss as well as an auxiliary edge detection network to uncover the
complete object. Meanwhile, Yu et al. [69] explore self-consistency among multi-scale outputs and
design a local coherence loss to propagate the labels to unlabeled regions based on image features,
thus enabling the detection of objects with smooth textures. However, existing weakly supervised
saliency methods are solely based on RGB image. Unlike the prevalence of fully-supervised RGB-D
SOD, it has never been considered the incorporation of depth cues in existing literature.

This leads us to address this problem in the presence of image tags and captions as weak supervision
signals. Different from existing methods [38, 24, 63, 70] that train image classification networks or
caption generation networks to delineate potential salient regions, masked salient word in captions are
to be reconstructed in our work by leveraging visual saliency features. This is then used to estimate
the confidence scores of pseudo-labels.

3 Methodology
3.1 The Overall Architecture
An overview of our approach is illustrated in Fig. 2. It consists of a saliency network responsible for
saliency prediction, a spatial (depth) semantic modeling (SSM) to generate depth-refined pseudo-label,
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Figure 3: The detailed architecture of the proposed SSM and TSM. The upper shows their training
processes, and the bottom illustrates the way of using them to perform label update.

a textual (caption) semantic modeling (TSM) to estimate the confidences of different pseudo-labels,
and a joint semantic mining (JSM) strategy to refine & update pseudo-label. Overall our pipeline
aims to gradually improve the quality of noisy pseudo-labels by jointly mining the useful spatial
semantics from the depth map and textual semantics from the tags and captions, to produce more
trustworthy supervision signals, which in turns results in better training of the saliency network.

Specifically, the popular encoder-decoder architecture [64] in SOD is adopted in both saliency network
and depth network. Initial supervision signal for the saliency network is provided by traditional
handcrafted methods. The predicted saliency map, together with the raw depth map, are processed to
generate the saliency-guided spatial supervision signal for the depth network. Then the predicted
saliency-oriented depth semantics is utilized to eliminate background noises (non-salient regions) in
coarse prediction, and to generate a depth-refined pseudo-label. This is followed by our JSM strategy,
which takes in the image-level tags and captions through TSM to estimate the confidence scores of
pseudo-labels; updated pseudo-label is then formed based on the confidence-weighted depth-refined
pseudo-label and current pseudo-label, which provides more trustworthy supervision signal for the
saliency network. Note our test time inference involves only the black dashed portion in Fig. 2, which
takes as input only the RGB image, thus enables efficient saliency prediction.

3.2 Saliency-oriented Spatial (Depth) Semantic Modeling

Initial pseudo-labels are generated by traditional saliency models, which often contain excessive
noise. As illustrated in Fig. 3, our spatial semantic modeling (SSM) is to produce a more reliable
depth-refined pseudo-label, achieved by explicitly capturing saliency-specific depth semantics from
the depth map to eliminate possible background noise in the coarse saliency prediction.

Concretely, during training, we first generate a saliency-guided depth mask Dmask by multiplying
the rough saliency prediction Spred with the raw depth map Dmap in a spatial attention manner. Here,
a Gaussian smooth operation is applied to smooth the predicted saliency area, to effectively perceive
and capture more saliency areas from depth. The procedure is formulated as:

Dmask = Ωmax(Fgauss(Spred, k),Spred)⊗Dmap, (1)

where Fgauss(·, k) indicates a convolution operation with Gaussian kernel k and zero bias; Ωmax(·, ·)
is a maximum function to preserve the higher values between the smoothed and the original maps. ⊗
is element-wise multiplication. In this paper, the size and standard deviation of kernel k are learnable
through the model training procedure and are initialized with values 32 and 4, respectively.

After obtaining Dmask, a depth network is trained to learn the saliency-specific depth semantics DS ,
using the mean square error (MSE) loss function. The internal inspection evidences in Fig. 4 suggest
that DS (depth semantics, 6th column) is able to capture discriminative saliency cues from the raw
depth map under the supervision of Dmask (5th column).

In addition, the learned DS can be further processed to generate the depth-refined pseudo-labels.
This procedure is only employed when performing pseudo-label update. Specifically, we feed DS
into an Background Noise Suppression block to help eliminate the background noises (non-salient
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Figure 4: Step-by-step inspections of the internal processes of our approach. The GT is for reference.

regions) in the coarse prediction Spred. In this block, a reverse operation is first employed on DS to
highlight background regions by 1−DS . This is followed by the pixel-wise subtraction to suppress
the non-salient negative responses in Spred. Finally, a ReLU function and a normalization procedure
are adopted to suppress negative numbers and normalize the result to the range of [0, 1]. This
procedure of obtaining the depth-refined pseudo-label SD could be expressed by

Si,jD =
Si,jd −min(Sd)

max(Sd)−min(Sd) + ε
, Sd = ReLU(Spred−λd(1−DS)), i ∈ [1, H], j ∈ [1,W ]. (2)

Here λd ∈ [0, 1] is a constant to control the degree of the subtracted background noises and avoid
negatively suppressing salient regions that have relatively low saliency scores in SD. Throughout
experiments, λd is empirically set to 0.5, and ε to 1e-5. H and W are the height and width of the
input image, respectively.

The pseudo-label refinement dynamics are visually inspected in Fig. 4, while Fig. 8 presents the
corresponding quantitative error analysis over iterations. Empirical evidence suggests as the training
proceeds, quality of the pseudo-label is significantly improved. Moreover, at this stage, we can
directly utilize the depth-refined label SD to update pseudo-labels (as in Fig. 6 (b)). This can be
referred as unsupervised RGB-D SOD since no weak labels are used.

3.3 Saliency-oriented Textual (Caption) Semantic Modeling

Previously, the mainstream use of weak labels is to train a classification network or a caption
generation network, where the by-product attention maps or Class Activation Maps [92] are leveraged
to determine the potential salient regions [70, 63]. It is very different in our textual semantic modeling
(TSM), where the main focus is to leverage side information (i.e., image-level tags and captions)
to facilitate the production of reliable training signals. Inspired by the recent success of masked
language models [14], captions with missing keywords are used as input, with the expectation of
the complete text being reconstructed as output. In the proposed TSM, innovatively taking as input
partial text with salient word being masked, as well as the saliency-filtered visual features, our TSM
is to output the reconstructed text in a fill-in-the-blank manner and to estimate the confidence scores
of competing pseudo-labels. The intuition is, a semantically matching pseudo-label could provide
better context cues to reconstruct the masked salient word; meanwhile, a closer guess of the masked
word would indicate a better pseudo-label.

Formally, for each training data, the weak labels contain caption description c = {ci}nc
i=1, image-level

category k ∈ {1, ..,K}, and the position X of the salient word (object) in the caption, where nc
is the word number of the caption. Let ci ∈ Rd×1 be the word embedding of the i-th word in the
caption, K the total number of salient categories, and X an integral number. As shown in Fig. 3,
during training, the input is a masked version of caption ĉ ∈ Rd×nc where the salient word cX in
caption c is masked with a special symbol. In order to reconstruct the masked salient word, we filter
the visual feature from the saliency network by multiplying it with the learned saliency cues Spred.
We then obtain the saliency-filtered visual feature, and transform it to a feature vector fsal ∈ Rd×1
for subsequent cross-modal fusion using a pooling operation and a fully-connected (FC) layer.

The center component of the TSM module is a transformer-like network. Based on original Trans-
former [62], we add a multi-modal fusion sub-layer into network. Three parallel operations are used
to promote sufficient cross-modal feature interactions: element-wise multiplication, element-wise



addition, and concatenation followed by FC. The three outputs are concatenated and followed by a
FC to change the feature dimension. Note the cross-modal fusion operation is performed word-wise.
Through the textual network, we can obtain the energy vector eX ∈ RK×1 of the masked salient
word, which is computed over all categories by a fully-connected layer and softmax function. For
each training sample, the training objective loss for the textual network is −log(eX [k]), where eX [k]
is the output probability of salient category k. Detailed structure for our TSM can be accessed in
the supplementary material. Once trained, the TSM module is then used to estimate the confidence
scores of pseudo-labels as described in Sec. 3.4.

3.4 Joint Semantic Mining for Label Updating
The label updating operation using joint semantic mining is iteratively conducted every τ epochs (as
a training round) during training, i.e., the granularity of label updating. The choices are explored in
the ablations of Sec. 4.4, where τ = 5 is shown to work best empirically. In terms of training, the
saliency network, the SSM module, and the TSM module are independently trained.

At the end of each training round, our JSM strategy performs the label updating operation to generate
an up-to-date pseudo-label for each training image. Now define the pseudo-label for the saliency
network in current iteration as Stmap. As shown in the label update phase of Fig. 3, the SSM module
is engaged to generate the depth-refined pseudo-label SD; It is passed to the TSM module, where the
Stmap and SD are taken as saliency attention maps to filter visual features, respectively. The TSM
module infers the energy vectors etX and eDX for Stmap and SD, respectively. Thus their confidence
scores SCt and SCD can be calculated by (taking SCt as an example):

SCt =
exp(etX [k])

exp(etX [k]) + exp(eDX [k])
. (3)

The updated label is the weighted average of Stmap and SD: St+1
map = SCt × Stmap + SCD × SD. A

fully-connected conditional random field [23] is applied to generate the final updated label which
could provide more trustworthy supervision signal to train the saliency network.

3.5 The CapS Dataset
To train the weakly-supervised RGB-D SOD network, we relabel two widely-used RGB-D saliency
datasets, NJUD [29] and NLPR [53], which contain a total of 2,185 training images. We provide
various image-level weak annotations: categories, captions, and position of the salient word in each
of the captions. The annotation process is conducted semi-automatically: the NeuralTalk2 [30]
toolkit is utilized to automatically generate image captions, which are then manually checked, with
unreasonable cases corrected. On average, there are 8.9 words in each caption. This is followed by
categorically tagging each of the images, each corresponds to a salient category; this is different
from the traditional image classification dataset ImageNet [32]. We summarize the 100 categories in
the CapS. The positions of the salient words are first automatically identified through localizing the
image categories in the captions which is subsequently followed by manual identification. Detailed
statistics and examples of our in-house CapS dataset are relegated to the supplementary material.

4 Experiments
4.1 Datasets and Evaluation Metrics
Empirical evaluations are conducted over four large-scale RGB-D SOD benchmark datasets, including
NJUD [29] with 1,985 RGB-D paired images, NLPR [53] with 1,000 samples, STERE [50] with
1,000 stereoscopic images, and DUTLF-Depth [55] with 1,200 RGB-D data. In train vs. test splits
of the datasets, the popular setup of [18, 19, 74] is followed for a fair comparison. Training set
consists of 1,485 samples from NJUD and 700 samples from NLPR. The remaining images in these
datasets and other public test sets are reserved for testing purposes throughout the experiments. Four
widely-used metrics are adopted for quantitative evaluation: they are E-measure (Eξ) [16], F-measure
(Fβ) [1], weighted F-measure (Fwβ ) [44], and mean absolute error (MAE orM) [3].

4.2 Implementation Details and Setups

The code is implemented in Pytorch toolbox on a PC with a single Tesla P40 GPU. We use decoder
part [64] with ResNet-50 [22] pre-trained on ImageNet as backbone, for both saliency network and
depth network. For each word in the caption, we extract word embedding with dimension d = 300
using the pretrained Glove [54] word2vec network. The maximum caption length is set to 20. For



Table 1: Quantitative comparison with weakly-supervised and unsupervised saliency models. Note RGB-based
methods are specifically marked by ‡. DS and TS represent the spatial semantic modeling and textual semantic
modeling, respectively. ‘Un’ means unsupervised learning. ‘Cls’ is SOD with class label. ‘Cap’ represents using
weak supervision signals, with both class label and image caption.

* Sup.
DUTLF-Depth [55] STERE [50] NJUD [29] NLPR [53]

Eξ Fwβ Fβ M Eξ Fwβ Fβ M Eξ Fwβ Fβ M Eξ Fwβ Fβ M
RBD‡ [98] Un .733 .447 .619 .222 .730 .443 .610 .223 .684 .387 .556 .256 .765 .388 .590 .211
MST‡ [61] Un .678 .254 .401 .279 .681 .312 .447 .269 .670 .291 .436 .281 .762 .257 .491 .199

BSCA‡ [57] Un .808 .479 .682 .181 .803 .497 .676 .179 .756 .446 .623 .216 .745 .376 .554 .178
DSR‡ [39] Un .797 .478 .640 .164 .785 .486 .645 .165 .739 .436 .594 .196 .757 .451 .545 .120
ACSD [29] Un .250 .210 .188 .668 .793 .425 .661 .200 .790 .448 .696 .198 .751 .327 .547 .171
DES [11] Un .733 .386 .668 .280 .673 .383 .592 .297 .421 .241 .165 .448 .735 .259 .583 .301
LHM [53] Un .767 .350 .659 .174 .772 .360 .703 .171 .722 .311 .625 .201 .772 .320 .520 .119
GP [59] Un - - - - .785 .371 .710 .182 .730 .323 .666 .204 .813 .347 .670 .144

CDB [40] Un - - - - .808 .436 .713 .166 .752 .408 .650 .200 .810 .388 .618 .108
SE [20] Un .730 .339 .474 .196 .825 .546 .747 .143 .780 .518 .735 .164 .853 .578 .701 .085

DCMC [12] Un .712 .290 .406 .243 .832 .529 .743 .148 .796 .506 .715 .167 .684 .265 .328 .196
MB [96] Un .691 .464 .577 .156 .693 .455 .572 .178 .643 .369 .492 .202 .814 .574 .637 .089

CDCP [97] Un .794 .530 .633 .159 .797 .596 .666 .149 .751 .522 .618 .181 .785 .512 .591 .114
Ours (DS ) Un .845 .629 .741 .116 .838 .654 .738 .111 .781 .576 .689 .147 .857 .638 .698 .073
WSS‡ [63] Cls .843 .634 .743 .125 .831 .664 .732 .115 .760 .566 .693 .149 .856 .651 .712 .077
MSW‡ [70] Cap .863 .678 .789 .105 .836 .675 .760 .103 .773 .580 .704 .141 .869 .659 .736 .071

Ours (DS&TS ) Cap .870 .698 .797 .093 .852 .688 .778 .095 .788 .599 .717 .133 .888 .692 .770 .060

DUT: 1377.png ； 0715.jpg
STERE： image_left859.png ；
NLPR：5_07-37-32.png； 11_03-53-24.png

Image Depth GT Ours MSW CDCP LHM DCMC DSR BSCA
Figure 5: Visual comparison of weakly-supervised and unsupervised saliency models.

the transformer-like net in TSM, we set the hidden state to 256, the number of layers to 3, and the
number of head to 4. The model is optimized by Adam with batch size of 10, and the learning rate is
set to 1× 10−4. During training, we use the standard BCE loss to train the saliency network. Each
image is uniformly resized to 352 × 352 and is performed by randomly rotating and cropping to
avoid potential overfitting. Our network is trained in an end-to-end manner and converges around 50
epochs. Initial pseudo labels are generated by the handcrafted method [97], which is freely available
for annotations.

4.3 Model Performance
We quantitatively evaluate the performance of our approach in Table 1, with visual results shown
in Fig. 5. Since our approach is the first work for weakly-supervised RGB-D saliency detection,
we show the results of two state-of-the-art RGB-based weakly-supervised methods (WSS [63] and
MSW [70]) for reference. To make a fair comparison, we fine-tune them on the same training set
using their published code with default setups. These results show the effectiveness of our proposed
method. Furthermore, the SSM and TSM in our joint semantic mining framework do not introduce
any additional inference cost since they only participate in the training procedure to provide more
reliable supervisory signals for saliency network. This design leads to a light-weight network that
works both efficiently and effectively. As shown in Table 2, our method runs fastest among RGB-D
methods, and also on par with the most efficient RGB-based methods.

Table 2: Inference time of different unsupervised and weakly-supervised saliency models. The RGB-based
methods are specifically marked by ‡.

*
LHM DES GP CDCP DCMC SE ACSD CDB BSCA‡ RBD‡ MST‡ DSR‡ MSW‡ Ours
[53] [11] [59] [97] [12] [20] [29] [40] [57] [98] [61] [39] [70]

Inference Time (s) 2.13 7.79 12.98 5.7 1.2 1.57 0.718 0.6 2.665 0.1893 0.0302 0.3758 0.0267 0.0286

4.4 Empirical Analysis of Our Pipeline
Here we focus on evaluating the contribution of each component in our pipeline, and examining the
internal performance of the pseudo-labels at different stages in training.
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Figure 6: Diagrams of various label updating strategies used in our ablation study: (a) self-updating strategy,
(b) SSM updating strategy, (c) historical moving average with equal weights, and finally (d) our JSM strategy.

Table 3: Ablation study of our pipeline. ↑ (↓) denote performance gains (relative to backbone).

Model Setups
DUTLF-Depth [55] STERE [50] NJUD [29] NLPR [53]
Fwβ Fβ M Fwβ Fβ M Fwβ Fβ M Fwβ Fβ M

Backbone trained on Pseudo Labels (i.e., ‘B’) .512 .644 .167 .555 .666 .158 .510 .627 .186 .479 .570 .126
‘B’ trained on Pseudo Labels with CRF .568 .670 .140 .601 .684 .135 .546 .642 .165 .585 .624 .094
‘B’ with Self-updating Strategy .616 .697 .130 .643 .708 .123 .571 .673 .154 .607 .651 .087

‘B’ with Spatial Semantic Modeling
.629 .741 .116 .654 .738 .111 .576 .689 .147 .638 .698 .073
↑23% ↑15% ↓31% ↑18% ↑11% ↓30% ↑13% ↑10% ↓21% ↑33% ↑22% ↓42%

‘B’ with SSM and Historical Moving Average .644 .750 .113 .674 .753 .105 .588 .698 .141 .664 .722 .068

‘B’ with Joint Semantic Mining (i.e., Ours)
.698 .797 .093 .688 .778 .095 .599 .717 .133 .692 .770 .060
↑36% ↑24% ↓44% ↑24% ↑17% ↓40% ↑17% ↑14% ↓28% ↑44% ↑35% ↓52%

Ablation analysis. We present in Table 3 the ablation results of our pipeline on four benchmarks. To
start with, we consider the backbone as the saliency network trained with initial pseudo labels. As our
proposed SSM and TSM are gradually incorporated into the backbone to generate the depth-refined
pseudo-labels and estimate their confidence scores for label updating, noticeable performance gains
are consistently achieved in all datasets. The SSM significantly reduces the MAE metric and increases
the F-measure score by 31% and 14.5% on average in four datasets, respectively. The TSM further
boosts the saliency detection performance to a higher level where a significant amount of performance
gains with 41% and 22.5% are finally achieved on MAE and F-measure metrics.

To further demonstrate the effectiveness of our SSM in exploiting the depth semantics to refine
pseudo-labels, we retrain the saliency network using the self-updating strategy as in Fig. 6 (a). In this
strategy, the saliency prediction with CRF are directly utilized to update pseudo-labels, at the end of
each training round. As shown in Table 3 (3rd row vs. 4th row), when excluding saliency-oriented
depth semantics captured by the SSM, the performance of model degrades greatly. This indicates our
SSM can effectively suppress background noise and providing reliable training labels. Furthermore,
we replace TSM with a heuristic historical moving average strategy where the pseudo-labels are
assigned with equal weights as in Fig. 6 (c). Table 3 shows it achieves better performance than
the backbone using SSM due to the consideration of historical information, but it is consistently
inferior compared to our pipeline with the TSM module. These results suggest that our TSM can
better estimate the confidence or quality of pseudo-labels and generate the trustworthy supervision
signals. Meanwhile, we also provide the internal inspections of our approach in Fig. 4, in terms of
the generation of pseudo-labels and their corresponding confidence scores, for better understanding.

Table 4: Parameter analysis of the update interval τ
(epoch) in the JSM.

Interval (τ )
STERE [50] NJUD [29] NLPR [53]
Fβ M Fβ M Fβ M

τ = 1 .769 .098 .703 .142 .766 .063
τ = 5 .778 .095 .717 .133 .770 .060
τ = 10 .758 .101 .695 .138 .763 .065

In addition, we further discuss the effect of dif-
ferent update intervals in our pipeline when per-
forming label updating. As listed in Table. 4, the
larger or smaller update interval leads to inferior
performance due to the insufficient or excessive
learning of models.

Analysis of pseudo-labels. We analyze the evolutions of pseudo-labels in our training process.
Here the quality of pseudo-labels is measured using the ground-truth labels of the training set (for
evaluation only). Visual evidences in Fig. 7 show that the quality of pseudo-labels is gradually
improved as our JSM is performed. We can see that the initial pseudo-labels unfortunately tend to
miss important salient parts as well as fine-grained details. By adopting our proposed joint semantic
mining for label updating, the missing parts could be gradually retrieved, with the object silhouette
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Table 5: Ablation analysis of the supervised variant of our
approach, where the human annotations (i.e., ground truths)
are used to train SOD models.

Model Setups (fully)
STERE [50] NJUD [29] NLPR [53]

Fwβ Fβ M Fwβ Fβ M Fwβ Fβ M

Backbone (i.e., ‘B’) .858 .869 .045 .864 .871 .046 .865 .863 .028

‘B’ + SSM (Ours) .876 .896 .039 .885 .906 .038 .892 .905 .022

NJUD: 000100_left.png; 000896_left.png; 000929_left.png;
DUT: 0329.png 
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Figure 9: Visual comparison of fully supervised
RGB-D SOD methods.

also being refined. The final pseudo-label is closest to the true label, which could provide more
reliable guiding signal for training the saliency network. Moreover, we present in Fig. 8 the error
reduction curves of the updated pseudo-labels with our full pipeline (blue line) and SSM only (red
line), respectively. It can be seen that only SSM is able to improve the quality of pseudo-labels by
exploiting the useful depth semantics to refine pseudo-labels. Our JSM further boosts the performance
by leveraging the textual semantics to integrate reliable pseudo-labels.

4.5 Generalization Analysis

Adapting to unsupervised setting. Our approach can be adapted to unsupervised setting by using
the architecture illustrated in Fig. 6 (b), i.e., SSM, where only the depth semantics are mined to refine
pseudo-labels without weak labels. The quantitative results in Table 1 show the effectiveness of our
SSM in unsupervised setting.

Adapting to fully-supervised setting. Apart from the adaption to unsupervised setting, a variant
of our approach can also be applied to fully-supervised RGB-D SOD scenario. This is achieved by
modifying the generation of saliency-guided depth mask as Dmask = SGT ⊗Dmap in Eq. 1, with
SGT being the ground-truth annotations. The saliency network and depth network are trained by SGT
and Dmask, respectively. Then the background noise suppression block in SSM module is applied
to obtain the final saliency. As ablated in Table 5, our fully-supervised variant achieves consistent
performance improvement compared to the backbone trained on SGT . In addition, our results
compare favorably with those of 21 fully-supervised RGB-D saliency models, as quantitatively shown
in Table 6, and qualitatively illustrated in Fig. 9. Notice that, different from existing fully-supervised
RGB-D SOD methods in designing the complicated cross-modal feature interaction strategy, our
method directly exploits the learned depth semantics to promote saliency accuracy, which is simple
yet effective and brand new for this field.

5 Failure Cases
NJUD: 000824_left
NLPR:10_10-10-45.png
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Figure 10: Failure cases of the existing
weakly-supervised saliency methods.

Due to the sparsity of weak annotations, the network is
usually difficult to identify the fine-grained object bound-
aries. As depicted in Fig. 10, although these models can
effectively detect the salient objects, fine-grained details
are still missing. A doable solution is to introduce auxiliary
edge constraint during training. For example, the edge de-
tection loss can be employed on the low-level features of
the model, which could force the model to produce better
features highlighting the object details [76, 41]. The edge
maps can be generated by classical Canny operator [4] in
an unsupervised manner.



Table 6: Quantitative comparison of existing fully-supervised RGB-D SOD methods. Notice that, in fully-
supervised scenario, when evaluating the newly released DUTLF-Depth dataset, the specific setup used by [55]
is adopted to make a fair comparison, i.e., using a total of 2,985 training samples that contain 1,485 from NJUD,
700 from NLPR and 800 from DUTLF-Depth.

Method
DUTLF-Depth [55] STERE [50] NJUD [29] NLPR [53]

Eξ Fwβ Fβ M Eξ Fwβ Fβ M Eξ Fwβ Fβ M Eξ Fwβ Fβ M
CTMF TCyb’17 [21] .884 .690 .792 .097 .841 .747 .771 .086 .864 .732 .788 .085 .869 .691 .723 .056
DF TIP’17 [58] .842 .542 .748 .145 .691 .596 .742 .141 .818 .552 .744 .151 .838 .524 .682 .099
PCA CVPR’18 [6] .858 .696 .760 .100 .887 .801 .826 .064 .896 .811 .844 .059 .916 .772 .794 .044
TANet TIP’19 [7] .866 .712 .779 .093 .893 .804 .835 .060 .893 .812 .844 .061 .916 .789 .795 .041
PDNet ICME’19 [95] .861 .650 .757 .112 .880 .799 .813 .071 .890 .798 .832 .062 .876 .659 .740 .064
MMCI PR’19 [8] .855 .636 .753 .113 .873 .757 .829 .068 .878 .749 .813 .079 .871 .688 .729 .059
CPFP CVPR’19 [86] .814 .644 .736 .099 .912 .808 .830 .051 .895 .837 .850 .053 .924 .820 .822 .036
DMRA ICCV’19 [55] .927 .858 .883 .048 .923 .841 .876 .049 .908 .853 .872 .051 .942 .845 .855 .031
SSF CVPR’20 [83] .946 .894 .914 .034 .921 .850 .867 .046 .913 .871 .886 .043 .949 .874 .875 .026
A2dele CVPR’20 [56] .924 .864 .890 .043 .915 .855 .874 .044 .897 .851 .874 .051 .945 .867 .878 .028
JL-DCF CVPR’20 [19] .931 .863 .883 .043 .919 .857 .869 .040 - - - - .954 .882 .878 .022
S2MA CVPR’20 [42] .921 .861 .866 .044 .907 .825 .855 .051 - - - - .938 .852 .853 .030
UCNet CVPR’20 [74] .903 .821 .856 .056 .922 .867 .885 .039 - - - - .953 .878 .890 .025
PGAR ECCV’20 [9] .944 .889 .914 .035 .919 .856 .880 .041 .915 .871 .893 .042 .955 .881 .885 .024
D3Net NNLS’20 [17] .847 .668 .756 .097 .920 .845 .855 .046 .913 .860 .863 .047 .943 .854 .857 .030
CMWN ECCV’20 [37] .916 .831 .866 .056 .917 .847 .869 .043 .910 .855 .878 .047 .940 .856 .859 .029
BBSNet ECCV’20 [18] .833 .663 .774 .120 .925 .858 .885 .041 .924 .884 .902 .035 .952 .879 .882 .023
DANet ECCV’20 [91] .925 .847 .884 .047 .914 .830 .858 .047 - - - - .949 .858 .871 .028
FRDT ACMM’20 [84] .941 .878 .902 .039 .925 .858 .872 .042 .917 .862 .879 .048 .946 .863 .868 .029
ATSA ECCV’20 [78] .947 .901 .918 .032 .919 .866 .874 .040 .921 .883 .893 .040 .945 .867 .876 .028
HDFNet ECCV’20 [51] .934 .865 .892 .040 .925 .863 .879 .040 .915 .879 .893 .038 .948 .869 .878 .027
Ours (Fully Sup.) .949 .908 .934 .030 .929 .876 .896 .039 .926 .885 .906 .038 .959 .892 .905 .022

6 Conclusion

To tackle the new problem of weakly-supervised RGB-D salient object detection, we propose in this
paper an end-to-end approach based on iterative updates of the internal pseudo-labels. This allows us
to leverage depth information in eliminating non-salient background noises and generating reliable
depth-refined pseudo-labels. Textual semantics is incorporated in the fill-in-the-blank fashion, which
is used to estimate the confidence scores of pseudo-labels. Extensive experiments demonstrate the
effectiveness and efficiency of our approach. In addition, our method is very generic and can be easily
adapted to fully-supervised and unsupervised paradigms. In these scenarios, our variants also obtain
superior performance over the existing state-of-the-art dedicated methods.
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