
Appendix

A Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes] See Section 9.
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Proof sketches are

provided in the paper, and full proofs are included in Appendix B.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Code available
at https://github.com/jqueeney/geppo.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 8 and Appendix D.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix D.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See citations for

Brockman et al. [3] and Todorov et al. [21].
(b) Did you mention the license of the assets? [Yes] See Appendix D.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

Code available at https://github.com/jqueeney/geppo.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

B Proofs

B.1 Proof of Theorem 1

We begin by stating results from Kakade and Langford [14] and Achiam et al. [1] that we will use in
our proof.
Lemma 5 (Kakade and Langford [14]). Consider a current policy πk. For any future policy π, we
have

J(π)− J(πk) =
1

1− γ
E

s∼dπ

[
E

a∼π(·|s)
[Aπk(s, a)]

]
. (12)

12

https://github.com/jqueeney/geppo
https://github.com/jqueeney/geppo

Lemma 6 (Achiam et al. [1]). Consider a reference policy πref and a future policy π. Then, the total
variation distance between the state visitation distributions dπref and dπ is bounded by

TV(dπ, dπref) ≤ γ

1− γ
E

s∼dπref
[TV(π, πref)(s)] , (13)

where TV(π, πref)(s) is defined as in Lemma 1.

Using these results, we first generalize Lemma 1 to depend on expectations with respect to any
reference policy:
Lemma 7. Consider a current policy πk, and any reference policy πref. For any future policy π, we
have

J(π)−J(πk) ≥
1

1− γ
E

(s,a)∼dπref

[
π(a | s)
πref(a | s)

Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2
E

s∼dπref
[TV(π, πref)(s)] , (14)

where Cπ,πk and TV(π, πref)(s) are defined as in Lemma 1.

Proof. The proof is similar to the proof of Lemma 1 in Achiam et al. [1]. Starting from the equality
in Lemma 5, we add and subtract the term

1

1− γ
E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]
. (15)

By doing so, we have

J(π)− J(πk) =
1

1− γ
E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]
+

1

1− γ

(
E

s∼dπ

[
E

a∼π(·|s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

])
≥ 1

1− γ
E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]
− 1

1− γ

∣∣∣∣ E
s∼dπ

[
E

a∼π(·|s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]∣∣∣∣ .
(16)

We can bound the second term in (16) using Hölder’s inequality:

1

1− γ

∣∣∣∣ E
s∼dπ

[
E

a∼π(·|s)
[Aπk(s, a)]

]
− E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]∣∣∣∣
≤ 1

1− γ
∥dπ − dπref∥1

∥∥∥∥ E
a∼π(·|s)

[Aπk(s, a)]

∥∥∥∥
∞

, (17)

where dπ and dπref represent state visitation distributions. From the definition of total variation
distance and Lemma 6, we have

∥dπ − dπref∥1 = 2 TV(dπ, dπref) ≤ 2γ

1− γ
E

s∼dπref
[TV(π, πref)(s)] . (18)

Also note that ∥∥∥∥ E
a∼π(·|s)

[Aπk(s, a)]

∥∥∥∥
∞

= max
s∈S

∣∣∣∣ E
a∼π(·|s)

[Aπk(s, a)]

∣∣∣∣ = Cπ,πk . (19)

As a result, we have that

J(π)− J(πk) ≥
1

1− γ
E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]
− 2γCπ,πk

(1− γ)2
E

s∼dπref
[TV(π, πref)(s)] . (20)

Finally, assume that the support of π is contained in the support of πref for all states, which is true for
common policy representations used in policy optimization. Then, we can rewrite the first term on
the right-hand side of (20) as

1

1− γ
E

s∼dπref

[
E

a∼π(·|s)
[Aπk(s, a)]

]
=

1

1− γ
E

(s,a)∼dπref

[
π(a | s)
πref(a | s)

Aπk(s, a)

]
, (21)

which results in the lower bound in (14).

13

We are now ready to prove Theorem 1:

Proof of Theorem 1. Consider prior policies πk−i, i = 0, . . . ,M − 1. For each prior policy, assume
that the support of π is contained in the support of πk−i for all states, which is true for common
policy representations used in policy optimization. Then, by Lemma 7 we have

J(π)− J(πk) ≥
1

1− γ
E

(s,a)∼dπk−i

[
π(a | s)

πk−i(a | s)
Aπk(s, a)

]
− 2γCπ,πk

(1− γ)2
E

s∼dπk−i

[TV(π, πk−i)(s)]

(22)
for each πk−i, i = 0, . . . ,M − 1. Consider policy weights ν = [ν0 · · · νM−1] over the last M
policies, where ν is a distribution. Then, for any choice of distribution ν, the convex combination
determined by ν of the M lower bounds given by (22) results in the lower bound

J(π)− J(πk) ≥
1

1− γ
E
i∼ν

[
E

(s,a)∼dπk−i

[
π(a | s)

πk−i(a | s)
Aπk(s, a)

]]

− 2γCπ,πk

(1− γ)2
E
i∼ν

[
E

s∼dπk−i

[TV(π, πk−i)(s)]

]
. (23)

B.2 Proof of Lemma 2

Proof. From the definition of total variation distance, we have that

E
s∼dπk

[TV(π, πk)(s)] = E
s∼dπk

[
1

2

∫
a∈A

|π(a | s)− πk(a | s)|da
]
. (24)

Assume that the support of π is contained in the support of πk for all states, which is true for common
policy representations used in policy optimization. Then, by multiplying and dividing by πk(a | s),
we see that

E
s∼dπk

[TV(π, πk)(s)] = E
s∼dπk

[
1

2

∫
a∈A

πk(a | s)
∣∣∣∣ π(a | s)
πk(a | s)

− 1

∣∣∣∣da]
=

1

2
E

(s,a)∼dπk

[∣∣∣∣ π(a | s)
πk(a | s)

− 1

∣∣∣∣] . (25)

B.3 Proof of Lemma 3

Proof. From the definition of total variation distance, we have that

E
i∼ν

[
E

s∼dπk−i

[TV(π, πk)(s)]

]
= E

i∼ν

[
E

s∼dπk−i

[
1

2

∫
a∈A

|π(a | s)− πk(a | s)|da
]]

. (26)

For i = 0, . . . ,M − 1, assume that the supports of π and πk are contained in the support of πk−i

for all states, which is true for common policy representations used in policy optimization. Then, by
multiplying and dividing by πk−i(a | s), we see that

E
i∼ν

[
E

s∼dπk−i

[TV(π, πk)(s)]

]
= E

i∼ν

[
E

s∼dπk−i

[
1

2

∫
a∈A

πk−i(a | s)
∣∣∣∣ π(a | s)
πk−i(a | s)

− πk(a | s)
πk−i(a | s)

∣∣∣∣da]]
=

1

2
E
i∼ν

[
E

(s,a)∼dπk−i

[∣∣∣∣ π(a | s)
πk−i(a | s)

− πk(a | s)
πk−i(a | s)

∣∣∣∣]
]
.

(27)

14

B.4 Proof of Lemma 4

Proof. From Lemma 2, PPO approximately bounds the penalty term in the standard policy improve-
ment lower bound in Lemma 1 by

2γCπ,πk

(1− γ)2
E

s∼dπk

[TV(π, πk)(s)] ≤
2γCπ,πk

(1− γ)2
· ϵ

PPO

2
. (28)

Using the triangle inequality for total variation distance, we see that the penalty term in the generalized
policy improvement lower bound in Theorem 1 can be bounded by

2γCπ,πk

(1− γ)2
E
i∼ν

[
E

s∼dπk−i

[TV(π, πk−i)(s)]

]

≤ 2γCπ,πk

(1− γ)2
E
i∼ν

 i∑
j=0

E
s∼dπk−i

[TV(πk−j+1, πk−j)(s)]

 , (29)

where we have written the future policy π as πk+1 on the right-hand side. Note that policy updates in
GePPO approximately bound each expected total variation distance that appears on the right-hand
side of (29) by ϵGePPO

/2. Therefore, the penalty term in the generalized policy improvement lower
bound is approximately bounded by

2γCπ,πk

(1− γ)2
E
i∼ν

[
E

s∼dπk−i

[TV(π, πk−i)(s)]

]
≤ 2γCπ,πk

(1− γ)2
E
i∼ν

[
ϵGePPO

2
· (i+ 1)

]
=

2γCπ,πk

(1− γ)2
· ϵ

GePPO

2
· E
i∼ν

[i+ 1] .

(30)

By comparing the bounds in (28) and (30), we see that the worst-case expected performance loss at
every update is the same for PPO and GePPO when

ϵGePPO =
ϵPPO

Ei∼ν [i+ 1]
. (31)

B.5 Proof of Theorem 2

Proof. For M = B with uniform policy weights, we see by Lemma 4 that

ϵGePPO =
ϵPPO

1
B

∑B−1
i=0 (i+ 1)

=
2

B + 1
· ϵPPO. (32)

PPO makes one policy update per N = Bn samples collected, which results in a policy change of
ϵPPO

/2 in terms of total variation distance. By leveraging data from prior policies to obtain N samples
per update, GePPO makes B policy updates per N samples collected. This results in an overall policy
change of

B · ϵ
GePPO

2
=

2B

B + 1
· ϵ

PPO

2
(33)

in terms of total variation distance for every N samples collected. Therefore, GePPO increases the
change in total variation distance of the policy throughout training by a factor of 2B/(B+1) compared
to PPO, while using the same number of samples for each policy update.

B.6 Proof of Theorem 3

Proof. Because M = 2B − 1, GePPO uses (2B − 1)n samples to compute each policy update,
compared to N = Bn samples used in PPO. Therefore, GePPO increases the sample size used for
each policy update by a factor of (2B−1)/B compared to PPO.

For M = 2B − 1 with uniform policy weights, we see by Lemma 4 that

ϵGePPO =
ϵPPO

1
2B−1

∑2B−2
i=0 (i+ 1)

=
ϵPPO

B
. (34)

15

As in Theorem 2, PPO makes one policy update per N samples collected, while GePPO makes B
policy updates per N samples collected. This results in an overall change in total variation distance
of

B · ϵ
GePPO

2
=

ϵPPO

2
, (35)

which is the same as in PPO.

C Optimal policy weights

In Section 7, we demonstrated the benefits of our algorithm with uniform policy weights, i.e.,
νi = 1/M for i = 0, . . . ,M − 1. Because our generalized policy improvement lower bound holds for
any choice of policy weights ν, we can improve upon the results in Theorem 2 and Theorem 3 by
optimizing ν.

Non-uniform policy weights introduce an additional source of variance, so in order to account for
this we must extend the notion of sample size to effective sample size. The effective sample size
represents the number of uniformly-weighted samples that result in the same level of variance. For n
samples collected under each of the prior M policies, the effective sample size used in the empirical
objective of GePPO with policy weights ν can be written as

ESSGePPO =
n∑M−1

i=0 ν2i
. (36)

Note that the effective sample size of GePPO with non-uniform policy weights is always smaller than
the true number of samples used to calculate the empirical objective, i.e., ESSGePPO < Mn unless ν
is the uniform distribution.

By Lemma 4, GePPO results in an overall policy change of

B · ϵ
GePPO

2
=

B∑M−1
i=0 νi(i+ 1)

· ϵ
PPO

2
(37)

in terms of total variation distance for every N = Bn samples collected, as long as the effective
sample size of GePPO is at least N . Using the general forms of effective sample size in (36) and total
variation distance change in (37), we can optimize the results in Theorem 2 as follows:
Theorem 4. Let M̄ ≥ B be the maximum number of prior policies. Consider the goal of maximizing
the change in total variation distance of the policy with GePPO while maintaining the same effective
sample size of N = Bn used in PPO. Then, the policy weights ν that achieve this goal are the
optimal solution to the convex optimization problem

min
ν0,...,νM̄−1

M̄−1∑
i=0

νi(i+ 1)

s.t.

M̄−1∑
i=0

ν2i ≤ 1

B
,

M̄−1∑
i=0

νi = 1,

νi ≥ 0, i = 0, . . . , M̄ − 1.

(38)

Proof. We can maximize the total variation distance change in (37) by choosing ν that minimizes the
denominator, leading to the objective in (38). Next, we must have an effective sample size that is at
least N = Bn. Equivalently, we need

ESSGePPO =
n∑M̄−1

i=0 ν2i

≥ Bn, (39)

which can be rewritten as the first constraint in (38). Finally, the other constraints in (38) ensure that
ν is a distribution.

Theorem 2 considers uniform policy weights with M = B, which are a feasible solution to (38). As
a result, Theorem 4 increases the change in total variation distance compared to Theorem 2.

Similarly, we can optimize the results in Theorem 3 as follows:

16

Figure 3: Comparison of optimal and uniform policy weights for GePPO when B = 2. Left: Policy
weights determined by Theorem 4 and Theorem 2, respectively. Right: Policy weights determined by
Theorem 5 and Theorem 3, respectively.

Theorem 5. Let M̄ ≥ 2B − 1 be the maximum number of prior policies. Consider the goal
of maximizing the effective sample size with GePPO while maintaining the same change in total
variation distance of the policy throughout training as PPO. Then, the policy weights ν that achieve
this goal are the optimal solution to the convex optimization problem

min
ν0,...,νM̄−1

M̄−1∑
i=0

ν2i

s.t.

M̄−1∑
i=0

νi(i+ 1) = B,

M̄−1∑
i=0

νi = 1,

νi ≥ 0, i = 0, . . . , M̄ − 1.

(40)

Proof. We can maximize the effective sample size in (36) by choosing ν that minimizes the denomi-
nator, leading to the objective in (40). Next, the total variation distance change in (37) must equal
ϵPPO

/2, which we accomplish with the first constraint in (40). Finally, the other constraints in (40)
ensure that ν is a distribution.

Theorem 3 considers uniform policy weights with M = 2B− 1, which are a feasible solution to (40).
Therefore, Theorem 5 increases the effective sample size compared to Theorem 3. Also note that by
selecting M̄ to be large, Theorem 4 and Theorem 5 solve for both the optimal choice of M and the
corresponding optimal weights.

See Figure 3 for a comparison of the optimal and uniform policy weights when B = 2, which is
the setting for the experiments we considered. Note that the optimal policy weights can be found
very efficiently, and the convex optimization problems in Theorem 4 and Theorem 5 only need to be
solved once at the beginning of training to determine the policy weights ν.

D Implementation details

To aid in reproducibility, we describe the implementation details used to produce our experimental
results. Note that all choices are based on the default implementation of PPO in Henderson et al. [12].

Network structures and hyperparameters As discussed in Section 8, we represent the policy
π as a multivariate Gaussian distribution where the mean action for a given state is parameterized
by a neural network with two hidden layers of 64 units each and tanh activations. The state-
independent standard deviation is parameterized separately, where for each action dimension the
standard deviation is initialized as a multiple of half of the feasible action range. The value function
V π(s) is parameterized by a separate neural network with two hidden layers of 64 units each and tanh
activations. Observations are standardized using a running mean and standard deviation throughout
the training process. Both the policy and value function are updated at every iteration using minibatch
stochastic gradient descent. All hyperparameters associated with these optimization processes can

17

Table 2: Hyperparameter values for experimental results.

General Default Ant Humanoid

Discount rate (γ) 0.995
GAE parameter (λ) 0.97
Minibatches per epoch 32
Epochs per update 10
Value function optimizer Adam
Value function learning rate 3e−4
Policy optimizer Adam
Initial policy learning rate (η) 3e−4 1e−4 3e−5
Initial policy std. deviation multiple 1.0 0.5 0.5

PPO

Clipping parameter (ϵPPO) 0.2
Batch size (N) 2,048

GePPO

Clipping parameter (ϵGePPO) ∗ 0.1
Number of prior policies (M) ∗ 4
Minimum batch size (n) 1,024
Adaptive factor (α) 0.03
Minimum threshold factor (β) 0.5
V-trace truncation parameter (c̄) 1.0

∗ Represents calculated value.

be found in Table 2. Due to the high-dimensional nature of Ant-v3 and Humanoid-v3, we tuned the
initial learning rate and standard deviation multiple of the policy used for PPO on these tasks. These
values can also be found in Table 2. For a fair comparison, we used the same hyperparameter values
for GePPO.

Following Henderson et al. [12], we consider the clipping parameter ϵPPO = 0.2 and a batch size
of N = 2,048 for PPO. Because sample trajectories for the tasks we consider can contain up to
one thousand steps, we consider a minimum batch size of n = 1,024 for GePPO. When writing the
default batch size in PPO as N = Bn, this results in B = 2. Using this value of B, the number
of prior policies M and the corresponding policy weights ν for GePPO are calculated according to
Theorem 5. These weights are shown on the right-hand side of Figure 3. The clipping parameter
ϵGePPO is calculated based on these policy weights using Lemma 4, which results in ϵGePPO = 0.1.
Finally, the adaptive factor α and minimum threshold factor β used for our adaptive learning rate
method can be found in Table 2.

Advantage estimation Advantages Aπk(s, a) of the current policy in PPO are estimated using
Generalized Advantage Estimation (GAE) [18] with λ = 0.97. Note that the parameter λ in GAE
determines a weighted average over K-step advantage estimates. When samples are collected
using the current policy πk, these multi-step advantage estimates are unbiased except for the use
of bootstrapping with the learned value function. In GePPO, however, we must estimate Aπk(s, a)
using samples collected from prior policies, so the multi-step advantage estimates used in GAE are no
longer unbiased. Instead, we use V-trace [6] to calculate corrected estimates that are suitable for the
off-policy setting. V-trace corrects multi-step estimates while controlling variance by using truncated
importance sampling. For a learned value function V , current policy πk, and prior policy πk−i used
to generate the data, this results in the following K-step target for the value function:

V πk
trace(st) = V (st) +

K−1∑
j=0

γj

(
j∏

i=0

ct+i

)
δVt+j , (41)

18

where δVt = r(st, at) + γV (st+1) − V (st) and ct = min (c̄, πk(at|st)/πk−i(at|st)) represents a
truncated importance sampling ratio with truncation parameter c̄. We can use the same correc-
tion techniques to generate K-step advantage estimates from off-policy data. For K ≥ 2, the
corresponding K-step advantage estimate is given by

Aπk
trace(st, at) = δVt +

K−1∑
j=1

γj

(
j∏

i=1

ct+i

)
δVt+j , (42)

and for K = 1 we have the standard one-step estimate Aπk
trace(st, at) = δVt that does not require any

correction. We use c̄ = 1.0 in our experiments, which is the default setting in Espeholt et al. [6].
Note that Espeholt et al. [6] treat the final importance sampling ratio in each term separately, but
in practice the truncation parameters are chosen to be the same so we do not make this distinction
in our notation. Finally, we consider a weighted average over these corrected multi-step advantage
estimates as in GAE.

Typically, the resulting advantage estimates are standardized within each minibatch of PPO. Note
that the expectation of Aπk(s, a) with respect to samples generated by πk is zero, so the centering of
advantage estimates ensures that the empirical average also satisfies this property. In the off-policy
setting, the appropriate quantity to standardize is the starting point of policy updates

πk(a | s)
πk−i(a | s)

Aπk(s, a), (43)

since the expectation of (43) with respect to samples generated by prior policies is zero. Note that the
standardization of (43) generalizes the standardization done in PPO, where the probability ratios at
the beginning of each policy update are all equal to one.

Computational resources All experiments were run on a Windows 10 operating system, Intel
Core i7-9700 CPU with base speed of 3.0 GHz and 32 GB of RAM, and NVIDIA GeForce RTX
2060 GPU with 6 GB of dedicated memory. OpenAI Gym [3] is available under The MIT License,
and we make use of MuJoCo [21] with a license obtained from Roboti LLC. Using code that has
not been optimized for execution speed, simulations for all seeds on a given environment required
approximately 3 hours of wall-clock time for PPO and 4 hours of wall-clock time for GePPO. The
increased wall-clock time of GePPO is due to the fact that GePPO performs twice as many updates in
our experiments compared to PPO. Note that on average the sample efficiency benefits of GePPO not
only lead to improved performance compared to PPO for a fixed number of samples, but also for a
fixed amount of wall-clock time.

E Additional experimental results

In this section, we provide additional experimental results to further analyze the performance of
our algorithm. In particular, we include results across all MuJoCo tasks for both the default policy
network with two hidden layers of 64 units each and a standard wide policy network with two hidden
layers of 400 and 300 units, respectively. In all cases, we also consider a variant of PPO that uses our
adaptive learning rate method to better understand the drivers of performance in GePPO.

Figure 4 and Figure 5 show the performance throughout training and change in average total variation
distance per policy update, respectively, when using the default policy network. Note that the results
shown in Figure 1 and Figure 2 for PPO and GePPO with the default policy network are repeated here
for reference. As discussed in Section 8, we see that the change in total variation distance per policy
update in PPO increases throughout training across all environments. Because hyperparameters were
tuned using the default policy network, this trend does not lead to unstable performance. The addition
of our adaptive learning rate to PPO results in comparable performance in this well-tuned setting,
while ensuring that the change in total variation distance remains close to the target determined by
the clipping parameter. This causes a decrease in total variation distance change per policy update
compared to PPO at the end of training in most environments, and an increase compared to PPO at
the beginning of training in Swimmer-v3 and Hopper-v3. Finally, note that GePPO outperforms the
variant of PPO with our adaptive learning rate, which indicates that sample reuse is an important
driver of performance in GePPO. On average, GePPO improves average performance throughout
training by 31% compared to PPO and 32% compared to PPO with our adaptive learning rate.

19

Figure 4: Performance throughout training across MuJoCo tasks, where the policy network has two
hidden layers of 64 units each. Shading denotes half of one standard error. PPO-Adapt represents
PPO with the addition of our adaptive learning rate method.

Figure 5: Change in average total variation distance per policy update across MuJoCo tasks, where
the policy network has two hidden layers of 64 units each. Shading denotes half of one standard error.
PPO-Adapt represents PPO with the addition of our adaptive learning rate method. Horizontal dotted
lines represent target total variation distances for PPO and GePPO, respectively.

Figure 6 and Figure 7 show the same metrics for a standard wide policy network with two hidden
layers of 400 and 300 units, respectively. The results shown in Figure 2 for Walker2d-v3 are repeated
here for reference. As described in Section 8 for Walker2d-v3, we see that the wide policy network
exacerbates the total variation distance trend observed in PPO under the default settings. The
increased size of the policy network causes the probability ratio to be more sensitive to gradient
updates during training, which renders the clipping mechanism ineffective and leads to excessively
large policy updates. These large updates result in poor performance across several environments, and
even cause performance to decline over time for Hopper-v3 and Walker2d-v3. The addition of our
adaptive learning rate to PPO controls this source of instability, resulting in improved performance
throughout training and stable policy updates with acceptable levels of risk. The exception to this
trend is Humanoid-v3, where PPO outperforms PPO with our adaptive learning rate. This suggests
that a more aggressive risk profile may improve performance on Humanoid-v3 without sacrificing

20

Figure 6: Performance throughout training across MuJoCo tasks, where the policy network has
two hidden layers of 400 and 300 units, respectively. Shading denotes half of one standard error.
PPO-Adapt represents PPO with the addition of our adaptive learning rate method.

Figure 7: Change in average total variation distance per policy update across MuJoCo tasks, where
the policy network has two hidden layers of 400 and 300 units, respectively. Shading denotes half of
one standard error. PPO-Adapt represents PPO with the addition of our adaptive learning rate method.
Horizontal dotted lines represent target total variation distances for PPO and GePPO, respectively.

training stability. Finally, by reusing samples from prior policies, GePPO further improves upon
the performance of PPO with our adaptive learning rate. On average, GePPO improves average
performance throughout training by 63% compared to PPO and 34% compared to PPO with our
adaptive learning rate.

From these results, we see that the principled sample reuse in GePPO is a key driver of performance
gains compared to PPO, while the use of an adaptive learning rate is important for stable performance
that is robust to hyperparameter settings. Note that it is possible to achieve strong performance
without the use of our adaptive learning rate, but this requires careful tuning of the learning rate that
depends on several factors including the environment, policy network structure, length of training,
and other hyperparameter settings.

21

	Checklist
	Proofs
	Proof of Theorem 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Theorem 2
	Proof of Theorem 3

	Optimal policy weights
	Implementation details
	Additional experimental results

