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Abstract

Learning how complex dynamical systems evolve over time is a key challenge in
system identification. For safety critical systems, it is often crucial that the learned
model is guaranteed to converge to some equilibrium point. To this end, neural
ODE:s regularized with neural Lyapunov functions are a promising approach when
states are fully observed. For practical applications however, partial observations
are the norm. As we will demonstrate, initialization of unobserved augmented states
can become a key problem for neural ODEs. To alleviate this issue, we propose
to augment the system’s state with its history. Inspired by state augmentation in
discrete-time systems, we thus obtain neural delay differential equations. Based
on classical time delay stability analysis, we then show how to ensure stability
of the learned models, and theoretically analyze our approach. Our experiments
demonstrate its applicability to stable system identification of partially observed
systems and learning a stabilizing feedback policy in delayed feedback control.

1 Introduction

In this paper, we address the task of learning stable, partially observed, continuous-time dynamical

systems from data. More specifically, given access to a data set {(to, %)), - . ., (tn, yly) }2, of noisy,
partial observations collected along L trajectories of an unknown, stable dynamical system,
2(t) =g(2(t)  ,z(t) €eR™
x(t) = h(z(t)) ,x(t) € R™ /m > n, (1)
Yi = x(tl) + € ) € ]'I\? N(ngz)a

we would like to learn a model for the dynamics of x(¢). Moreover, it should be ensured that the
model remains stable (we will be concerned with exponential convergence to 0) on unseen trajectories.

Learning such systems in a data-driven way is a key challenge in many disciplines, including robotics
[Wensing et al.l 2017]], continuous-time optimal control [Espositol 2009] or system biology [Brunton
et al., |2016]. One powerful continuous-time approach to non-linear system identification are deep
Neural ODEs (NODE), as presented by|Chen et al.|[2018]]. Since neural networks are very expressive,
they can be deployed in a variety of applications [Rackauckas et al.,|2020]. However, because of that
expressiveness, little is known about their system theoretical properties after training. Thus, there has
been growing interest in regularizing such dynamics models to ensure favorable properties. In the
context of ensuring stability of the learned dynamics, Kolter and Manek|[2019] propose to jointly
learn a dynamics model and a neural network Lyapunov function, that guarantees global stability
via a projection method. Neural network Lyapunov functions have previously been employed by
Richards et al.|[2018] to estimate the safe region of a fixed feedback policy and by |Chang et al.|[2019]
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to learn a stabilizing feedback policy for given dynamics. Moreover, Boffi et al.|[2020] prove that
neural Lyapunov functions can also be learned efficiently from data collected along trajectories.

Thus far, all of these approaches are working directly with a standard ODE dynamics model. If the
system’s states are fully observed and the system is Markovian, this can be a valid choice. However,
in many practical settings, partial observations and non-Markovian effects like hysteresis or delays are
the norm. To address the limited expressivity of neural ODEs in the classification setting, Dupont et al.
[2019] introduce Augmented Neural ODEs (ANODE). Here, a standard neural ODE is augmented
with unobserved states, to extend the family of functions the model is able to capture. While Dupont
et al.| [2019] demonstrate that initializing the unobserved states at 0 is sufficient for the classification
case, this is certainly not true when deploying ANODE as a dynamical system. In fact, our experiments
in Section 4] demonstrate that learning this initial condition is a key problem in practice.

Inspired by state-augmentation methods in the time-discrete case, we thus propose to capture partial
observability and non-Markovian effects via Neural Delay Differential Equations (NDDE). NDDEs
were very recently proposed in the context of classification by [Zhu et al.|[2021]] and in the context of
closure models for partial differential equations by |Gupta and Lermusiaux| [2020]. While NDDEs
offer an elegant solution to avoid the Markovianity of neural ODEs, again little can be said about
stability outside of the training set. In fact, our experiments in Section [4] show that in a sparse
observation and high noise setting, a NDDE model that is stable on training trajectories may become
unstable along new unseen trajectories. We therefore extend the ideas of neural network Lyapunov
functions, originally developed for stability analysis of non-linear ODEs, to time-delay systems and
introduce a Lyapunov-like regularization term to stabilize the NDDE. In contrast to ODEs, NDDEs
have an infinite-dimensional state space, which requires careful discretization schemes we introduce
in this work. We then showcase the applicability of the proposed framework for the stabilization
of the NDDE model and for the task of learning a stabilizing feedback policy in delayed feedback
control of known open loop dynamics.

In summary, we demonstrate the applicability of NDDE:s to the case of modeling a partially observed
dynamical system. We then leverage classical approaches for stability analysis in the context
of delayed systems to develop a novel, Lyapunov-like regularization term to stabilize NDDEs.
Furthermore, we provide theoretical guarantees and code for our implementation

2 Model and background

The main model of this paper, NDDEs, mathematically belongs to the class of time-delay systems
that come with some additional difficulties compared to ODEs, both on the theoretical as well as the
numerical side. Thus, we first recall some preliminaries and notation on time-delay systems. Then
we continue with the model architecture and stability of time-delay systems.

2.1 Time-delay systems

Suppose r > 0 and consider the infinite-dimensional state space C,. := C([—r, 0], R™) of continuous
mappings from the interval [—r, 0] to R™. Throughout this paper, we endow R™ with the Euclidean
norm ||-||, and C, with the supremum norm ||¢||, = sup,¢(_, o] [|#(s)||, for ¢ € C,. Further on,
along a trajectory x € C([—r,ts], R™) we make use of the notation z,(-) := x(t + -) € C, to denote
the infinite-dimensional state at time ¢ € [0,t¢]. A subset B C C, is referred to as invariant if
vt(B) = B, where v (B) := {x:(¢)) € C,. : ¢ € B,t > 0} denotes its positive orbit. For a locally
Lipschitz function f : C, — R™, an autonomous time-delay system is defined by the family of initial

value problems:

I(S) = IZ’(S), S [77"7 0}7 P € Cy.
In contrast to ODEs, the dynamics are given by a Functional Differential Equation (FDE) and the ini-
tial condition by a function ¢/ € C,.. As we are interested in autonomous dynamics, we will always set
the initial time to zero. Furthermore, we denote by x(¢)(t) € R™ the solution and by x+(v) € C, the

history state at time ¢, starting from the initial history 1. As discussed in Section we will mainly
focus on the important special case of retarded delay differential equations with commensurate delays

z(t) = flz(t),z(t — 1), ..., z(t — K7)) = f(X_(2)). 3)

2Code is available at: https://github.com/andrschl/stable-ndde
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Since some discretization is always necessary for computational tracktability, this implicitly
includes a numerical approximation of general FDEs if the number of delays is chosen sufficiently
large. It holds that r = K7, where for convenience we introduced the short-hand notation
X7, (t) == (x(t),z(t — 7),...,2(t — K7)). Note that while the instantaneous change (i.e., the
vector field) in (3) depends only on a discrete set of observations x” . (¢), the initial history ¢ € C,
has to be given on the entire interval [—r, 0] in order to have well-defined dynamics for ¢ > 7. As a
consequence, in practice we need an interpolation of the initial history, and for numerical integration
a specific DDE solver based on the method of steps [Alfredo Bellen, 2013] is required. Apart from
this, existence and uniqueness of solutions to () and (3) follow in a similar fashion as for ODEs
[Hale and Lunel, {1993, |Diekmann, {1995]].

2.2 Neural Delay Differential Equations

Model architecture The motivation of the model architecture is the following: We look for a
general method to learn continuous non-Markovian time series which occur, for example, in partially
observed dynamical systems. As already mentioned before, the temporal evolution of an ODE
is uniquely determined by its current state, which makes NODESs inherently Markovian. Instead
of augmenting NODEs with additional states, our approach is inspired by neural network based
system identification of discrete-time dynamical systems: the latter copes with non-Markovian
effects by augmenting the state space with past observations (i.e., literally memory states) in order
to lift the problem back into a Markovian setting (see e.g. [[Chen et al.,[1990]). A continuous-time
analog leads us to a FDE @(¢t) = f(x;) where the current change is depending on the history
x¢(s) == x(t +s), s € [—r,0] up to some maximal delay » > 0. Since a neural network cannot
represent a general non-linear functional f, we discretize the infinite-dimensional memory state x; as
in Equation (3). This leads us to the NDDE model

i(t) = foN (x(t),x(t — 1), ..., x(t — K1) = foV (xT (), 4)

which is illustrated in Figure|l1| Here, ng N is a feedforward neural network and K the number of
delays.

NDDE prediction

N i)

[nitial observations Observations z(t — K1) z(t—7) ()
Figure 1: Graphical illustration of the NDDE model.

Predictions Given an initial history ¢ € C,. we integrate equation (@) to get the prediction at time ¢
#(t) = DDESolve (1, f3' ™V 1o, 1). 5)

However, in practice observations are subject to noise and cannot be sampled at an infinite rate.
Hence, we need to approximate ) by a smoothed interpolation. For this purpose we employ Gaussian
Process (GP) regression. Given a set {(to, o), - - -, (¢ Nyws YUNuw } OF Nnist Observations along the initial
history, we fit for each scalar initial history component a zero-mean GP. As a kernel, we choose the
Radial Basis Function (RBF) kernel

N 2 t—'|
kyo,(t, 1) = o exp | — T (6)

with length-scale [ and kernel variance o7. This choice worked well in our experiments. Nevertheless,
it is not crucial and other sufficiently smooth kernels such as Matérn 3/2 or Matérn 5/2 may be
appropriate as well [Rasmussen and Williams|, |2005]]. For the smoothed interpolation of the initial
history we are then using the posterior mean function,

W(t)s = ke (Krr +0°1) 7 Y, 1<i<n, (7

where Y; = ((yo)iv sy (yth)i)a T = (th s 7tNhiSl)7 kir = (k(ta t0)7 sy k(tv tth)’ and Kpp =
(k(t;,tx)) jv i . The kernel hyperparameters [/, o7 as well as the observation noise variance o2 are
estimated from data by marginal likelihood maximization.



Training For training we proceed similar to NODEs and minimize the least squares loss

N
J =3y — @) (8)
1=0

along trajectories. While it is possible to utilize an interpolated continuous adjoint sensitivity method
for calculating the loss gradients, differentiation through DDE solvers turned out to be significantly
more efficient in our experiments. As discussed by |Calver and Enright| [2016], one reason is that
jump discontinuities need to be accounted for that are later propagated in higher order derivatives
along the solution of the adjoint state, and the DDE solver needs to be restarted accordingly. We
therefore refrain from going into further details about adjoint methods and simply make use of the
differentiable DDE solvers provided by Rackauckas and Nie|[2017].

Approximation capabilities As opposed to neural ODEs, we are no longer learning an ordinary
differential equation, but a retarded-type delay differential equation with constant delays. An
interesting question is under which conditions a NDDE can model the time series corresponding to
the partial observations h(z(t)) of the ODE system (I). As discussed in Appendix [B] a sufficient
condition for this is that the delay coordinate map,

E:R™ — ]R(K—i-l)n7
2(t) = XL () = (h(z(8), h(z(t = 7)), ..., h(2(t = K7T))), ©)

is one-to-one. For dynamical systems confined on periodic or chaotic attractors, the delay embedding
theorem by [Takens|[[1981] indeed shows that this holds true for large enough K (for more details see
Appendix [B|and the references therein). Although we do not assume that the system (T)) is confined
to such an attractor, our experimental results in Section ] demonstrate approximation power and
generalization capabilities of NDDEs when applied to dissipative systems.

2.3 Stability of time-delay systems

We discuss stability analysis for the general class of time delay-systems (2). We assume that the
origin is an equilibrium, f(0) = 0, and slightly adjust the definition of exponential stability with
respect to this equilibrium point as provided by |[Fridman| [2014] to our needs:

Definition 1 For a fixed set of initial histories S C C, and constants v, M > 0, we call system ()
(v, M )-exponentially decaying on S over the time horizon [0, t¢) if

lz(s)|ly < Me 7670 ||z (1) for 0 <t<s<ty Vpes. (10)

I

For some invariant set B C C, with 0 € B the time delay system (2)) is called (v, M )-exponentially
stable on B if it is (v, M )-exponentially decaying on B over the time horizon [0, c0).

Here, v measures the rate of decay and M is an upper bound on the transient overshoot. In
cases where we do not care about the specific values of v and M we simply call the system (2)
exponentially stable. Note that if a time-delay system is (v, M )-exponentially decaying on a set of
initial histories S over [0, 0o), then it is also (v, M )-exponentially decaying over [0, c0) on y*(S).
Since vT(S) is invariant by definition, (v, M)-exponential decay on S over [0, o) is equivalent
to (v, M )-exponential stability on v (S).

Razumikhin’s method A key method to prove exponential stability of non-linear ODEs are
Lyapunov functions [Lyapunov, [1992]. However, directly applying ODE Lyapunov functions
to time-delay systems leads to very restrictive results (e.g., a 1-dimensional system would not
be allowed to oscillate [Fridman, 2014]). Nevertheless, along the same lines, two approaches
geared towards stability analysis of non-linear time-delay systems exist. Whereas the method of
Lyapunov-Krasovskii functionals [Krasovskii, [1963]] is a natural extension of Lyapunov’s direct
method to an infinite-dimensional state space, the idea of Razumikhin-type theorems [Razumikhin,
1956] is to make use of positive-definite Lyapunov functions V' : R™ — R with finite domains
familiar from the ODE case and to relax the decay condition. Namely, a negative derivative of V' (z(t))
at time ¢ is required only when we are about to leave the sublevel set V<" = {z € R" : V(x) < n}
of 7 1= sup,e(_,,0) V(z(t + s)). The following theorem establishes sufficient conditions for
exponential stability.



Theorem 1 ([Efimov and Aleksandrov, 2020]) Assume there exists a differentiable function
V : R™ — Ry, positive reals c1, ca, o, and a constant ¢ > 1 such that along all trajectories starting
inY € S C C, the following conditions hold for all t € [0,t¢):

(i) erllz(); < V(a(t)) < e llz(t)]
(i) V(z(t)) < —aV (x(t)) whenever V(x(t + s)) < qV(z(t)) Vs e [-r0].

Then system @) is (v, M)-exponentially decaying on S over [0,T) with decay rate v =
min(c, 10fq)/2 and M = ca/c1. Moreover, if for an invariant set B C C, with 0 € B condi-
tions (1), (i1) hold for all x; € B then the time delay system (2) is exponentially stable on B.

A function V establishing stability of some invariant set B by satisfying conditions (¢), (#4) in
Theorem[I]is referred to as a Lyapunov-Razumikhin Function (LRF). However, due to the infinite
dimension of C,. it is hard to verify the decay condition (i) on the entire state space C,. We thus
focus on proving (v, M )-exponential decay along trajectories starting within some fixed set of
initial conditions S C C,., which, as discussed before, is for an infinite time horizon equivalent to
(v, M)-exponential stability on B = v+ (S).

Note that Theorem [I] establishes sufficient, but not necessary conditions for exponential stability. The
problem is that often it is not strong enough to check the Razumikhin condition

qV(z(t)) = V(z(t+s)) >0 (11)

only on the interval s € [—r, 0], but we should take into account more of the past observations of
V(z(t)). It can therefore be helpful to reinterpret problem (2 as one in the state space C,,, with
some 7y, > 7 and to apply Theorem [I]to that problem. However, in this new — larger — state space,
only initial histories of the form

T JUls=(r—rv)) ,8 € [=ry,r—1v]
U(s) =
z(Y) (s —(r—rv)) ,s€[r—ry,0]
need to be considered for stability in C,. [Hale and Lunell, [1993|]. Furthermore, Proposition El, which

we prove in Appendix [A] shows that also exponential stability follows, albeit at the price of a larger
bound on the transient overshoot.

with ¢ € C, (12)

Proposition 1 If f is L¢-Lipschitz, f(0) =0, and 1, Y defined as in (12), then

@], < el o=, (13)

Centred around this idea, necessary and sufficient Razumikhin-type conditions for discrete-time delay
systems are given by Gielen et al.[[2013]. In the following, we therefore treat ry- as a hyperparameter
that has to be chosen for the respective problem at hand.

3 Learning stable dynamics

We now propose an approach, based on neural LRFs, to enforce stability of a parametric DDE. The
key idea is to jointly learn a neural network Lyapunov-Razumikhin function and the dynamics model.
Similarly to [Richards et al., 2018, |Chang et al.,2019] we propose to enforce stability via the loss
function. This is in contrast to |[Kolter and Manek! [2019]] who use a projection-based approach to
ensure stability in the forward pass. The main reason for this design choice is that a projective
approach based on LRFs leads to discontinuities in the forward pass, which are problematic for
DDE solvers [|Alfredo Bellenl 2013|]. Moreover, incorporating the Lyapunov neural network into the
forward pass renders the model slow during inference time and a loss function based approach offers
the opportunity to actively stabilize an initially unstable system, as we demonstrate in Section ]

Lyapunov neural network construction Except for the decay condition along solutions
(condition (ii) in Theorem E]), an LRF has the same form as an ODE Lyapunov function. We
thus employ the same Lyapunov neural network as proposed by [Kolter and Manek! [2019]]. The
construction is based on an Input-Convex Neural Network (ICNN) [Amos et al., 2016]]. The ICNN
T gg N(z) is convex by construction and any convex function can be approximated by such neural

networks [[Chen et al.,[2019]. In order to satisfy the upper bound in condition (¢) of Theorem the



activation functions o of gg N are required to additionally have slope no greater than one. To ensure
strict convexity, and to make sure that the global minimum lies at z = 0, a final layer

VN (@) = a(g)™ (@) — g™ (0)) + cllll5 (14)

is chosen. Here, ¢ > 0 is a small constant. As for the activation function o, having a global minimum
at x = 0 requires ¢(0) = 0. Furthermore, since we want to ensure Lipschitz continuity of the loss
derivatives, we use a twice continuously differentiable smoothed ReLLU version

0 , <0

3 xt

xfg z>d
2 ’ '

This slightly differs from the original o proposed by |[Kolter and Manek [2019]], since they only
needed a once continuously differentiable one. This construction ensures that quv N(x) = (9(||x||3)

as x — 0 and also V¥V () = O(Hng) as ||z|l, — oo. We can therefore always find constants
c1, c2 such that the conditions (i) in Theorem E] are satisfied. In the next step, we explain how
to employ this neural network architecture to learn neural LRFs and at the same time stabilize a
parametric delay differential equation of the form (3).

Lyapunov-Razumikhin loss As stated before, V¢N N satisfies condition (i) in Theoremby con-
struction. The relaxed decay condition (i¢) however has to be enforced during training. Since it is
practically infeasible to check the Razumikhin condition (IT]) on the continuous interval [—7y/, 0], we
need some discretization that still allows for stability guarantees. As we will analyze in this section,
this is satisfied by the the following loss with discretized Razumikhin condition

lLRE (¢a 0, XT_VKV (t)) =

ReLU (Vds%N (XZVKV (t)) + onquN(x(t))) €] <qVq§VN(x(t)) — 13?2% VdeN (z(t — ij))) )
(16)

Here, ©(-) denotes the unit step function with ©(s) = 1if s > 0 and ©(s) = 0 otherwise.
Furthermore, for notational simplicity we choose 7, < 7 and such that 7 = [ - 7y for some integer
I € N. According to Theorem [1| a zero loss {igr (¢, 0, X, (t)) along a trajectory of length
[0,t7) implies exponential decay along this trajectory. Moreover, if for a fixed set of initial histories
Sirain € C, the loss (T6) is zero along all trajectories starting in Sy, and over a time horizon [0, o),
then the delay differential equation is stable on " (Sy,in). However, since we cannot check this for
ty = oo, we choose ¢t ¢ large enough to ensure convergence to a sufficiently small region around the
origin. Theorem [2then also establishes exponential decay for trajectories starting not necessarily in —
but close enough to — Si,in. For its proof we refer to Appendix @

Theorem 2 If the dynamics are L ;-Lipschitz and the LRF loss is zero along trajectories starting
in Sirain C Cyr over a time horizon [0,t¢), then the time-delay system is (v, M )-exponentially decaying
on Syyqin over [0,ty). Moreover, if for another set of initial histories S O Sy and some ¢ > 0,
the training set Syqin is a 0-covering of S (in the ||-||,.-norm) with § = ce~(Lst Nt then the time

delay system is (v, M )-exponentially decaying on S \ B.(0) over the time horizon [0,t) and with
M =2M + 1. Here, B:(0) = {¢ € C, : ||¢0||» < €} denotes the e-ball around the origin.

While for a zero loss exponential decay is guaranteed, the discretization of the Razumikhin condition
might be introducing additional conservatism by requiring decay in V(;V N too often. However,
Proposition E] tells us that if the discretized Razumikhin condition holds, 7, is small enough, and the
current state lies outside of an e-ball around the origin, then the continuous condition holds for some
G > q. Furthermore, ¢ converges quadratically to ¢ as 7y — 0. Remembering that the decay rate
in Theoremis ~ = min(a, 10%) /2, it becomes apparent that by discretization we are requiring a
slightly larger rate of decay, which can however be controlled by the choice of 7 .



Proposition 2 Ler Ky and Ty be such that ry = Kyty > r and let x(-) be a solution of
@(t) = f(x¢) passing through 1, € Cy. Assume ||zt ||, o, < 00 and ||z, ||, > €. Furthermore,
let f be Ly-Lipschitz and differentiable. Then, if the discretized Razumikhin condition,

VN (x(to — krv)) < qVy N (2(to)) Yk €{0,1,.... Ky}, (17)
is satisfied and Ty is small enough, then the continuous Razumikhin condition,
Vot (a(to + 5)) < () Vy" (a(to)), (18)

holds for any s € [—rv,0] and some G(1y) with (tv) = q + O(1&) as Ty — 0.

The condition that the current state lies outside some e-ball around the origin may be replaced by an
assumption on the solutions’ decay in ||- H,.V. However, in practice we are usually satisfied with conver-
gence to some small neighborhood of the origin, since, as already noted, we cannot choose an infinite
time horizon and also as due to observation noise and data scarcity our model will always be subject
to some modelling errors. We elaborate more on this issue and prove Proposition [2]in Appendix [A]

Stabilizing NDDEs In order to stabilize an NDDE on a fixed set of initial conditions Sy, € C,- we
minimize the stabilizing loss (T6) on a set of data points {x(1), ... x(Nre)} with x(*) ¢ R*(Kv+1)
collected along trajectories starting in Sy,in. The resulting gradients are added up with those from
the NDDE loss (E]) While this enables us to stabilize the NDDE on unseen trajectories, we still
need an efficient method to generate realistic initial histories. Especially in the setting of partially
observed systems we do not know much more about initial histories than that they are contained
within a bounded, Lipschitz subset of C,.. However, since for our NDDE model the initial history is
given by a GP-mean function, it suffices to stabilize the NDDE for initial histories within the subset
Niist

(¥ € Ml (t) = cikio (¢, 1)} (19)
=1

of the reproducing kernel Hilbert space H, corresponding to k; », (¢, t'). Furthermore, boundedness of
initial histories translates into a bound on the norm of the expansion coefficients ||(c1, ..., cny, )[[o < A
and Lipschitz continuity can be accounted for by upper bounding the inverse length-scale 1/I < B
and the kernel variance J,% < C'[Rasmussen and Williams, [2005]]. To satisfy these constraints, we
sample at each training iteration initial histories 1 € Sy.in as follows: The expansion coefficients
(c1, ..., N,y ) are sampled uniformly in an L2-ball, and 1/[, o4 on bounded intervals [0, B], [0, C],
respectively.

Note, that while another possibility would be to integrate the loss (T6)) as a continuous regularization
term into the NDDE loss, the discontinuities in (I6)) turn out to be problematic for DDE solvers.

Delayed feedback control The stabilizing loss (16) is essentially applicable to any parametric
DDE of the form (3). Equations of this form also occur in delayed feedback control. Assume we
want to learn a stabilizing state feedback u(t) = mg(x(t)) for a known open loop control system
z(t) = f(x(t),u(t — 7)) with input delay. In practice, such delays in the feedback loop are often
introduced as a consequence of communication latencies and typically cause instability [Krsticl [2009].
The resulting closed loop system is a parametric DDE %(t) = f(x(t), mg(x(t — 7))), which can,
for small enough delays, be stabilized in a data-driven way with our LRF loss (T6). If the input
delay exceeds some critical value, the system can no longer be stabilized by DDE methods and
infinite-dimensional feedback taking into account the inputs history would be required [Krstic, [2009].
Experimental results for delayed feedback stabilization are provided in Section

Choice of hyperparameters Our NDDE model (4) as well as the stabilizing loss involve hy-
perparameters such as number and magnitude of delays, whose choice we discuss in the following. For
our NDDE model, the number of delays K clearly controls the representational capabilities. In gen-
eral it is sufficient to choose K large enough such that the delay coordinate map (9)) is one-to-one. For
periodic or chaotic attractors, Takens’ Embedding Theorem [3| (see Appendix [B) provides a sufficient
lower bound on K to ensure this. Moreover, in our experiments, larger values of K ease training and
— perhaps surprisingly — do not hurt generalization performance. Of course, an overly large number of
delays leads to long training time per iteration, thus slowing down training again. Except for the first
experiment where we directly compare NDDEs to ANODEs, we fix a relatively large number of delays
K = 10 throughout the paper. While Takens’ Theorem 3] is besides a periodicity condition, com-
pletely agnostic to the choice of the delay parameter 7, various heuristics such as Average Mutual Infor-
mation or False Nearest Neighbours exist in practice (for an overview see [Wallot and Mgnster,|2018]).



With regard to the stabilizing loss (I6)), Proposition 2] proves that the number of delays K’y controls
the conservatism we introduce through discretization of the Razumikhin condition. Furthermore,
as discussed in @), the maximal considered delay 7y controls the conservatism inherent to Razu-
mikhin’s Theorem|I]itself. Lastly, the parameters cv and ¢ are directly related to the rate of decay ~ in
Theorem ] via v = min(e, log ¢/rv). We thus choose o & log g/ . Moreover, a too small choice
of Ky, ry or too large choice of «, ¢ can be detected via a non-zero LRF loss (T6).

4 Experiments

Learning partially observed dynamics We first compare the applicability of Vanilla NDDEs and
ANODE:s for the task of learning a partially observed harmonic oscillator,

=5 (20) = (% 0):0. wn=0 00 (0)

We train the models over two training trajectories starting from zo ;1 = (1,0) and 21 = (0, 2) and
with zero observation noise. For ANODEs we compare a model trained with given true augmented
initial conditions (IC) against another model where we initialize the augmented states with zero and
learn them via the adjoint method. Moreover, for the NDDE we compare a single delay model with
K =1 to a multiple delay model with K = 10. The resulting vector field plots for the ANODE
models illustrated in Figures demonstrate that, whereas for true initial conditions the dynamics
match the ground truth well, learning the augmented initial conditions turns out to be a key problem.
In contrast, for our NDDE model the initialization is conveniently provided by the GP interpolation.
This is also reflected in the learning curves in Figure [2d} where we see that both NDDE models yield
a significantly lower train loss for fewer iterations compared to the ANODE models. Moreover, the
NDDE with K = 10 achieves a better training score. For the rest of the experiments we therefore fix
K = 10. For more information about the setup and additional experiments we refer to Appendix [C}
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NDDE K =10
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(a) Ground truth (b) ANODE true IC (c) ANODE learned IC (d) Train loss

Figure 2: Comparison of ANODEs with true and learned initial conditions (IC) and Vanilla NDDEs.
In (a)-(c), the phase portrait for ground truth and ANODE models are provided. Note, that since
we are only interested in the first state the direction of rotation is irrelevant for the ANODE models.
As it is impossible to draw a phase portrait of the NDDE model, the train losses for all four models
are compared in Figure (d). While for given true initial conditions the ANODE model achieves
a reasonable training fit, learning the augmented initial condition leads to a high training error.
Moreover, both NDDE models show superior training performance compared to the ANODE models,
both in terms of training error and number of iterations.

Learning stable NDDEs |Kolter and Manekl [2019]] show that in the ODE case, a neural network
dynamics model trained on stable data may become unstable for long-term prediction. For NDDEs,
we observed this to be a problem in the setting of sparse observations, a high noise level, and
generalization over initial histories. In particular, we consider a partially observed damped double
compound pendulum, where only the angles of deflection ¢ and (9, but not the angular velocities
are observed. This is a complex non-linear dynamical system which, for low friction, exhibits chaotic
behavior [Shinbrot et al} [1992]]. The governing equations are derived in Appendix [C]

For observation noise of variance o = 0.05 and training and test data along 4 trajectories, we compare
the generalization performance of a Vanilla NDDE and a NDDE stabilized with LRF regularization.
We repeat the training for 20 independent weight initializations and noise realizations. The resulting
predictions illustrated in Figures [3a}3b|demonstrate that while the median prediction is stable, the
upper 0.95 quantile explodes for the Vanilla NDDE. In contrast, the stabilized NDDE remains stable



on all test trajectories. Moreover, whereas the test loss in Figure 3c|explodes for the unstable NDDE,
the train losses are approximately the same. Thus, the LRF loss guides us to a stable optimum without
sacrificing training performance.
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test prediction
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(a) Prediction along unseen trajectory for Vanilla NDDE
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(b) Prediction along unseen trajectory for stabilized NDDE

train loss test loss
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(c) Train and test error of both models

Figure 3: In (a)-(b) the test predictions are shown for one of the test trajectories and in (c) train and
test loss for all trajectories are illustrated. The lines indicate the median and the shaded area the 0.05
and 0.95 quantiles from 20 independent weight initializations and noise realizations.

Stabilization with delayed feedback control As a first application for learning a stabilizing
feedback policy of a known open loop system, we consider a friction-less inverted pendulum with an
input delay 7 = 0.03. The open loop dynamics are given by

T1(t)\ _ z2(t)
<562(t)) N (‘(l} sin(xq(t)) + #u(t _ T)) : (21)

Here, the states are (z1, 22) = (¢, ¢) where ¢(t) is the angle of deflection with respect to the fully
upright position, g indicates the acceleration of gravity, and [ and m the length and mass of the
pendulum. Furthermore, u(t) is the torque which is applied at the pivot point. The goal is to learn a
stabilizing feedback policy

U(t) = W(,’E(t)) = klml(t) + kg.%‘z(t). (22)

Similar to (Chang et al.| [2019]], we initialize the parameters k1, ko with the values from the Linear
Quadratic Regulator (LQR) feedback policy calculated for the linearization of (Z1)). For the training,
we continuously generate new initial histories as follows: We sample ODE initial conditions on



a circle of radius 7/2, assuming zero control for ¢ < 0. Thus, the dynamics are described by an
autonomous ODE along initial histories. As depicted in Figure[a] the initially unstable state feedback
can be stabilized by means of our Razumikhin loss. Furthermore, the speed of decay can be controlled
by the choice of the hyperparameters o and q. Moreover, /| g is zero along new test trajectories
indicating that we indeed learned a valid LRF candidate for this set of initial histories.

2 2 840
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(a) Delayed state-feedback (b) Learned (left) and randomly initialized (right) Vdfv N

Figure 4: In (a), the learned delayed state feedback policy is compared to the LQR control. The
left plot in (b) shows the learned LRF candidate V¢N N and the right plot a random initialization.
Whereas LQR is unstable for delayed feedback, the policies learned by minimization of the Lyapunov-
Razumikhin loss are stable and the rate of decay can be controlled by the choice of the decay
parameters « and q.

As a second — more complex — experiment, we consider stabilizing a cartpole with a delayed input
force acting on the cart. In contrast to the two-dimensional inverted pendulum, this is a four-
dimensional non-linear system. Its states are x(t) = (p(t), ¢(t), £(t), £(t)), where ¢ again denotes
the angle of deflection and ¢ the position of the cart. For the exact equations, we refer to
[1999]]. For the control force acting on the cart we assume a delay of 7 = 0.05 and aim at finding
a stabilizing feedback policy 7 (x(¢)). Similarly to the inverted pendulum experiment, Figure
shows that minimizing the LRF loss (T6) enables us to find a stabilizing feedback policy from an
initially unstable LQR feedback. Furthermore, the rate of decay can be controlled by the choice of
the hyperparameter o and q.
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Figure 5: For the delayed cartpole, we compare the learned state feedback policy to the LQR
controller. While LQR becomes unstable for delayed feedback, the feedback policies learned with the
Lyapunov-Razumikhin loss are stable, and the decay rate can be controlled by the choice of o and q.

5 Conclusion

In this paper, we demonstrated that NDDEs are a powerful tool to learn non-Markovian dynamics
occuring when observing a partially observed dynamical system. Via state augmentation with the
past history we avoid the estimation of unobserved augmented states, which we showed to be a major
problem of ANODEs when applied to partially observed systems. Based on classical time-delay
stability theory, we then proposed a new regularization term based on a neural network Lyapunov-
Razumikhin function to stabilize NDDEs. We further showed how this approach can be used to learn
a stabilizing feedback policy for control systems with input delays. Besides experiments showcasing
the applicability of our approach, we also provide code and a theoretical analysis.
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