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1 Related works for blind inversion

Similar works that use expectation maximization (EM) based deep learning approaches are usually
specific to a single task, often times image classification. These similar works typically assume that
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Figure 1: Velocity reconstructions from MAPθ,x with varying λθ and λV prior weights. Each
column corresponds to the reconstructions obtained from a single noisy observation of travel times
using MAPθ,x, where the true Earth velocity is shown in Fig. 1(a) from the main paper. Each row’s
reconstruction corresponds to different λθ and λV values corresponding to varying strengths of the
gradient Lθ and LV priors. Results shown are simulated using 20 surface receivers and a varying
number of sources (9, 25, and 49) in a uniform grid. Note that as the prior λθLθ increases, the closer
the velocity reconstruction becomes to the gradient prior model shown in Fig. 2 from the main paper.
The velocity reconstruction MSE is included in the top right of each reconstruction. The model with
the highest data likelihood is highlighted in orange.

the latent representation is Gaussian. Deep GMM [10] is an EM based approach that assumes the
latent space is well modelled with a mixture of Gaussian distributions. Although this assumption
works well for image classification, it does not generalize to other applications where the latent space
is non-Gaussian (seen in the case of seismic tomography with only a few sensors). DeepEM [13] is
another EM algorithm that uses deep learning machinery. DeepEM is a semi-supervised method and
uses labelled data to approximate the posterior. However, rather than solving for the exact posterior,
it approximates the posterior with a Half-Gaussian distribution determined through sampling Faster
R-CNN.

Using alternative loss functions instead of the standard `2 is another way to accommodate model
mismatch into inversion. For example, Wasserstein distance is a loss function that has been used in
many applications related to optimal transport, from seismology [12] to image reconstruction [11].
Since the dual of the Wasserstein distance [1] is differentiable, we may also be able to use it to better
approximate p(y|x) in the future.
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Figure 2: Posterior visualization with varying number of random sources. Results shown are
simulated using 20 surface receivers and a varying number of sources (9, 25, 49, and 100) that are
randomly sampled, with the legend shown in Fig. 2 of the main paper. Note that as the depth increases,
the inferred posterior distribution has more uncertainty.

9 Sources 25 Sources

49 Sources 100 Sources

Figure 3: Velocity reconstructions corresponding to the sources reconstructed in Fig. 2. Results
shown are simulated using 20 surface receivers and a varying number of sources (9, 25, 49, and 100)
that are randomly sampled. The velocity reconstruction MSE is included in the top right of each
reconstruction, where the true Earth velocity is shown in Fig. 1(a) of the main paper. Note that as
the number of sources increase, the MSE tends to improve. Additionally, even with 9 sources, the
anomaly is able to be reconstructed.
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2 Blind seismic tomography

2.1 EM derivations

2.1.1 “E”-Step derivation

We include expanded derivations of Section 3.1 Eq. 5 from the main paper. Here qφ(x) represents a
flexible variational distribution that well approximates the posterior distribution p(x|y, θ(t−1)). A
normalizing flow network, Gφ(z), has input z ∈ R|x|, where x = Gφ(z) ∼ qφ(x) when z ∼ N (0,1)
and |x| is the dimension of x. Normalizing flow networks allow for exact computation of the log-
likelihood log qφ(x), which is needed to solve Eq. 5. Eq. 5 can be derived using the variational
objective to get

φ(t) = arg min
φ

KL(qφ(x)||p(x|y, θ(t−1)))

= arg min
φ

Ex∼qφ(x)
[
log qφ(x)− log p(x|y, θ(t−1))

]
= arg min

φ
Ex∼qφ(x)

[
− log p(y|θ(t−1), x)− log p(x) + log qφ(x)

]
≈ arg min

φ

1

N

N∑
n=1

[− log p(y|θ(t−1), xn)− log p(xn) + log qφ(xn)]

for xn = Gφ(zn), zn ∼ N (0,1), (1)

for a batch size of N where log p(x) is a prior on the source and log p(y|x, θ(t)) is the data likelihood.
When assuming the measurements y experience i.i.d additive Gaussian noise with standard deviation
σy , log p(y|θ(t), xn) = 1

2σ2
y
‖y − fθ(t)(xn))‖2 + c.

M-step with Known Source Locs.

No ℒϴ Prior Homogenous Gradient Layer

9
 s

o
u

rc
es

2
5

 s
o

u
rc

es
4

9
 s

o
u

rc
es

True & Prior 
Source Locs.

Figure 4: M-step solutions (with known source locations) improve with more sources and bet-
ter Lθ prior models. Each row corresponds to the reconstructions obtained from a single noisy
observation of travel times, where the true Earth velocity is shown in Fig. 1(a) in the main paper.
Results shown are simulated using 20 surface receivers and a varying number of sources (9, 25, and
49) in a uniform grid. Columns 2-5 show M-step results with known source locations obtained using
different Lθ priors. Note that results tend improve as the Lθ prior becomes closer to the true velocity
structure and as the number of sources increases. Note that these reconstructions tends to be blurrier
than those shown in Fig. 5 due to the presence of Gaussian noise in the receiver measurements.
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Figure 5: M-step solutions (with known source locations) from noise-free measurements im-
prove with more sources and better Lθ prior models. Each row corresponds to the reconstructions
obtained from a single observation of noise-free travel times, where the true Earth velocity is shown
in Fig. 1(a) in the main paper. Results shown are simulated using 20 surface receivers and a varying
number of sources (9, 25, and 49) in a uniform grid. Columns 2-5 show M-step results with known
source locations obtained using different Lθ priors. Note that results tend improve as the Lθ prior
becomes closer to the true velocity structure and as the number of sources increases.

2.1.2 M-Step derivation

We include expanded derivations of Section 3.2 Eq. 6 from the main paper. The parameterized
approximate posterior distribution, qφ(t)(x), is used from the “E”-step to update θ, the parameters of
the unknown forward model fθ(·). This is achieved by sampling from the learned normalizing flow
network, Gφ(t)(·), to stochastically solve:

θ(t) = arg max
θ

[log p(θ|y)]

= arg max
θ

[log p(y|θ) + log p(θ)] (2)

= arg max
θ

[
log

(∫
x

p(y|θ, x)p(x)dx

)
+ log p(θ)

]
(3)

= arg max
θ

[
Ex∼p(x|y,θ(t−1)) [log p(y|θ, x)] + log p(θ)

]
(4)

≈ arg max
θ

[
1

N

N∑
n=1

[log p(y|θ, xn)] + log p(θ)

]
for xn = Gφ(t)(zn), zn ∼ N (0,1), (5)

where p(θ) is a prior on the forward model. This prior can be used to encourage the forward model
parameters to remain close to an initial model θ̃ by defining log p(θ) ∝ ||θ − θ̃||2 + c.

2.2 Baselines

2.2.1 Iterative straight ray baseline

The tomography baseline that we use is a straight ray tomography method based on [2]. The source
localization baseline is the maximum a posteriori (MAP) solution given by

x̂ = arg min
x

∑
r

1

2σ2
y

||T (x∗, r)− T̂ (x, r)||2 − log p(x) (6)
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Figure 6: Results from ten different GRF velocity models. Ten random velocity fields were drawn
from a GRF-based distribution and used to simulate travel time measurements with 20 receivers and
100 randomly placed sources. Reconstructions obtained for all of these configurations are shown.
Velocity structure recovered using different Lθ priors. The straight ray baseline is included.
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Figure 7: Velocity reconstruction with varying prior parameters λθ and λV . Each reconstruction
is obtained from a single noisy observation of travel times, where the true Earth velocity is shown in
Fig. 1(a) from the main paper. Each row corresponds to different λθ values corresponding to varying
strengths of the layers Lθ prior. Each column corresponds to different λV values corresponding to
varying strengths of the velocity invariance prior. λθ with values 1e-5, 1e-6, 1e-7 and λV with values
1e-4, 1e-5, 1e-6 are used. The optimal parameters (λθ = 1e-6 and λV = 1e-5) are used for all results
shown in the paper. Results shown are simulated using 20 surface receivers and 100 sources in a
uniform grid. The velocity reconstruction MSE is included in the top right of each reconstruction.

where σy is the standard deviation of the measurement error, T (x∗, r) is the true travel time mea-
surement generated from the true source x∗ and receiver r, T̂ (x, r) is the travel time measurement
from an assumed velocity model and test source x, and log p(x) is the prior on the source location.
We assume a Gaussian prior on the source where x∗ ∼ N (x̄, σx). We discretize the possible source
positions x for efficiency.

The baseline solution results from alternating between the source localization and tomography to
perform joint source and velocity inversion. The source baseline is initialized using a 1D gradient
velocity model shown in Fig. 1(a) from the main paper. The iterative method usually converges
when there is low uncertainty of the source location even with high uncertainty in the velocity model.
However, when the 1D gradient velocity model poorly approximates the true velocity model, the
iterative solution diverges. This is the case for the 1D gradient initialization. Thus, we chose to show
only one iteration for our baseline results, a choice made by an expert seismologist with experience
using the technique.

2.2.2 MAPθ,x

We show MAPθ,x’s sensitivity to Lθ and LV in Fig. 1. Note that with a stronger prior where λθ =
1e2 and LV = 1e2, the reconstruction converges to the gradient prior model. With a weaker prior
where λθ = 0 and LV = 1e-2, the reconstruction is far from the true underlying velocity, and is very
sensitive to initialization choices. The model with the highest data likelihood is highlighted in orange.
Note that this model does not have the lowest velocity reconstruction MSE.

2.3 Gaussian random field

The Gaussian Random Field (GRF) based velocity models were sampled such that:

V = 1.3(G+ 0.5) ∗R+ 2 (7)
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Figure 8: Example loss curve from M-step only with known sources. Noisy measurements are
generated from 961 sources and 20 receivers. Total loss is plotted in purple.
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Figure 9: Example loss curves for both “E” and M steps for DeepGEM reconstruction with
961 sources and 20 receivers. Top plot shows the loss curves from the “E”-steps with the full loss
plotted in blue. Bottom plot shows the loss curves from the M-steps with the full loss plotted in
purple. Note that initially the − log qφ(x) term is increasing due to the data likelihood term taking
over in optimization at early iterations.

where G is a sample from a zero-mean Gaussian random field (with a von Karman covariance
function that has parameters for correlation length, standard deviation, and the Hurst exponent), ∗ is
element-wise multiplication, and R is a 1D velocity model with layers.
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2.4 Forward model parameterization

The EikoNet [9] is used to parameterize fθ(x) in the blind seismic tomography problem. The EikoNet
architecture used has been modified to have four residual blocks with sine activation [8]. Instead
of training EikoNet using velocity, as in [9], our results are trained using simulated travel time
measurements.

2.5 Additional results

2.5.1 Posterior visualizations

We show the visualized posterior along with true source locations for 9, 25, 49, and 100 random
source locations and 20 fixed receivers in Fig. 2. As depth increases, the estimated posterior increases
in size as is expected. The corresponding velocity reconstructions are shown in Fig. 3. The overall
mean squared error (MSE) of the velocity reconstruction tends to increase as the number of sources
increases, but this is source-receiver configuration dependent.

2.5.2 M-Step only reconstructions with known sources

In Fig. 4 and Fig. 5, we show more M-step only reconstruction (with known source locations) as
comparisons to Fig. 3 in the main paper, where the true Earth velocity is shown in Fig. 1(a) from
the main paper. Fig. 4 shows velocity reconstructions from a set of noisy measurements for 9, 25,
and 49 sources with different priors on the velocity structure. In most cases, the M-step results in
Fig. 4 have a lower MSE than the EM results in Fig. 3 from the main paper. Fig. 5 shows M-step
velocity reconstructions from noise-free measurements for 9, 25, and 49 sources with different priors
on the velocity structure. The reconstructions in Fig. 5 are better than Fig. 3 in the main paper when
comparing MSE, which is due to the absence of measurement noise.

2.5.3 Full GRF results

Results from ten different GRF velocity models are shown in Fig. 6 each with a different random
source configuration. DeepGEM reconstructions wihtout Lθ prior and gradient Lθ prior both
outperform the straight ray baseline for all velocity models. The GRF anomaly is reconstructed in all
reconstructions without Lθ prior except for model 3, which does not have enough sources within the
anomaly. DeepGEM reconstructions are able identify the anomaly much more consistently than the
straight ray baseline.

2.5.4 Regularization

In Fig. 7, velocity reconstructions with 100 sources and varying the hyperparameters are shown,
where the true Earth velocity is shown in Fig. 1(a) from the main paper. λθ with values 1e-5, 1e-6,
1e-7 and λV with values 1e-4, 1e-5, 1e-6 are used. The optimal parameters (λθ = 1e-5 and λV =
1e-4) are used for all results shown in the paper.

2.5.5 Loss curves

We show that our method converges for the M-step optimization with known sources, shown in Fig. 8,
and the joint DeepGEM optimization for blind inversion, shown in Fig. 9. Note that these curves are
plotted in log10 scale.

3 Blind deconvolution

3.1 Total Variation Prior

Traditional approaches to blind deconvolution often solve for a sharp target image while simultane-
ously solving for the kernel k, which represents the camera’s point spread function (PSF) [3, 5, 6].
These techniques make use of regularizers, such as total variation (TV) regularization on the sharp
image and `1 sparsity on the kernel, to constrain the ill-posed inverse problem [4].

TV assumes that the image gradients follow a Laplacian distribution. While TV is commonly used
for many different image processing problems [4, 6, 7], it is (perhaps surprisingly) not a good model
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Figure 10: Total variation (TV) values for the different true sharp images and blurry images
used. TV values for the true images (row 1) and blurry images (row 2). Note that the TV value is
being used as − log p(x). Therefore a higher TV value indicates that an image is less likely.
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Figure 11: Blurry measured images (columns 1 and 4) generated using the true sharp image and blur
kernel (shown in columns 2 and 5). Reconstructed sharp image and the corresponding inferred blur
kernel from DeepGEM (columns 3 and 6).

to evaluate natural images as compared to blurry images. As described in [5], sparse image gradients
prefer blurry images over than sharp natural images (first 3 columns). For the Fashion MNIST images
TV priors prefer the sharp image over the blurry images. We show the TV values for both true and
blurry images used in our experiments in Fig. 10; higher TV values indicates that the image is less
likely since we define TV as − log p(x):

TV(I) = ||∇x(I)||1 + ||∇y(I)||1 (8)

There are two ways to avoid preference towards the blurry image delta PSF solution: (1) better image
priors and (2) over-estimating the uncertainty in the posterior conditional distribution during EM
optimization. Both solutions can be easily incorporated in DeepGEM. Data-driven priors can easily
be incorporated since our method only requires evaluation of the prior. We choose to leave this to
later work.

3.2 Additional results

Here our goal is to highlight that a TV prior leads to poor deconvolution results for many natural
images, unlike the results shown in Fig. 7 in the main paper. In Fig. 11, we show additional results for
images from [5], which are of size 255×255. As described in the previous section, for these images
the TV prior prefers the blurry image with an impulse kernel over the true sharp images.

The blurry images in Fig. 11 exhibit artifacts due to the shape of the blur kernel. In Fig. 11(a), the
text in the deconvolved image is more legible, but there are still some ringing artifacts due to model
mismatch. The reconstructed kernels roughly match the true kernels’ shape with two lobes along the
same diagonal. In Fig. 11(b), the edges in the blurry image are sharper in the reconstructed image.
Although the reconstructed kernel is not located spatially at the same location as the true kernel, this
does not significantly harm reconstruction; since the kernels are shift-invariant, the reconstructed
image and learned kernel can both be shifted such that they reconstruct the same blurry image.

Note we suspect that the reason we converge to a sharper image than the initial blurry image is due
to the fact that we initialize the blur kernel to a Gaussian kernel. The solution converges to a local
minimum rather than the blurry image with impulse kernel explanation.
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