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In this document we give the proof for Theorems 2 and 3 in the paper. The proofs of these theorems
rely on variational formulas (2) and (3) for convex spectral and orthogonally-invariant functions. We
include a proof of the latter for completeness, and because we could not find an explicit reference
with (3) in the literature.

1 Proof of variational formulas for convex spectral and
orthogonally-invariant functions

1.1 Symmetric case

We prove the following theorem.

Theorem 1. Let f : Rn → R be a convex permutation-invariant1 function and let F : Sn → R be
the associated spectral function F (X) = f(λ(X)). Then for any X ∈ Sn we have:

F (X) = max
U∈O(n)

f(diag(UTXU)). (1)

Note that (1) proves that F is convex, as a pointwise maximum of convex functions, since X 7→
f(diag(UTXU)) is convex for any fixed U . A proof of (1) appears in [BTN01, p.282, claim D]. We
include a short proof here for completeness, and because similar ideas will be used for the rectangular
case (below) for which we could not find an explicit reference in the literature.

The proof of (1) relies on the following two results. Recall that a matrix P ∈ Rn×n is doubly
stochastic if Pij ≥ 0 for all 1 ≤ i, j ≤ n and

∑n
i=1 Pij =

∑n
i=1 Pji = 1 for all j = 1, . . . , n.

Lemma 1. If Y ∈ Sn, then there is a doubly stochastic matrix P ∈ Rn×n such that diag(Y ) =
Pλ(Y ), where λ(Y ) ∈ Rn is the vector of eigenvalues of Y (in any order).

Proof. Write Y = V diag(λ(Y ))V T with V orthogonal. Then Yii =
∑

j(Vij)
2λ(Y )j , i.e.,

diag(Y ) = Pλ(Y ) with P = (V 2
ij). Since V is orthogonal, P is doubly-stochastic.

Remark 1. Lemma 1 says that diag(Y ) is majorized by λ(Y ).

Theorem 2 (Birkhoff-von Neumann). Any doubly-stochastic matrix is the convex combination of
permutation matrices.

The proof of (1) is now straightforward. The inequality≤ is clear (simply take U to be the eigenvector
matrix for X .) For the inequality ≥, let U ∈ O(n). By Lemma 1, there is a doubly-stochastic matrix

1i.e., f(xσ(1), . . . , xσ(n)) = f(x1, . . . , xn) for all x ∈ Rn and permutations σ of {1, . . . , n}
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P such that diag(UTXU) = Pλ(UTXU) = Pλ(X). Write P =
∑

i αiSi for permutation matrices
Si, where

∑
i αi = 1 and αi ≥ 0. Then

f(diag(UTXU)) = f(Pλ(X)) = f(
∑
i

αiSiλ(X))

(∗)
≤
∑
i

αif(Siλ(X))
(∗∗)
=
∑
i

αif(λ(X)) = f(λ(X)) = F (X),

where we used the fact that f is convex in (∗) and that it is permutation-invariant in (∗∗). This proves
(1).

1.2 Rectangular case

We now prove a similar variational formula for functions of singular values.
Theorem 3. Let f be a convex absolutely symmetric function2 on Rm. Let F : Rm×n → R with
m ≤ n be the associated orthogonally-invariant function, i.e., F (X) = f(σ(X)) where σ(X) ∈ Rm

is the vector of singular values of X . Then the following holds, for any X ∈ Rm×n:

F (X) = max
U∈O(m),V ∈O(n)

f(diag(UTXV )). (2)

Formula (2) implies that F is convex, as the pointwise maximum of convex functions. We could not
find a complete proof of (2) in the literature, even though it follows from existing well-known facts
about majorization relations between the diagonal elements of a matrix, and its vector of singular
values [MOA79, Chapter 9]. We thus include a proof for completeness.

The proof of (2) follows the same lines as the proof of the symmetric case. We need the following
definitions.
Definition 1. A matrix P ∈ Rm×m

+ is called substochastic if Pij ≥ 0 for all 1 ≤ i, j ≤ m
and

∑m
i=1 Pij ≤ 1 and

∑m
i=1 Pji ≤ 1 for all j = 1, . . . ,m. A matrix S ∈ Rm×m is called a

subpermutation matrix if the entries of S are either 0 or 1, and each row and column has at most one
nonzero entry.
Lemma 2. If Y ∈ Rm×n with m ≤ n, there there is a substochastic matrix P ∈ Rm×m

+ such that
|diag(Y )| = Pσ(Y ).
Remark 2. This lemma says that the vector |diag(Y )| is weakly majorized by the vector σ(Y ).

Proof. The proof we give here is from [MOA79, Theorem 9.D.1]. Consider the singular value
decomposition of Y : Y = UΣV T where U ∈ O(m) and V ∈ O(n) with Σ = diag(σ). Then
Yii =

∑m
j=1 UijVijσj and so |Yii| ≤

∑m
j=1 |UijVij |σj = (P̃ σ)i where P̃ij = |UijVij |. Note that P̃

is substochastic because
m∑
i=1

P̃ij =

m∑
i=1

|UijVij | ≤
1

2

m∑
i=1

U2
ij +

1

2

m∑
i=1

V 2
ij ≤ 1

since U and V are orthogonal matrices (one proves that
∑m

j=1 P̃ij ≤ 1 in the same way). Since
|Yii| ≤ (P̃ σ)i we can write |Yii| = di(P̃ σ)i where 0 ≤ di ≤ 1, and so |diag(Y )| = Pσ where
P = diag(d)P̃ . Since P̃ is substochastic, P = diag(d)P̃ is also substochastic. This completes the
proof.

Lemma 3. Any substochastic matrix P ∈ Rm×m
+ is a convex combination of subpermutation

matrices.

Proof. We use the proof from [MOA79, Theorem 2.C.2]. We augment the matrix P into a 2m× 2m
doubly stochastic matrix as follows:

Q =

[
P Im −Dr

Im −Dc PT

]
.

2i.e., f is permutation-invariant, and f(x) = f(|x|) for any x ∈ Rn
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where Dr = diag(P1) and Dc = diag(1TP ) are respectively the row and column sums of P . The
matrix Q is doubly stochastic, and so by the Birkhoff-von Neumann theorem it can be written as a
convex combination Q =

∑
i αiSi where each Si is a 2m× 2m permutation matrix. It follows that

P =
∑

i αiS̃i where S̃i is the m×m upper-left block of Si. Each S̃i is a subpermutation matrix, so
this proves the lemma.

We will need the following simple additional lemma.
Lemma 4. If f : Rm → R is a convex absolutely symmetric function, and P ∈ Rm×m

+ is a
substochastic matrix, then for any x ∈ Rm, f(Px) ≤ f(x).

Proof. We first show that f(Sx) ≤ f(x) if S is a subpermutation matrix. It is not hard to see that
if S is a subpermutation matrix then it can be written as S = (S1 + S2)/2 where S1, S2 are two
signed permutation matrices, i.e., permutation matrices where the nonzero entries are ±1. Since
f is convex we get f(Sx) ≤ (f(S1x) + f(S2x))/2 = f(x) where the latter equality follows from
f(S1x) = f(S2x) = f(x) by the fact that f is absolutely symmetric.

If P is substochastic, it is a convex combination of subpermutation matrices, by Lemma 3. Using
convexity of f we immediately get that f(Px) ≤ f(x).

We can now prove (2). The inequality ≤ is clear. We focus on ≥. Let U ∈ O(m) and V ∈ O(n). We
know from Lemma 2 that |diag(UTXV )| = Pσ(UTXV ) = Pσ(X) for some substochastic matrix
P . Thus we get

f(diag(UTXV )) = f(|diag(UTXV )|) = f(Pσ(X))
(∗)
≤ f(σ(X)) = F (X)

where inequality (*) follows from Lemma 4. This finishes the proof.

2 Proof of Theorems 2 and 3

•We start by proving (i).

Let X∗ = proxF (Y ) be the true proximal point. By definition of X∗ we have 0 ∈ ∂Φ(X∗;Y ). To
prove the claim it suffices to show that there is a point V ∈ ∂Φ(X̂;Y ) such that ‖V ‖F ≤ ε. Indeed,
with such a V , we have using the Cauchy-Schwarz inequality, and the strong convexity of Φ:3

‖X̂ −X∗‖2F ≤
〈
V − 0, X̂ −X∗

〉
≤ ‖V ‖F ‖X̂ −X∗‖F

which implies ‖X̂ −X∗‖F ≤ ‖V ‖F ≤ ε. (This argument is from [Yao16, Prop. 7].)

We now show how to construct such a V . Observe that ∂Φ(X̂;Y ) = ∂F (X̂) + X̂ − Y . Thus we
need to exhibit a G ∈ ∂F (X̂) such that ‖G + X̂ − Y ‖F ≤ ε. Call x̂ = proxf (ŷ). By optimality
condition of the prox we have ŷ − x̂ ∈ ∂f(x̂). It thus follows, by rules for the subgradient (see e.g.,
[PB14, Section 6.7.2]), that G = Û diag(ŷ − x̂)ÛT ∈ ∂F (X̂). Now if we call V = G + X̂ − Y
then V ∈ ∂Φ(X̂;Y ) and

‖V ‖F = ‖ÛTV Û‖F = ‖ diag(ŷ − x̂) + diag(x̂)− ÛTY Û‖F
= ‖diag(ŷ)− ÛTY Û‖F = ‖E‖F ≤ ε

as desired, where we used the fact that ÛTY Û = diag(ŷ) +E and ‖E‖F ≤ ε. (Note that we did not
use in this proof the fact that Eii = 0 for i = 1, . . . , n.)

•We now prove (ii).

Let θ : Rn → R, θ(y) = Φf (proxf (y); y) := minx∈Rn

{
f(x) + (1/2)‖x− y‖2

}
. Note that

θ is a convex function, as it is the partial minimization of the jointly convex function (x, y) 7→
f(x) + (1/2)‖x− y‖2. Observe that since f is permutation-invariant, θ is also permutation-invariant.

3Recall that if f is a 1-strongly convex function then ‖x− y‖2 ≤ 〈gx − gy, x− y〉 for any gx ∈ ∂f(x) and
gy ∈ ∂f(y).
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On the one hand, we know that

Φ(proxF (Y );Y ) = min
X∈Sn

{
F (X) + (1/2)‖X − Y ‖2F

}
= θ(y1, . . . , yn)

where y1, . . . , yn are the eigenvalues of Y . On the other, we have

Φ(X̂;Y ) = F (X̂) +
1

2
‖X̂ − Y ‖2F = f(proxf (ŷ)) +

1

2
‖diag(proxf (ŷ))− diag(ŷ)− E‖2F

where we used the fact that ‖X̂ − Y ‖2F = ‖ÛT (X̂ − Y )Û‖2F . Now since E is diagonal-free we have
‖ diag(proxf (ŷ))− diag(ŷ)− E‖2F = ‖ proxf (ŷ)− ŷ‖2 + ‖E‖2F , and as a result we get:

Φ(X̂;Y ) = θ(ŷ) + (1/2) off(E)2.

Note that θ(ŷ) = θ(diag(ÛTY Û)) ≤ θ(y1, . . . , yn), where y1, . . . , yn are the eigenvalues of Y ,
by (1) (applied to the function θ) and the assumption that θ is convex. Since θ(y1, . . . , yn) =
Φ(proxF (Y );Y ) it thus follows that

Φ(X̂;Y ) ≤ Φ(proxF (Y );Y ) + ε2/2

as desired.

2.1 Proof of Theorem 3

The proof is identical to the symmetric case, so we omit it. The only difference is that in (ii) we need
to check that the function

θ(y) := min
x∈Rm

{
f(x) + (1/2)‖x− y‖22

}
is absolutely symmetric, assuming that f itself is absolutely symmetric, which is easy to verify.
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