Notation. We use $\|\cdot\|$ to represent the Euclidean norm of a vector and Frobenius norm of a matrix. We use ∇ to denote the Jacobian of a vector-valued and gradient of a scalar-valued function and $\nabla \Phi(a)\{b\}$ to represent the directional derivative of Φ along b. We use \odot and \otimes to denote the Hadamard (entry-wise) product and Kronecker product, respectively. For $A \in \mathbb{R}^{m \times n}$ and $t \in \mathbb{Z}_{+}$, we denote $A^{* t} \in \mathbb{R}^{m^{t} \times n}$ with its a-th column defined as $\operatorname{vec}\left(x_{a} \otimes \cdots \otimes x_{a}\right) \in \mathbb{R}^{m^{t}}$. We use lower-case bold font to denote vectors. Sets and scalars are represented by calligraphic and standard fonts, respectively. We use $[n]$ to denote $\{1, \cdots, n\}$ for an integer n. We use \tilde{O} and $\tilde{\Omega}$ to hide logarithmic factors and use \lesssim to ignore terms up to constant and logarithmic factors.

A Proof of Lemma 1

Intuitively, if $\nabla \Phi^{*}\left(\mathbf{w}_{0}\right)$ is a $\left(\mu_{\Phi}, \nu_{\Phi}\right)$-near-isometry, then one would expect $\nabla \Phi^{*}$ to remain nearisometry for all nearby points. Formally, let $A, B \in R^{m \times n}$ and let singular values of a matrix are ordered such that $\sigma_{i}(A) \geq \sigma_{j}(A)$ and $\sigma_{i}(B) \geq \sigma_{j}(B)$ for $1 \leq i \leq j \leq \min \{m, n\}$. Using Weyl's inequality and for $i+j-1 \leq \min \{m, n\}$, we have:

$$
\begin{equation*}
\sigma_{i+j-1}(A+B) \leq \sigma_{i}(A)+\sigma_{j}(B) \tag{A.1}
\end{equation*}
$$

Note that we have

$$
\begin{align*}
\frac{\mathrm{d} h(\gamma(t))}{\mathrm{d} t} & =\nabla h(\gamma(t))\{\dot{\gamma}(t)\} \\
& =-\nabla h(\gamma(t))\{\nabla h(\gamma(t))\} \tag{A.6}\\
& =-\|\nabla h(\gamma(t))\|^{2} .
\end{align*}
$$

Length of the segment of the curve γ_{K} restricted to the interval $[0, t]$ is given by

$$
\begin{align*}
\ell(t) & =\int_{0}^{t}\|\dot{\gamma}(\tau)\| \mathrm{d} \tau \\
& =\int_{0}^{t}\|\nabla h(\gamma(\tau))\| \mathrm{d} \tau \tag{A.7}\\
& \leq \int_{0}^{t} \sigma_{\max }\left(\nabla \Phi^{*}(\gamma(\tau)) \cdot\|\nabla f(\zeta(\tau))\| \mathrm{d} \tau\right. \\
& \lesssim \nu_{\Phi} \int_{0}^{t}\|\nabla f(\zeta(\tau))\| \mathrm{d} \tau
\end{align*}
$$

To control the norm in the last line of (A.7), we note that

$$
\begin{align*}
-\frac{\mathrm{d} \sqrt{f(\zeta(\tau))-f(\zeta(t))}}{\mathrm{d} \tau} & =-\frac{\frac{\mathrm{d} f(\zeta(\tau))}{\mathrm{d} \tau}}{2 \sqrt{f(\zeta(\tau))-f(\zeta(t))}} \\
& =-\frac{\langle\nabla f(\zeta(\tau)), \dot{\zeta}(\tau)\rangle}{2 \sqrt{f(\zeta(\tau))-f(\zeta(t))}} \\
& =\frac{\langle\nabla f(\zeta(\tau)), \nabla \Phi(\gamma(\tau))\{\nabla h(\gamma(\tau))\}\rangle}{2 \sqrt{f(\zeta(\tau))-f(\zeta(t))}} \\
& =\frac{\|\nabla h(\gamma(\tau))\|^{2}}{2 \sqrt{f(\zeta(\tau))-f(\zeta(t))}} \tag{A.8}\\
& \geq \frac{\sigma_{\min }^{2}\left(\nabla \Phi^{*}(\gamma(\tau))\right) \cdot\|\nabla f(\zeta(\tau))\|^{2}}{2 \sqrt{f(\zeta(\tau))-f(\zeta(t))}} \\
& \gtrsim \frac{\mu_{\Phi}^{2} \cdot\|\nabla f(\zeta(\tau))\|^{2}}{\sqrt{f(\zeta(\tau))-f(\zeta(t))}} \\
& \gtrsim \frac{\sqrt{\alpha_{f}} \mu_{\Phi}^{2} \cdot\|\nabla f(\zeta(\tau))\|^{2}}{\|\nabla f(\zeta(\tau))\|} \\
& =\sqrt{\alpha_{f}} \mu_{\Phi}^{2} \cdot\|\nabla f(\zeta(\tau))\|,
\end{align*}
$$

provided that the denominators are nonzero. Substituting (A.8) into (A.7), the desired length is bounded by

$$
\begin{aligned}
\ell(t) & \lesssim \nu_{\Phi} \int_{0}^{t}\|\nabla f(\zeta(\tau))\| \mathrm{d} \tau \\
& \lesssim-\frac{\nu_{\Phi}}{\mu_{\Phi}^{2} \sqrt{\alpha_{f}}} \int_{0}^{t} \frac{\mathrm{~d} \sqrt{f(\zeta(\tau))-f(\zeta(t))}}{\mathrm{d} \tau} \mathrm{~d} \tau \\
& =\frac{\nu_{\Phi}}{\mu_{\Phi}^{2} \sqrt{\alpha_{f}}}(\sqrt{f(\zeta(0))}-\sqrt{f(\zeta(t))}) \\
& \leq \frac{\nu_{\Phi} \sqrt{f(\zeta(0))}}{\mu_{\Phi}^{2} \sqrt{\alpha_{f}}} \\
& =\frac{\nu_{\Phi} \sqrt{h(\gamma(0))}}{\mu_{\Phi}^{2} \sqrt{\alpha_{f}}} \\
& =\frac{\nu_{\Phi} \sqrt{h\left(\mathbf{w}_{0}\right)}}{\mu_{\Phi}^{2} \sqrt{\alpha_{f}}}
\end{aligned}
$$

which completes the proof of Lemma 2.

C Proof of Theorem 2

The proof is along the lines of Theorem 1. We first compute the length of the trajectory traversed by gradient descent iterates. Formally, let I denote the first iteration such that $\mathbf{w}_{I} \notin \operatorname{ball}\left(\mathbf{w}_{0}, \rho_{\Phi}\right)$. The

$$
\begin{aligned}
f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{i+1}\right) \geq & \left\langle\mathbf{z}_{i}-\mathbf{z}_{i+1}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{\beta_{f}}{2}\left\|\mathbf{z}_{i+1}-\mathbf{z}_{i}\right\|^{2} \\
= & \left\langle\Phi\left(\mathbf{w}_{i}\right)-\Phi\left(\mathbf{w}_{i+1}\right), \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{\beta_{f}}{2}\left\|\Phi\left(\mathbf{w}_{i+1}\right)-\Phi\left(\mathbf{w}_{i}\right)\right\|^{2} \\
= & \left\langle\nabla \Phi\left(\mathbf{w}_{i}\right)\left\{\mathbf{w}_{i}-\mathbf{w}_{i+1}\right\}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{\beta_{f}}{2}\left\|\Phi\left(\mathbf{w}_{i+1}\right)-\Phi\left(\mathbf{w}_{i}\right)\right\|^{2} \\
& \quad-\left\langle\Phi\left(\mathbf{w}_{i+1}\right)-\Phi\left(\mathbf{w}_{i}\right)-\nabla \Phi\left(\mathbf{w}_{i}\right)\left\{\mathbf{w}_{i+1}-\mathbf{w}_{i}\right\}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle \\
\geq & \left\langle\nabla \Phi\left(\mathbf{w}_{i}\right)\left\{\mathbf{w}_{i}-\mathbf{w}_{i+1}\right\}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{\beta_{f}}{2}\left\|\Phi\left(\mathbf{w}_{i+1}\right)-\Phi\left(\mathbf{w}_{i}\right)\right\|^{2} \\
& \quad-\frac{\beta_{\Phi}}{2}\left\|\mathbf{w}_{i+1}-\mathbf{w}_{i}\right\|^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\| \\
\geq & \left\langle\nabla \Phi\left(\mathbf{w}_{i}\right)\left\{\mathbf{w}_{i}-\mathbf{w}_{i+1}\right\}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{1}{2}\left\|\mathbf{w}_{i+1}-\mathbf{w}_{i}\right\|^{2}\left(\beta_{\Phi}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|+\frac{9 \beta_{f} \nu_{\Phi}^{2}}{4}\right) \\
= & \eta\left\langle\nabla \Phi\left(\mathbf{w}_{i}\right)\left\{\nabla h\left(\mathbf{w}_{i}\right)\right\}, \nabla f\left(\mathbf{z}_{i}\right)\right\rangle-\frac{\eta^{2}}{2}\left\|\nabla h\left(\mathbf{w}_{i}\right)\right\|^{2}\left(\beta_{\Phi}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|+\frac{9 \beta_{f} \nu_{\Phi}^{2}}{4}\right) \\
= & \eta\left\|\nabla h\left(\mathbf{w}_{i}\right)\right\|^{2}-\frac{\eta^{2}}{2}\left\|\nabla h\left(\mathbf{w}_{i}\right)\right\|^{2}\left(\beta_{\Phi}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|+\frac{9 \beta_{f} \nu_{\Phi}^{2}}{4}\right) \\
= & \eta\left\|\nabla h\left(\mathbf{w}_{i}\right)\right\|^{2}\left(1-\frac{\eta \beta_{\Phi}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|}{2}-\frac{9 \eta \beta_{f} \nu_{\Phi}^{2}}{8}\right) \\
\gtrsim & \left.\eta \mu_{\Phi}^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|^{2} \quad \text { (chain rule and Lemma } 1\right)
\end{aligned}
$$

where the fourth inequality holds since $\|\Phi(\mathbf{a})-\Phi(\mathbf{b})-\nabla \Phi(\mathbf{b})(\mathbf{a}-\mathbf{b})\| \leq \frac{\beta_{\Phi}}{2}\|\mathbf{b}-\mathbf{a}\|^{2}$ for β_{Φ}-smooth Φ, and the last line holds provided that η satisfies:

$$
\begin{equation*}
\eta \lesssim \frac{1}{\beta_{\Phi} \max _{i}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|+\beta_{f} \nu_{\Phi}^{2}} \tag{A.10}
\end{equation*}
$$

We now use the bound above to find an upper bound on $\sqrt{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{I-1}\right)}-\sqrt{f\left(\mathbf{z}_{i+1}\right)-f\left(\mathbf{z}_{I-1}\right)}$:

$$
\begin{align*}
\sqrt{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{I-1}\right)}-\sqrt{f\left(\mathbf{z}_{i+1}\right)-f\left(\mathbf{z}_{I-1}\right)} & =\frac{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{i+1}\right)}{\sqrt{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{I-1}\right)}+\sqrt{f\left(\mathbf{z}_{i+1}\right)-f\left(\mathbf{z}_{I-1}\right)}} \\
& \geq \frac{\eta \mu_{\Phi}^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|^{2}}{\sqrt{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{I-1}\right)}+\sqrt{f\left(\mathbf{z}_{i+1}\right)-f\left(\mathbf{z}_{I-1}\right)}} \\
& \geq \frac{\eta \mu_{\Phi}^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|^{2}}{2 \sqrt{f\left(\mathbf{z}_{i}\right)-f\left(\mathbf{z}_{I-1}\right)}} \\
& \geq \frac{\eta \sqrt{\alpha_{f}} \mu_{\Phi}^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|^{2}}{\sqrt{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\|} \\
& =\frac{\eta \sqrt{\alpha_{f}} \mu_{\Phi}^{2}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\| .}{\sqrt{2}} \tag{A.11}
\end{align*}
$$

41

Note that

$$
f\left(\mathbf{z}_{0}\right)=h\left(\mathbf{w}_{0}\right) \lesssim \frac{\alpha_{f} \mu_{\Phi}^{6}}{\beta_{\Phi}^{2} \nu_{\Phi}^{2}}
$$

43
and scaling down the learning rate sufficiently to control the second term in the upper bound ensure that

$$
\ell(I) \leq \frac{\rho_{\Phi}}{2}=\frac{\mu_{\Phi}}{4 \beta_{\Phi}}
$$

Hence, the gradient descent iterates satisfy:

$$
\left\{\mathbf{w}_{i}\right\}_{i \geq 0} \in \operatorname{ball}\left(\mathbf{w}_{0}, \rho_{\Phi}\right)
$$

46 which implies that the limit $\overline{\mathbf{w}}$ exists and is globally optimal. In the following, we simplify the 47 expression for η in (A.10). Since the iterates of gradient flow remain within a ball of radius ρ_{Φ}, we 48 can compute the local Lipschitz constant of f as

$$
\begin{align*}
\max _{i}\left\|\nabla f\left(\mathbf{z}_{i}\right)\right\| & \leq\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\max _{i}\left\|\nabla f\left(\mathbf{z}_{i}\right)-\nabla f\left(\mathbf{z}_{0}\right)\right\| \\
& \leq\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\beta_{f} \max _{i}\left\|\mathbf{z}_{i}-\mathbf{z}_{0}\right\| \\
& =\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\beta_{f} \max _{i}\left\|\Phi\left(\mathbf{w}_{i}\right)-\Phi\left(\mathbf{w}_{0}\right)\right\| \\
& =\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\frac{3 \beta_{f} \nu_{\Phi}}{2} \max _{i}\left\|\mathbf{w}_{i}-\mathbf{w}_{0}\right\| \tag{A.13}\\
& \leq\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\frac{3 \beta_{f} \nu_{\Phi}}{2} \cdot \rho_{\Phi} \\
& =\left\|\nabla f\left(\mathbf{z}_{0}\right)\right\|+\frac{3 \beta_{f} \mu_{\Phi} \nu_{\Phi}}{4 \beta_{\Phi}} .
\end{align*}
$$

where

$$
\nabla_{W} \Phi\left(\Delta_{W}\right)=V\left(\dot{\phi}(W X) \odot \Delta_{W} X\right), \quad \nabla_{V} \Phi\left(\Delta_{V}\right)=\Delta_{V} \phi(W X)
$$

Substituting (A.17), the adjoint operator is given by

$$
\begin{equation*}
\nabla \Phi^{*}(\Theta): \Delta \rightarrow\left(\left(\dot{\phi}(W X) \odot V^{\top} \Delta\right) X^{\top}, \Delta \phi\left(X^{\top} W^{\top}\right)\right) \tag{A.18}
\end{equation*}
$$

62 Suppose that there exist $\dot{\phi}_{\max }, \ddot{\phi}_{\max }<\infty$ such that

$$
\begin{equation*}
\sup _{a}|\dot{\phi}(a)| \leq \dot{\phi}_{\max }, \quad \sup _{a}|\ddot{\phi}(a)| \leq \ddot{\phi}_{\max } \tag{A.19}
\end{equation*}
$$

63
Lemma A.2. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times k}$. Then, we have

$$
\sigma_{\min }(A)\|B\| \leq\|A B\| \leq \sigma_{\max }(A)\|B\|
$$

64
Using Lemma A. 2 and triangular inequality, we note that

$$
\begin{align*}
\left\|\nabla \Phi^{*}(\Theta, \Delta)\right\| & \leq\left\|\left(\dot{\phi}(W X) \odot\left(V^{\top} \Delta\right)\right) X^{\top}\right\|+\left\|\Delta \phi\left(X^{\top} W^{\top}\right)\right\| \tag{A.20}\\
& \leq \dot{\phi}_{\max } \sigma_{\max }(X) \sigma_{\max }(V)\|\Delta\|+\sigma_{\max }(\phi(W X))\|\Delta\|
\end{align*}
$$

65 Similarly, we have this lower bound:

$$
\begin{equation*}
\left\|\nabla \Phi^{*}(\Theta, \Delta)\right\| \geq \sigma_{\min }(\phi(W X))\|\Delta\| \tag{A.21}
\end{equation*}
$$

66 Substituting $\Theta_{0}=\left(W_{0}, V_{0}\right)$ into (A.20) and (A.21), μ_{Φ} and ν_{Φ} are given by:

$$
\begin{align*}
& \sigma_{\max }\left(\nabla \Phi^{*}\left(\Theta_{0}\right)\right) \leq \dot{\phi}_{\max } \sigma_{\max }(X) \sigma_{\max }\left(V_{0}\right)+\sigma_{\max }\left(\phi\left(W_{0} X\right)\right)=: \nu_{\Phi}, \tag{A.22}\\
& \sigma_{\min }\left(\nabla \Phi^{*}\left(\Theta_{0}\right)\right) \geq \sigma_{\min }\left(\phi\left(W_{0} X\right)\right)=: \mu_{\Phi}
\end{align*}
$$

67 In the following, we find the smoothness parameter β_{Φ} in (4). Let $\Theta, \hat{\Theta} \in \mathbb{R}^{d_{1} \times d_{0}} \times \mathbb{R}^{d_{2} \times d_{1}}$. We 68 note that $\|\nabla \Phi(\Theta, \Delta)-\nabla \Phi(\hat{\Theta}, \Delta)\| \leq U_{1}+U_{2}$ where

$$
\begin{align*}
& U_{1}=\left\|V\left(\dot{\phi}\left(W^{\top} X\right) \odot\left(\Delta_{W}^{\top} X\right)\right)-\hat{V}\left(\dot{\phi}\left(\hat{W}^{\top} X\right) \odot\left(\Delta_{W}^{\top} X\right)\right)\right\| \tag{A.23}\\
& U_{2}=\left\|\Delta_{V} \phi\left(W^{\top} X\right)-\Delta_{V} \phi\left(\hat{W}^{\top} X\right)\right\| .
\end{align*}
$$

69
Let us denote

$$
\begin{equation*}
\sigma_{\max }(\hat{V}) \leq \chi_{\max } \tag{A.24}
\end{equation*}
$$

70 An upper bound on U_{1} in (A.23) is given by:

$$
\begin{aligned}
U_{1} & \leq\left\|(V-\hat{V})\left(\dot{\phi}\left(W^{\top} X\right) \odot\left(\Delta_{W}^{\top} X\right)\right)\right\|+\left\|\hat{V}\left(\dot{\phi}\left(W^{\top} X\right) \odot\left(\Delta_{W}^{\top} X\right)-\hat{V} \dot{\phi}\left(\hat{W}^{\top} X\right) \odot\left(\Delta_{W}^{\top} X\right)\right)\right\| \\
& \leq \dot{\phi}_{\max } \sigma_{\max }(X)\|V-\hat{V}\|\left\|\Delta_{W}\right\|+\sigma_{\max }(X) \sigma_{\max }(\hat{V})\left\|\dot{\phi}\left(W^{\top} X\right)-\dot{\phi}\left(\hat{W}^{\top} X\right)\right\|_{\infty}\left\|\Delta_{W}\right\| \\
& \leq \dot{\phi}_{\max } \sigma_{\max }(X)\|V-\hat{V}\|\left\|\Delta_{W}\right\|+\ddot{\phi}_{\max } \sigma_{\max }(X)\|X\|_{\infty} \sigma_{\max }(\hat{V})\|W-\hat{W}\|\left\|\Delta_{W}\right\| \\
& \leq \dot{\phi}_{\max } \sigma_{\max }(X)\|V-\hat{V}\|\left\|\Delta_{W}\right\|+\ddot{\phi}_{\max } \chi_{\max } \sigma_{\max }(X)\|W-\hat{W}\|\left\|\Delta_{W}\right\| .
\end{aligned}
$$

71 An upper bound on U_{2} in (A.23) is given by:

$$
U_{2} \leq \dot{\phi}_{\max } \sigma_{\max }(X)\|W-\hat{W}\|\left\|\Delta_{V}\right\|
$$

72 Substituting the upper bounds on U_{1} and U_{2}, an upper bound on $\sigma_{\max }(\nabla \Phi(\Theta)-\nabla \Phi(\hat{\Theta}))$ is given by

$$
\begin{aligned}
\sigma_{\max }(\nabla \Phi(\Theta)-\nabla \Phi(\hat{\Theta})) & \leq \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)\|W-\hat{W}\|+\sigma_{\max }(X) \dot{\phi}_{\max }\|V-\hat{V}\| \\
& \leq \sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)\|\Theta-\hat{\Theta}\|
\end{aligned}
$$

73 where the last inequality holds since

$$
\|W-\hat{W}\|+\|V-\hat{V}\| \leq \sqrt{2} \sqrt{\|W-\hat{W}\|^{2}+\|V-\hat{V}\|^{2}}
$$

74 Finally, β_{Φ} in (4) is given by

$$
\begin{equation*}
\beta_{\Phi}=\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right) \tag{A.25}
\end{equation*}
$$

${ }_{75}$ E Proof of Theorem 3
This is our setup: $\min _{\Theta \in R^{d_{1} \times d_{0}} \times R^{d_{2} \times d_{1}} h(\Theta) \text { where }}$

$$
h(\Theta)=\|V \phi(W X)-Y\|^{2} .
$$

Note that $\alpha_{f}=\beta_{f}=2$.
Suppose that there exists $\chi_{\max }<\infty$ such that, for all $i \geq 0$, we have

$$
\sigma_{\max }\left(V_{i}\right) \leq \chi_{\max }
$$

The details of $\chi_{\max }$ later will be provided in Section E.6.
In Lemma 3, we have shown that

$$
\begin{aligned}
\mu_{\Phi} & =\sigma_{\min }\left(\phi\left(W_{0} X\right)\right) \\
\nu_{\Phi} & =\dot{\phi}_{\max } \sigma_{\max }(X) \sigma_{\max }\left(V_{0}\right)+\sigma_{\max }\left(\phi\left(W_{0} X\right)\right) \\
\beta_{\Phi} & =\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)
\end{aligned}
$$

81 In order to apply Theorem Theorem 2, we now establish high-probability bounds on random quantities $82 \mu_{\Phi}, \nu_{\Phi}$, and $h\left(\Theta_{0}\right)$ given the initialization in (17).

E. 1 Estimating μ_{Φ}, ν_{Φ}

We now estimate the random quantities μ_{Φ}, ν_{Φ} in our neural network setting. They key quantities to estimate are $\sigma_{\min }\left(\phi\left(W_{0} X\right)\right)$ and $\sigma_{\max }\left(\phi\left(W_{0} X\right)\right)$. To that end, we consider Hermite decomposition of the activation function ϕ.

We start with the basic definition of Hermite polynomial and its properties. Let $i \geq 0$ and let $q_{i}: \mathbb{R} \rightarrow \mathbb{R}$ denote the i-th Hermite polynomial. Note that q_{i} 's form an orthogonal basis for the Hilbert space of functions.:

$$
\mathcal{H}=\left\{u: \mathbb{R} \rightarrow \mathbb{R} \left\lvert\, \int u^{2}(x) \exp \left(-\frac{x^{2}}{2}\right)<\infty\right.\right\}
$$

which is equipped with the inner product

$$
\langle u, v\rangle_{\mathcal{H}}=\frac{1}{\sqrt{2 \pi}} \int u(x) v(x) \exp \left(-\frac{x^{2}}{2}\right) \mathrm{d} x
$$

for $u, v \in \mathcal{H}$. We consider probabilist's convention of Hermite polynomial. Specifically, for $i, j \geq 0$, we have

$$
\left\langle q_{i}, q_{j}\right\rangle_{\mathcal{H}}= \begin{cases}i! & i=j \tag{A.26}\\ 0 & i \neq j\end{cases}
$$

Using the above orthogonal basis to decompose $\phi\left(W_{0} X\right)$, we have

$$
\begin{equation*}
\phi\left(W_{0} X\right)=\sum_{i=0}^{\infty} \frac{c_{i}}{i!} \cdot q_{i}\left(W_{0} X\right) \tag{A.27}
\end{equation*}
$$

where $c_{i}=\left\langle\phi, q_{i}\right\rangle_{\mathcal{H}}$ and each matrix $q_{i}\left(W_{0} X\right) \in \mathbb{R}^{d_{1} \times n}$ is formed by applying q_{i} entry-wise to the matrix $W_{0} X$. Let us denote

$$
M_{0}:=\phi\left(X^{\top} W_{0}^{\top}\right) \phi\left(W_{0} X\right)
$$

Let $0<\tau<1$. Suppose there are constants r_{1}, r_{2} such that $\tau^{r_{1}}|\phi(a)| \leq|\phi(\tau a)| \leq \tau^{r_{2}}|\phi(a)|$ for all a. In the following, we first obtain $\mathbb{E}\left[\tilde{M}_{0}\right]=\mathbb{E}\left[\phi\left(X^{\top} \tilde{W}_{0}^{\top}\right) \phi\left(\tilde{W}_{0} X\right)\right]$ with $\tilde{W}_{0} \sim \mathcal{N}(0,1)$ and then obtain a lower bound on $\sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right)$ and an upper bound on $\sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right)$ by scaling the variance. Applying Hermite decomposition (A.27) and taking expectation, we have

$$
\begin{align*}
\mathbb{E}\left[\tilde{M}_{0}\right] & =\mathbb{E}\left[\phi\left(X^{\top} \tilde{W}_{0}^{\top}\right) \phi\left(\tilde{W}_{0} X\right)\right] \\
& =\sum_{i, j=0}^{\infty} \frac{c_{i} c_{j}}{i!j!} \mathbb{E}\left[q_{i}\left(X^{\top} \tilde{W}_{0}^{\top}\right) q_{j}\left(\tilde{W}_{0} X\right)\right] \tag{A.28}
\end{align*}
$$

where the expectation is w.r.t. the random matrix \tilde{W}_{0}. Let $\mathbf{x}_{a} \in \mathbb{R}^{d_{0}}$ denote the a-th column of the training data X. Each summand in (A.28) is an $n \times n$ matrix where

$$
\begin{equation*}
\left[\mathbb{E}\left[q_{i}\left(X^{\top} \tilde{W}_{0}^{\top}\right) q_{j}\left(\tilde{W}_{0} X\right)\right]\right]_{a, b}=\sum_{c=1}^{d_{1}} \mathbb{E}\left[q_{i}\left(\mathbf{x}_{a}^{\top} \tilde{W}_{0, c, \rightarrow}\right) q_{j}\left(\tilde{W}_{0, c, \rightarrow}^{\top} \mathbf{x}_{b}\right)\right] \tag{A.29}
\end{equation*}
$$

where $\tilde{W}_{0, c, \rightarrow}$ is the c-th row of \tilde{W}_{0} for $a, b \in[n]$.
In summand on the RHS of (A.29), we note that there is a linear combination of \tilde{W}_{0} 's elements inside of each Hermite polynomial.
We use the properties of Hermite polynomials [3][§18.18.11]:

$$
\begin{equation*}
\frac{\left(a_{1}^{2}+\cdots+a_{r}^{2}\right)^{\frac{i}{2}}}{i!} \tilde{q}_{i}\left(\frac{a_{1} x_{1}+\cdots+a_{r} x_{r}}{\left(a_{1}^{2}+\cdots+a_{r}^{2}\right)^{\frac{1}{2}}}\right)=\sum_{s_{1}+\cdots+s_{r}=i} \frac{a_{1}^{s_{1}} \cdots a_{r}^{s_{r}}}{s_{1}!\cdots s_{r}!} \tilde{q}_{s_{1}}\left(x_{1}\right) \cdots \tilde{q}_{s_{r}}\left(x_{r}\right) \tag{A.30}
\end{equation*}
$$

where \tilde{q}_{i} 's form an orthogonal basis, equipped with the inner product $\langle u, v\rangle_{\tilde{\mathcal{H}}}=$ $\frac{1}{\sqrt{\pi}} \int u(x) v(x) \exp \left(-x^{2}\right) \mathrm{d} x$. This basis follows the physicist's convention of Hermite polynomial.
where $x_{a, k}$ and $\tilde{W}_{0, c, k}$ are k-th entry of \mathbf{x}_{a} and $\tilde{W}_{0, c, \rightarrow}$ for $k \in\left[d_{0}\right]$. Using the expansion in (A.31), we expand (A.29) as follows:

$$
\begin{align*}
\zeta_{i, j}(a, b) & =i!j!\sum_{s_{1}+\cdots+s_{d_{0}}=i} \sum_{s_{1}^{\prime}+\cdots+s_{d_{0}}^{\prime}=j} \frac{x_{a, 1}^{s_{1}} \cdots x_{a, d_{0}}^{s_{d_{0}}}}{s_{1}!\cdots s_{d_{0}}!} \cdot \frac{x_{b, 1}^{s_{1}^{\prime}} \cdots x_{b, d_{0}}^{s_{d_{0}}^{\prime}}}{s_{1}^{\prime}!\cdots s_{d_{0}}^{\prime}!} \rho_{\mathbf{s}, \mathbf{s}^{\prime}}\left(\tilde{W}_{0, c, \rightarrow}\right) \\
& = \begin{cases}(i!)^{2} \sum_{s_{1}+\cdots+s_{d_{0}}=i} \frac{\left(x_{a, 1} x_{b, 1}\right)^{s_{1} \cdots\left(x_{\left.a, d_{0} x_{b, d_{0}}\right)^{s_{d_{0}}}}\right.}}{s_{1}!\cdots s_{d_{0}}!} & i=j, \\
0 & i \neq j\end{cases} \tag{A.32}\\
& = \begin{cases}i!\sum_{s_{1}+\cdots+s_{d_{0}}=i}\binom{i}{0}\left(x_{a, 1} x_{b, 1}\right)^{s_{1}} \cdots\left(x_{a, d_{0}} x_{b, d_{0}}\right)^{s_{d_{0}}} & i=j, \\
0 \neq j\end{cases}
\end{align*}
$$

where $\zeta_{i, j}(a, b)=\mathbb{E}\left[q_{i}\left(\mathbf{x}_{a}^{\top} \tilde{W}_{0, c, \rightarrow}\right) q_{j}\left(\tilde{W}_{0, c, \rightarrow}^{\top} \mathbf{x}_{b}\right)\right]$,

$$
\rho_{\mathbf{s}, \mathbf{s}^{\prime}}\left(\tilde{W}_{0, c, \rightarrow}\right)=\mathbb{E}\left[q_{s_{1}}\left(\tilde{W}_{0, c, 1}\right) \cdots q_{s_{d_{0}}}\left(\tilde{W}_{0, c, d_{0}}\right) \cdot q_{s_{1}^{\prime}}\left(\tilde{W}_{0, c, 1}\right) \cdots q_{s_{d_{0}}^{\prime}}\left(\tilde{W}_{0, c, d_{0}}\right)\right],
$$

$\mathbf{s}=\left[s_{1}, \cdots, s_{d_{0}}\right]$, and $\mathbf{s}^{\prime}=\left[s_{1}^{\prime}, \cdots, s_{d_{0}}^{\prime}\right]$.
To simplify the expression in (A.32), we define $X^{* i} \in \mathbb{R}^{d_{0}^{i} \times n}$ where the a-th column is given by

$$
X_{a}^{* i}=\operatorname{vec}\left(\mathbf{x}_{a} \otimes \cdots \otimes \mathbf{x}_{a}\right) \in \mathbb{R}^{d_{0}^{i}}
$$

which is also called Khatri-Rao product. For $i=0$, we use the convention that $X^{* 0}=\mathbf{1 1}^{\top} \in \mathbb{R}^{n \times n}$. We can rewrite (A.32) as follows:

$$
\zeta_{i, j}(a, b)= \begin{cases}i!\left\langle X_{a}^{* i}, X_{b}^{* i}\right\rangle & i=j \tag{A.33}\\ 0 & i \neq j\end{cases}
$$

Since \tilde{q}_{i} and q_{i} are rescalings of the other, we can replace q_{i} 's into (A.30). Note that we have $\left\|\mathbf{x}_{a}\right\|_{2}=1$ for all $a \in[n]$. Then we have

$$
\begin{equation*}
q_{i}\left(\mathbf{x}_{a}^{\top} \tilde{W}_{0, c, \rightarrow}\right)=i!\sum_{s_{1}+\cdots+s_{d_{0}}=i} \frac{x_{a, 1}^{s_{1}} \cdots x_{a, d_{0}}^{s_{d_{0}}}}{s_{1}!\cdots s_{d_{0}}!} q_{s_{1}}\left(\tilde{W}_{0, c, 1}\right) \cdots q_{s_{d_{0}}}\left(\tilde{W}_{0, c, d_{0}}\right) \tag{A.31}
\end{equation*}
$$

Substituting (A.34) into (A.28), we have

$$
\begin{equation*}
\mathbb{E}\left[\tilde{M}_{0}\right]=d_{1}\left(c_{0}^{2} \mathbf{1 1}^{\top}+c_{1}^{2} X^{\top} X+\sum_{i=2}^{\infty} \frac{c_{i}^{2}}{i!}\left(X^{* i}\right)^{\top} X^{* i}\right) \tag{A.35}
\end{equation*}
$$

$$
\begin{align*}
{\left[\mathbb{E}\left[q_{i}\left(X^{\top} \tilde{W}_{0}^{\top}\right) q_{j}\left(\tilde{W}_{0} X\right)\right]\right]_{a, b} } & =\sum_{c=1}^{d_{1}} \mathbb{E}\left[q_{i}\left(\mathbf{x}_{a}^{\top} \tilde{W}_{0, c, \rightarrow}\right) q_{j}\left(\tilde{W}_{0, c, \rightarrow}^{\top} \mathbf{x}_{b}\right)\right] \tag{A.34}\\
& = \begin{cases}d_{1} i!\left\langle X_{a}^{* i}, X_{b}^{* i}\right\rangle & i=j \\
0 & i \neq j\end{cases}
\end{align*}
$$

We now establish an upper bound on $\sigma_{\max }\left(\sum_{i=2}^{\infty} \frac{c_{i}^{2}}{i!}\left(X^{* i}\right)^{\top} X^{* i}\right)$:

$$
\begin{align*}
\sigma_{\max }\left(\sum_{i=2}^{\infty} \frac{c_{i}^{2}}{i!}\left(X^{* i}\right)^{\top} X^{* i}\right) & \leq \sum_{i=2}^{\infty} \frac{c_{i}^{2}}{i!} \sigma_{\max }\left(\left(X^{* i}\right)^{\top} X^{* i}\right) \tag{A.36}\\
& \leq c_{\infty}^{2} \sigma_{\max }^{2}(X)
\end{align*}
$$

where c_{∞} is given by

$$
c_{\infty}^{2}=\sum_{i=2}^{\infty} \frac{c_{i}^{2}}{i!}
$$

which is finite provided that $\|\phi\|_{\mathcal{H}}$ is bounded.
Using (A.36), we now establish an upper bound on $\sigma_{\max }\left(\mathbb{E}\left[\tilde{M}_{0}\right]\right)$:

$$
\sigma_{\max }\left(\mathbb{E}\left[\tilde{M}_{0}\right]\right) \lesssim d_{1}\left(n c_{0}^{2}+\left(c_{1}^{2}+c_{\infty}^{2}\right) \sigma_{\max }^{2}(X)\right)
$$

Moreover, suppose there exists some t such that $\sigma_{\min }\left(X^{* t}\right)>0$. This requires to have $d_{0}^{t} \geq n$. Putting together the lower bound on $\sigma_{\min }\left(\mathbb{E}\left[\tilde{M}_{0}\right]\right)$ and the upper bound on $\sigma_{\min }\left(\mathbb{E}\left[\tilde{M}_{0}\right]\right)$, noting $W_{0}=\omega_{1} \tilde{W}_{0}$ and applying $\tau^{r_{1}} \phi(a) \leq \phi(\tau a) \leq \tau^{r_{2}} \phi(a)$, we have

$$
\begin{equation*}
\omega_{1}^{2 r_{1}} d_{1} \frac{c_{t}^{2}}{t!} \sigma_{\min }^{2}\left(X^{* t}\right) \lesssim \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \leq \sigma_{\max }\left(\mathbb{E}\left[M_{0}\right]\right) \lesssim \omega_{1}^{2 r_{2}} d_{1}\left(n c_{0}^{2}+\left(c_{1}^{2}+c_{\infty}^{2}\right) \sigma_{\max }^{2}(X)\right) \tag{A.37}
\end{equation*}
$$

E. 2 Concentration of the random matrix M_{0}

To see how well the random matrix M_{0} concentrates about its expectation, note that

$$
\begin{align*}
M_{0} & =\phi\left(X^{\top} W_{0}^{\top}\right) \phi\left(W_{0} X\right) \\
& =\sum_{i=1}^{d_{1}} \phi\left(X^{\top} W_{0, i, \rightarrow}^{\top}\right) \phi\left(W_{0, i, \rightarrow} X\right) \tag{A.38}\\
& =\sum_{i=1}^{d_{1}} A_{i}
\end{align*}
$$

where $\left\{A_{i}\right\}_{i=1}^{d_{1}} \subset \mathbb{R}^{n \times n}$ are independent random matrices.
Consider the event \mathcal{E}_{1} that

$$
\begin{equation*}
\max _{i \in\left[d_{1}\right]}\left\|W_{0, i, \rightarrow}\right\|_{2} \lesssim k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}, \quad \max _{i \in\left[d_{1}\right]}\left\|V_{0, i, \downarrow}\right\|_{2} \lesssim k_{2} \omega_{2} \sqrt{d_{2} \log d_{1}} \tag{A.39}
\end{equation*}
$$

where $V_{0, i, \downarrow}$ is the i-th column of V_{0}. Note that $W_{0, i, \rightarrow} \in \mathbb{R}^{d_{0}}$ and $V_{0, i, \downarrow} \in \mathbb{R}^{d_{2}}$ are random zeromean Gaussian vectors whose entries' variances are ω_{1}^{2} and ω_{2}^{2}, respectively. Therefore, with an application of the scalar Bernstein inequality [6, Proposition 5.16], followed by the union bound, we observe that the event \mathcal{E}_{1} happens except with a probability of at most

$$
\begin{equation*}
p_{1}:=d_{1}^{-C k_{1} d_{0}}+d_{1}^{-C k_{2} d_{2}} \tag{A.40}
\end{equation*}
$$

for a universal constant C with sufficiently large k_{1}, k_{2}.
Let $i \in\left[d_{1}\right]$. Conditioned on the event \mathcal{E}_{1}, an upper bound on $\left\|\phi\left(X^{\top} W_{0, i, \rightarrow}\right)\right\|_{2}$ is given by:

$$
\begin{equation*}
\left\|\phi\left(X^{\top} W_{0, i, \rightarrow}\right)\right\|_{2} \lesssim \dot{\phi}_{\max } \sigma_{\max }(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}} \tag{A.41}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
\sigma_{\max }\left(A_{i}\right) & =\left\|\phi\left(X^{\top} W_{0, i, \rightarrow}\right)\right\|_{2}^{2} \\
& =\left\|\phi\left(X^{\top} W_{0, i, \rightarrow}\right)-\phi(0)\right\|_{2}^{2} \tag{A.42}\\
& \lesssim \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1}^{2} \omega_{1}^{2} d_{0} \log d_{1}
\end{align*}
$$

We now focus on the concentration of $\sigma_{\min }\left(M_{0}\right)$ and $\sigma_{\max }\left(M_{0}\right)$. We use a concentration property, which provides the tail bound of $\tilde{f}(W)=\phi\left(X^{\top} W^{\top}\right) \phi(W X)$ with multivariate Gaussian input W. In the following lemma, we show that \tilde{f} is a Lipschitz function, and its Lipschitz constant explains how $\tilde{f}(W)$ concentrates around its mean.
Lemma A.3. Let $\tilde{f}(W)=\phi\left(X^{\top} W^{\top}\right) \phi(W X)$. Suppose W satisfies (A.39). Then \tilde{f} is κ-Lipschitz function with constant $\kappa=4 \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}$. So we have

$$
\left\|\tilde{f}(W)-\tilde{f}\left(W^{\prime}\right)\right\|<4 \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}} \cdot\left\|W-W^{\prime}\right\|
$$

Proof. Note that $\tilde{f}\left(W_{0}\right)=M_{0}$ and \tilde{f} can be represented as

$$
\tilde{f}(X)=\sum_{i=1}^{d_{1}} f_{i}\left(W_{i, \rightarrow}\right)
$$

where f_{i} is given by $f_{i}\left(W_{i, \rightarrow}\right)=\phi\left(X^{\top} W_{i, \rightarrow}^{\top}\right) \phi\left(W_{i, \rightarrow} X\right)$. We prove that each f_{i} is κ-Lipschitz, which implies that \tilde{f} is also κ-Lipschitz.
We note that f_{i} 's can be expressed as a composition of three functions:

$$
f_{i}(\mathbf{v})=\left(g_{1} \circ g_{2} \circ g_{3}\right)(\mathbf{v})
$$

where g_{1}, g_{2}, and g_{3} are given by

$$
\begin{equation*}
g_{1}(\mathbf{v})=\mathbf{v}^{\top}, f_{2}(\mathbf{v})=\phi(\mathbf{v}), f_{3}(\mathbf{v})=\mathbf{v} X \tag{A.43}
\end{equation*}
$$

It is clear that g_{2} is $\dot{\phi}_{\max }$-Lipschitz, and g_{3} is $\sigma_{\max }(X)$-Lipschitz from their definitions. Lipschitz constant of g_{1} comes from the domain bound as follows:

$$
\begin{align*}
\left\|g_{1}(\mathbf{v}+\delta \mathbf{v})-g_{1}(\mathbf{v})\right\| & =\left\|\delta \mathbf{v} \mathbf{v}^{\top}+\mathbf{v} \delta \mathbf{v}^{\top}+\delta \mathbf{v} \delta \mathbf{v}^{\top}\right\| \\
& \leq 2\left\|\delta \mathbf{v} \mathbf{v}^{\top}\right\|+\left\|\delta \mathbf{v} \delta \mathbf{v}^{\top}\right\| \tag{A.44}\\
& \leq(2\|\mathbf{v}\|+\|\delta \mathbf{v}\|) \cdot\|\delta \mathbf{v}\| .
\end{align*}
$$

A bound on $(2\|\mathbf{v}\|+\|\delta \mathbf{v}\|)$ is obtained in (A.41). Then g_{1} is κ_{1}-Lipschitz function with $\kappa_{1}=4 \dot{\phi}_{\max } \sigma_{\max }(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}$. Therefore, all g_{1}, g_{2} and g_{3} are Lipschitz function, so their composition f_{i} is also Lipschitz function with constant $\kappa=4 \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}$, which completes the proof.
Lemma A.4. Let $\mathbf{z} \in \mathbb{R}^{d}$ denote a Gaussian random vector. Then we have $\operatorname{Pr}\{\|\mathbf{z}-\mathbb{E}[\mathbf{z}]\|>$ $\left.t \mid \mathcal{E}_{2}\right\} \lesssim \exp \left(-t^{2}\right)$ where \mathcal{E}_{2} is the event that $\|\mathbf{z}\|$ is bounded.

We can focus on the tail distribution of $M_{0}=\tilde{f}\left(W_{0}\right)$. Using Lemmas A. 3 and A.4, we have

$$
\begin{equation*}
\operatorname{Pr}\left\{\left\|M_{0}-\mathbb{E}\left[M_{0}\right]\right\|>t \mid \mathcal{E}_{1}\right\} \lesssim \exp \left(-k_{3}^{2}\right) \tag{A.45}
\end{equation*}
$$

where $t=k_{3} 4 \dot{\phi}_{\max }^{2} \sigma_{\text {max }}^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}$ with some constant k_{3}.
Using (A.45), we now establish a tail bound on $\sigma_{\min }\left(M_{0}\right)$:
$\operatorname{Pr}\left\{\sigma_{\min }\left(M_{0}\right) \leq\left(1-\delta_{1}\right) \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\} \leq \operatorname{Pr}\left\{\left|\sigma_{\min }\left(M_{0}\right)-\sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right)\right| \geq \delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\}$
$\leq \operatorname{Pr}\left\{\sigma_{\min }\left(M_{0}-\mathbb{E}\left[M_{0}\right]\right) \geq \delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\}$
$\leq \operatorname{Pr}\left\{\sigma_{\max }\left(M_{0}-\mathbb{E}\left[M_{0}\right]\right) \geq \delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\}$
$\leq \operatorname{Pr}\left\{\left\|M_{0}-\mathbb{E}\left[M_{0}\right]\right\| \geq \delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\}$
$\lesssim p_{2}$
where

$$
p_{2}=\exp \left(-\left(\frac{\delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right)}{4 \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}}\right)^{2}\right)
$$

Similarly, we obtain

$$
\operatorname{Pr}\left\{\sigma_{\max }\left(M_{0}\right) \geq\left(1+\delta_{2}\right) \sigma_{\max }\left(\mathbb{E}\left[M_{0}\right]\right) \mid \mathcal{E}_{1}\right\} \lesssim p_{3}
$$

where

$$
p_{3}=\exp \left(-\left(\frac{\delta_{2} \sigma_{\max }\left(\mathbb{E}\left[M_{0}\right]\right)}{4 \dot{\phi}_{\max }^{2} \sigma_{\max }^{2}(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}}}\right)^{2}\right)
$$

Putting these bounds together with (A.37), we have :

$$
\begin{align*}
& \omega_{1}^{r_{1}} \sqrt{\left(1-\delta_{1}\right) \frac{c_{t}^{2}}{t!}} d_{1} \sigma_{\min }\left(X^{* t}\right) \leq \sigma_{\min }\left(\phi\left(W_{0} X\right)\right) \tag{A.46}\\
& \sigma_{\max }\left(\phi\left(W_{0} X\right)\right) \leq \sqrt{\left(1+\delta_{2}\right)} \omega_{1}^{r_{2}}\left(\sqrt{\left(c_{1}^{2}+c_{\infty}^{2}\right) d_{1}} \sigma_{\max }(X)+\left|c_{0}\right| \sqrt{d_{1} n}\right)
\end{align*}
$$

except with a probability of at most $p_{1}+p_{2}+p_{3}$.
With establishing the bounds on $\sigma_{\min }\left(\phi\left(W_{0} X\right)\right)$ and $\sigma_{\max }\left(\phi\left(W_{0} X\right)\right)$, we can finally estimate μ_{Φ}, ν_{Φ} as follows:

E. 3 Lower bound on μ_{Φ}

A lower bound on μ_{Φ} is given by

$$
\begin{equation*}
\omega_{1}^{r_{1}} \sqrt{\left(1-\delta_{1}\right) \frac{c_{t}^{2}}{t!} d_{1}} \sigma_{\min }\left(X^{* t}\right) \leq \sigma_{\min }\left(\phi\left(W_{0} X\right)\right)=\mu_{\Phi} \tag{A.47}
\end{equation*}
$$

except with a probability of at most $p_{1}+p_{2}$.

E. 4 Upper bound on ν_{Φ}

Since $\nu_{\Phi}=\dot{\phi}_{\max } \sigma_{\max }(X) \sigma_{\max }\left(V_{0}\right)+\sigma_{\max }\left(\phi\left(W_{0} X\right)\right)$, we obtain a bound on $\sigma_{\max }\left(V_{0}\right)$:
Since V_{0} is a Gaussian random matrix, we have

$$
\begin{equation*}
\sigma_{\max }\left(V_{0}\right) \leq \omega_{2}\left(2 \sqrt{d_{1}}+\sqrt{d_{2}}\right) \lesssim \omega_{2} \sqrt{d_{1}} \tag{A.48}
\end{equation*}
$$

except with a probability of at most $p_{4}=\exp \left(-C d_{1}\right)$ where C is a universal constant [6][Corollary 5.35].

Combining (A.48) with the upper bound on $\sigma_{\max }\left(\phi\left(W_{0} X\right)\right)$, we have

$$
\begin{aligned}
\nu_{\Phi} & =\dot{\phi}_{\max } \sigma_{\max }(X) \sigma_{\max }\left(V_{0}\right)+\sigma_{\max }\left(\phi\left(W_{0} X\right)\right) \\
& \lesssim \omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \sqrt{d_{1}}+\omega_{1}^{r_{2}} \sqrt{\left(1+\delta_{2}\right)\left(c_{1}^{2}+c_{\infty}^{2}\right) d_{1}} \sigma_{\max }(X)+\omega_{1}^{r_{2}}\left|c_{0}\right| \sqrt{\left(1+\delta_{2}\right) d_{1} n}
\end{aligned}
$$

except with a probability of at most $p_{1}+p_{3}+p_{4}$.
E. 5 Upper bound on $h\left(\Theta_{0}\right)$

In this section, we bound $h\left(\Theta_{0}\right)$. Using $\|\mathbf{a}+\mathbf{b}\|_{2}^{2} \leq 2\|\mathbf{a}\|_{2}^{2}+2\|\mathbf{b}\|_{2}^{2}$, we have

$$
\begin{align*}
h\left(\Theta_{0}\right) & =\left\|V_{0} \phi\left(W_{0} X\right)-Y\right\|^{2} \\
& \leq 2\left\|V_{0} \phi\left(W_{0} X\right)\right\|^{2}+2\|Y\|^{2} . \tag{A.49}
\end{align*}
$$

To upper bound the random norm in (A.49), we first decompose $V_{0} \phi\left(W_{0} X\right)$ into terms including $W_{0, i, \rightarrow} \in \mathbb{R}^{d_{0}}$ and $V_{0, i, \downarrow} \in \mathbb{R}^{d_{2}}$ as follows:

$$
\begin{equation*}
V_{0} \phi\left(W_{0} X\right)=\sum_{i=1}^{d_{1}} B_{i} \tag{A.50}
\end{equation*}
$$

where $B_{i}=V_{0, i, \downarrow} \phi\left(W_{0, i, \rightarrow}^{\top} X\right) \in \mathbb{R}^{d_{2} \times n}$,s are independent random matrices for $i \in\left[d_{1}\right]$.
Conditioned on the event \mathcal{E}_{1} defined in (A.39), we bound $\left\|B_{i}\right\|$:

$$
\begin{align*}
\left\|B_{i}\right\| & =\left\|V_{0, i, \downarrow}\right\|_{2}\left\|\phi\left(W_{0, i, \rightarrow}^{\top} X\right)\right\|_{2} \\
& \leq\left\|V_{0, i, \downarrow}\right\|_{2} \cdot \dot{\phi}_{\max } \sigma_{\max }(X) k_{1} \omega_{1} \sqrt{d_{0} \log d_{1}} \tag{A.51}\\
& \leq \omega_{1} \omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) k_{1} k_{2} \sqrt{d_{0} d_{2}} \log d_{1}
\end{align*}
$$

for $i \leq d_{1}$.
Substituting the upper bound in A. 50 into A. 51 and applying the Hoeffding inequality [2], we have

$$
\begin{aligned}
\operatorname{Pr}\left\{\left\|V_{0} \phi\left(W_{0} X\right)\right\| \gtrsim u\left(d_{0}, d_{1}, d_{2}\right) \mid \mathcal{E}_{1}\right\} & \left.=\operatorname{Pr}\left\{\| V_{0} \phi\left(W_{0} X\right)-\mathbb{E}\left[V_{0} \phi\left(W_{0} X\right)\right) \mid \mathcal{E}_{1}\right] \| \gtrsim u\left(d_{0}, d_{1}, d_{2}\right) \mid \mathcal{E}_{1}\right\} \\
& \leq \operatorname{Pr}\left\{\sum_{i=1}^{d_{1}}\left\|B_{i}-\mathbb{E}\left[B_{i}\right]\right\| \gtrsim u\left(d_{0}, d_{1}, d_{2}\right) \mid \mathcal{E}_{1}\right\} \\
& \leq p_{5}
\end{aligned}
$$

where

$$
u\left(d_{0}, d_{1}, d_{2}\right)=\delta_{3} \omega_{1} \omega_{2} \dot{\phi}_{\max } k_{1} k_{2} \sqrt{d_{0} d_{1} d_{2}} \sigma_{\max }(X) \log d_{1}
$$

which can be written as

$$
d_{1} \gtrsim \sqrt{\frac{\delta_{3}^{2} c_{0}^{2}\left(1+\delta_{2}\right) k_{1}^{2} k_{2}^{2}\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)^{2} t!^{3}}{\omega_{1}^{6 r_{1}-2 r_{2}}\left(1-\delta_{1}\right)^{3} c_{t}^{6}}} \cdot \frac{\sqrt{n} \sigma_{\max }^{2}(X)}{\sigma_{\min }^{3}\left(X^{* t}\right)} .
$$

$$
\begin{equation*}
\xi\left(\mathcal{C}_{\delta}, t, \phi,\left\{c_{i}\right\}_{i \geq 0}\right)=\sqrt{\frac{\delta_{3}^{2} c_{0}^{2}\left(1+\delta_{2}\right) \delta_{4}^{4}\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)^{2} t!^{3}}{\omega_{1}^{6 r_{1}-2 r_{2}}\left(1-\delta_{1}\right)^{3} c_{t}^{6}}} . \tag{A.57}
\end{equation*}
$$

[^0]Note that $\xi\left(\mathcal{C}_{\delta}, t, \phi,\left\{c_{i}\right\}_{i \geq 0}\right)$ can be viewed as a constant w.r.t. d_{0}, d_{1}, and n. Then (A.56) can be written as:

$$
\begin{equation*}
d_{1}=\tilde{\Omega}\left(\frac{\sqrt{n} \sigma_{\max }^{2}(X)}{\sigma_{\min }^{3}\left(X^{* t}\right)}\right) \tag{A.58}
\end{equation*}
$$

It remains to estimate $\sigma_{\max }(X)$ and $\sigma_{\min }\left(X^{* t}\right)$ to finish the order analysis of d_{1}. Suppose that $n \simeq d_{0}^{t}$. Then, along the lines of [4][Section 2.1], we have $\sigma_{\max }(X) \simeq \sqrt{\frac{n}{d_{0}}}$ and $\sigma_{\min }\left(X^{* t}\right) \simeq \sqrt{\frac{n}{d_{0}^{t}}} \simeq 1$.
Combining them all, we have

$$
\begin{equation*}
d_{1} \gtrsim \xi\left(\mathcal{C}_{\delta}, t, \phi,\left\{c_{i}\right\}_{i \geq 0}\right) \frac{n^{\frac{3}{2}}}{d_{0}} \tag{A.59}
\end{equation*}
$$

Therefore, the overall overparameterization degree becomes $d_{0} d_{1} \simeq \tilde{\Omega}\left(n^{\frac{3}{2}}\right)$ for $t \geq 2$.
The exact expression of $\psi\left(\phi, \xi,, d_{0}, d_{1}, d_{2}, X\right)$ in Theorem 3 is given by
$\psi \leq p_{1}+p_{2}+p_{3}+p_{4}+p_{5}$

$$
\leq d_{1}^{-C \delta_{4} d_{0}}+d_{1}^{-C \delta_{4} d_{2}}+e^{-\left(\frac{\delta_{1} \sigma_{\min }\left(\mathbb{E}\left[M_{0}\right]\right.}{4 \dot{\phi}_{\max }^{2} \sigma_{\max }(X) \delta_{4} \sqrt{d_{0} \log d_{1}}}\right)^{2}}+e^{-\left(\frac{\delta_{2} \sigma_{\max }\left(\mathbb{E}\left[M_{0}\right]\right)}{4 \dot{\phi}_{\max }^{2} \sigma_{\max }(X) \delta_{4} \sqrt{d_{0} \log d_{1}}}\right)^{2}}+e^{-C d_{1}}+e^{-C \delta_{3}^{2}}
$$

Note that $d_{1}^{-C \delta_{4} d_{0}}+d_{1}^{-C \delta_{4} d_{2}}+\exp \left(-C d_{1}\right)+\exp \left(-C \delta_{3}^{2}\right)$ decreases exponentially, which can be sufficiently small without changing the order of d_{1}.

Finally, with $d_{0} d_{1} \simeq \tilde{\Omega}\left(n^{\frac{3}{2}}\right)$, the gradient descent converges to a global minimum with linear rate with probability at least $1-\psi$, which can be arbitrary small.
Order analysis without boundedness assumption on $\sigma_{\max }\left(V_{k}\right)$ in Assumption 2.
So far, we assumed $\sigma_{\max }\left(V_{k}\right)$ is bounded for $k \geq 0$. We can relax this assumption by bounding the length of the trajectory of gradient descent as discussed in Appendix C. Recall (A.12):

$$
\ell(I) \lesssim \frac{\nu_{\Phi} \sqrt{f\left(Z_{0}\right)}}{\sqrt{\alpha_{f}} \mu_{\Phi}^{2}}
$$

Using triangular inequality and substituting (A.12), we can obtain a bound on $\left\|V_{k}\right\|$

$$
\begin{align*}
\left\|V_{k}\right\| & \leq\left\|V_{k}-V_{0}\right\|+\left\|V_{0}\right\| \\
& \leq \frac{\nu_{\Phi} \sqrt{f\left(Z_{0}\right)}}{\sqrt{\alpha_{f}} \mu_{\Phi}^{2}}+\left\|V_{0}\right\| \tag{A.60}
\end{align*}
$$

As shown in (A.48), $\left\|V_{0}\right\| \lesssim \omega_{2} \sqrt{d_{1}}$ with high probability over the choice of V_{0}. With sufficiently small ω_{2}, the first term in the upper bound dominates in (A.60). Applying (A.54) and substituting (A.60) into (A.56), we have

$$
\begin{aligned}
& d_{1}^{3} \gtrsim \frac{n^{2} \sigma_{\max }^{6}(X)}{\sigma_{\min }^{10}\left(X^{* t}\right)} \\
& d_{1} \gtrsim \frac{n^{\frac{5}{3}}}{d_{0}}
\end{aligned}
$$

The overall overparameterization degree becomes $d_{0} d_{1} \simeq \tilde{\Omega}\left(n^{\frac{5}{3}}\right)$, which is slightly worse than the result of Theorem 3 under boundedness assumption on $\sigma_{\max }\left(V_{k}\right)$. Note that we still have a subquadratic scaling on the network width.

F Additional discussion on lazy training in Section 6

In this section, we provide an asymptotic analysis for the term $\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\|$ to show that there exists a regime where our initialization can avoid lazy training. Recall our setting:

$$
\Phi(\Theta)=V \cdot \phi(W X)
$$

227 where $W \sim \mathcal{N}\left(0, \omega_{1}^{2}\right)$ and $V \sim \mathcal{N}\left(0, \omega_{2}^{2}\right)$. Following the theoretical guidance in (19), we set 228

229 An upper bound on $\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\|$ is given by [1, Theorem 2.3]:

$$
\begin{equation*}
\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\| \lesssim \frac{\operatorname{Lip}(\nabla \Phi(\Theta))}{\operatorname{Lip}(\Phi(\Theta))^{2}} \tag{A.61}
\end{equation*}
$$

230 In the following, we estimate $\frac{\operatorname{Lip}(\nabla \Phi(\Theta))}{\operatorname{Lip}(\Phi(\Theta))^{2}}$ to find when it is not bound to be close to zero.
231 Substituting β_{Φ} and ν_{Φ} expressions in (A.55) into the upper bound in (A.61) for sufficiently large $232 n, c_{0}$, we have

$$
\begin{equation*}
\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\| \lesssim \frac{\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \chi_{\max }\right)}{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \sqrt{d_{1}}+\omega_{1}^{r_{2}} c_{0} \sqrt{\left(1+\delta_{2}\right) d_{1} n}\right)^{2}} \tag{A.62}
\end{equation*}
$$

233 We now find an upper bound on $\chi_{\text {max }}$ by bounding the total length of the trajectory of gradient

234 235 descent as in Appendix C where the length of the trajectory traced by gradient descent is given by (A.12):

$$
\ell(I) \leq \frac{\nu_{\Phi} \sqrt{f\left(Z_{0}\right)}}{\sqrt{\alpha_{f}} \mu_{\Phi}^{2}}
$$

236 Using (A.12), (A.48), and (A.54), a bound on $\chi_{\max }$ is given by

$$
\begin{align*}
\left\|V_{i}\right\|_{2} & \leq\left\|V_{i}-V_{0}\right\|_{F}+\left\|V_{0}\right\|_{2} \\
& \leq \frac{\nu_{\Phi} \sqrt{f\left(Z_{0}\right)}}{\sqrt{\alpha_{f}} \mu_{\Phi}^{2}}+\left\|V_{0}\right\|_{2} \tag{A.63}\\
& \lesssim \frac{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right) \sigma_{\max }(X)}{\omega_{1}^{2 r_{1}} \sqrt{d_{1}} \sigma_{\min }^{2}\left(X^{* t}\right)}+\omega_{2} \sqrt{d_{1}}
\end{align*}
$$

237 Therefore we have

$$
\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\| \lesssim \frac{\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\ddot{\phi}_{\max } \frac{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right) \sigma_{\max }(X)}{\omega_{1}^{2 r_{1}} \sqrt{d_{1}} \sigma_{\min }^{2}\left(X^{* t}\right)}+\omega_{2} \ddot{\phi}_{\max } \sqrt{d_{1}}\right)}{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \sqrt{d_{1}}+\omega_{1}^{r_{2}} c_{0} \sqrt{\left(1+\delta_{2}\right) d_{1} n}\right)^{2}}
$$

${ }_{238}$ We now consider two cases: 1) $\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \gtrsim \omega_{1}^{r_{2}} c_{0} \sqrt{n}$ and 2) $\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \lesssim \omega_{1}^{r_{2}} c_{0} \sqrt{n}$.
239
240

242 In the overparameterization regime with large d, we note that $\ddot{\phi}_{\max } \frac{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right) \sigma_{\max }(X)}{\omega_{1}^{2 r_{1}} \sqrt{d_{1}} \sigma_{\min }^{2}\left(X^{* t}\right)}+\omega_{2} \ddot{\phi}_{\max } \sqrt{d_{1}} \gtrsim \dot{\phi}_{\max }$. Then we have

$$
\begin{aligned}
\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\| & \lesssim \frac{\sqrt{2} \sigma_{\max }(X)\left(\frac{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right) \sigma_{\max }(X)}{\left.\omega_{1}^{2 r_{1}} \sqrt{d_{1} \sigma_{\min }^{2}\left(X^{* t}\right)}+\omega_{2} \sqrt{d_{1}}\right)}\right.}{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \sqrt{d_{1}}+\omega_{1}^{r_{2}} c_{0} \sqrt{\left(1+\delta_{2}\right) d_{1} n}\right)^{2}} \\
& \lesssim \frac{\sigma_{\max }^{2}(X)\left(\frac{\omega_{2}}{\left.\omega_{1}^{2 r_{1}} \sqrt{d_{1} \sigma_{\min }^{2}\left(X^{* t}\right)}\right)}\right.}{\left(\omega_{2} \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right)^{2} d_{1}} \\
& \lesssim \frac{\sigma_{\max }^{2}(X) \omega_{2} / d_{1}^{\frac{3}{2}}}{\sigma_{\min }^{2}\left(X^{* t}\right)\left(\omega_{1}^{r_{1}} \omega_{2} \sigma_{\max }(X)+\omega_{1}^{r_{1}+r_{2}} c_{0} \sqrt{n}\right)^{2}} \\
& \lesssim \frac{\sigma_{\max }^{2}(X) \omega_{2} / d_{1}^{\frac{3}{2}}}{\left(\sigma_{\min }\left(X^{* t}\right) \sigma_{\max }(X) \frac{\omega_{1}^{r_{1}-1}}{\sqrt{d_{0} d_{1}}}+\omega_{1}^{r_{1}+r_{2}} \sigma_{\min }\left(X^{* t}\right) c_{0} \sqrt{n}\right)^{2}}
\end{aligned}
$$

We note that this upper bound above goes to ∞ in the regime $\omega_{2} \gg \omega_{1}$, which means that gradient descent can avoid lazy training. Note that it does not imply this training scheme is guaranteed to be non-lazy though.

F. 2 Regime with $\omega_{1} \gg \omega_{2}$

In this regime, we have $\ddot{\phi}_{\max } \frac{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X)+\omega_{1}^{r_{2}} c_{0} \sqrt{n}\right) \sigma_{\max }(X)}{\omega_{1}^{2 r_{1}} \sqrt{d_{1} \sigma_{\min }^{2}}\left(X^{* t}\right)} \lesssim \dot{\phi}_{\max }+\omega_{2} \ddot{\phi}_{\max } \sqrt{d_{1}}$. Then we have

$$
\begin{align*}
\left\|h\left(\Theta_{i}\right)-\tilde{h}\left(\tilde{\Theta}_{i}\right)\right\| & \lesssim \frac{\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\omega_{2} \ddot{\phi}_{\max } \sqrt{d_{1}}\right)}{\left(\omega_{2} \dot{\phi}_{\max } \sigma_{\max }(X) \sqrt{d_{1}}+\omega_{1}^{r_{2}} c_{0} \sqrt{\left(1+\delta_{2}\right) d_{1} n}\right)^{2}} \tag{A.64}\\
& \lesssim \frac{\sqrt{2} \sigma_{\max }(X)\left(\dot{\phi}_{\max }+\omega_{2} \ddot{\phi}_{\max } \sqrt{d_{1}}\right)}{\left(\omega_{1}^{r_{2}} c_{0} \sqrt{d_{1} n}\right)^{2}}
\end{align*}
$$

Note that this bound goes to 0 and lazy training is bound to happen asymptotically.

G Implementation details of Section 6

For the experiments illustrated in Figure 1, we computed the training and test accuracy for different variants of the proposed weight initialization scheme. We considered the MNIST data set made available through the torchvision implementation ${ }^{2}$. We used the provided split of 60000 training examples and 10000 test examples which we subsequently normalized.
First, a teacher neural network was train on this data set. The label provided by the teacher was then used to relabel both the training and test examples. For each of the weight initializations a student network was constructed and trained on the relabeled data set. The student neural network had 1000 units in its hidden layer and used the GeLU activation function. For the loss we used the mean square error against a one-hot encoding of the true class label. We minimized this loss with stochastic gradient descent (SGD) for which there was three hyperparameter choices. As the difficult of the data set was modest we expected a large range of these hyperparameters to work. It thus sufficed to make a reasonable guess by choosing a batch size of 128 , learning rate of 0.01 and 300 epochs. The teacher neural network differed from the student network by using He initialization and cross entropy loss.
All results were implemented in PyTorch [5] and run on a Slurm cluster using a Tesla K40c GPU. We fixed $\omega_{1} \omega_{2} \approx 0.002259$ based on the He initialization for our particular network and varied ω_{2} in the range $[0.002,0.1]$. We considered 10 different initialization in this range and ran 5 experiments for each configuration of weight initialization, $\left(\omega_{1}, \omega_{2}\right)$. Using these independent runs we plotted the mean and standard deviation of the final training and test accuracy in Figure 1, in Section 6.

[^1]
References

[1] Lénaïc Chizat, Edouard Oyallon, and Francis Bach. On lazy training in differentiable programming. In Advances in neural information processing systems (NeurIPS), 2019.
[2] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of American Statistical Association, 58:13-30, 1963.
[3] Frank W. J. Olver, Daniel W. Lozier, Ronald F. Boisvert, and Charles W. Clark. NIST Handbook of Mathematical Functions Paperback and CD-ROM. Cambridge University Press, 2010.
[4] Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global convergence guarantees for training shallow neural networks. IEEE Journal on Selected Areas in Information Theory, 1:84-105, 2020.
[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance deep learning library. In Proc. Advances in Neural Information Processing Systems (NeurIPS), 2019.
[6] Roman Vershynin. Introduction to the Non-asymptotic Analysis of Random Matrices. Cambridge University Press, 2012.

[^0]: ${ }^{1}$ To have a nonzero c_{0}, the activation function should not be an odd function.

[^1]: ${ }^{2}$ This implementation uses the original MNIST source: http://yann. lecun.com/exdb/mnist/.

