
Notation. We use ‖ · ‖ to represent the Euclidean norm of a vector and Frobenius norm of a matrix.1

We use ∇ to denote the Jacobian of a vector-valued and gradient of a scalar-valued function and2

∇Φ(a) {b} to represent the directional derivative of Φ along b. We use � and ⊗ to denote the3

Hadamard (entry-wise) product and Kronecker product, respectively. For A ∈ Rm×n and t ∈ Z+, we4

denote A∗t ∈ Rmt×n with its a-th column defined as vec(xa ⊗ · · · ⊗ xa) ∈ Rmt . We use lower-case5

bold font to denote vectors. Sets and scalars are represented by calligraphic and standard fonts,6

respectively. We use [n] to denote {1, · · · , n} for an integer n. We use Õ and Ω̃ to hide logarithmic7

factors and use . to ignore terms up to constant and logarithmic factors.8

A Proof of Lemma 19

Intuitively, if ∇Φ∗(w0) is a (µΦ, νΦ)-near-isometry, then one would expect ∇Φ∗ to remain near-10

isometry for all nearby points. Formally, let A, B ∈ Rm×n and let singular values of a matrix are11

ordered such that σi(A) ≥ σj(A) and σi(B) ≥ σj(B) for 1 ≤ i ≤ j ≤ min{m,n}. Using Weyl’s12

inequality and for i+ j − 1 ≤ min{m,n}, we have:13

σi+j−1(A+B) ≤ σi(A) + σj(B). (A.1)

More formally, suppose that w ∈ Rd satisfies14

‖w −w0‖ ≤
µΦ

2βΦ
= ρΦ. (A.2)

If ∇Φ∗(w0) is (µΦ, νΦ)-isometry in the sense of Definition 1, then applying Weyl’s inequality (A.1)15

along with using smoothness and (A.2), we have16

σmin(∇Φ∗(w)) ≥ σmin(∇Φ∗(w0))− σmax(∇Φ∗(w)−∇Φ∗(w0))

≥ µΦ − βΦ‖w −w0‖

≥ µΦ

2
.

Using a similar argument, we establish an upper bound σmax(∇Φ∗(w)):17

σmax(∇Φ∗(w)) ≤ σmax(∇Φ∗(w0)) + σmax(∇Φ∗(w)−∇Φ∗(w0)) ≤ νΦ +
µΦ

2
≤ 3νΦ

2
.

B Proof of Lemma 218

Let t ≥ 0 and denote19

ζ(t) = Φ(γ(t)) (A.3)

so we have20

h(γ(t)) = f(Φ(γ(t)) = f(ζ(t)). (A.4)

Taking the first-order derivative w.r.t. t, we have21

ζ̇(t) = ∇Φ(γ(t)) {γ̇(t)}
= −∇Φ(γ(t)) {∇h(γ(t))} .

(A.5)

Note that we have22

dh(γ(t))

dt
= ∇h(γ(t)) {γ̇(t)}

= −∇h(γ(t)) {∇h(γ(t))}
= −‖∇h(γ(t))‖2.

(A.6)
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Length of the segment of the curve γK restricted to the interval [0, t] is given by23

`(t) =

∫ t

0

‖γ̇(τ)‖ dτ

=

∫ t

0

‖∇h(γ(τ))‖ dτ

≤
∫ t

0

σmax(∇Φ∗(γ(τ)) · ‖∇f(ζ(τ))‖dτ

. νΦ

∫ t

0

‖∇f(ζ(τ))‖ dτ.

(A.7)

To control the norm in the last line of (A.7), we note that24

−
d
√
f(ζ(τ))− f(ζ(t))

dτ
= −

df(ζ(τ))
dτ

2
√
f(ζ(τ))− f(ζ(t))

= − 〈∇f(ζ(τ)), ζ̇(τ)〉
2
√
f(ζ(τ))− f(ζ(t))

=
〈∇f(ζ(τ)),∇Φ(γ(τ)) {∇h(γ(τ))}〉

2
√
f(ζ(τ))− f(ζ(t))

=
‖∇h(γ(τ))‖2

2
√
f(ζ(τ))− f(ζ(t))

≥ σ2
min(∇Φ∗(γ(τ))) · ‖∇f(ζ(τ))‖2

2
√
f(ζ(τ))− f(ζ(t))

&
µ2

Φ · ‖∇f(ζ(τ))‖2√
f(ζ(τ))− f(ζ(t))

&
√
αfµ

2
Φ · ‖∇f(ζ(τ))‖2

‖∇f(ζ(τ))‖
=
√
αfµ

2
Φ · ‖∇f(ζ(τ))‖,

(A.8)

provided that the denominators are nonzero. Substituting (A.8) into (A.7), the desired length is25

bounded by26

`(t) . νΦ

∫ t

0

‖∇f(ζ(τ))‖ dτ

. − νΦ

µ2
Φ
√
αf

∫ t

0

d
√
f(ζ(τ))− f(ζ(t))

dτ
dτ

=
νΦ

µ2
Φ
√
αf

(√
f(ζ(0))−

√
f(ζ(t))

)
≤
νΦ

√
f(ζ(0))

µ2
Φ
√
αf

=
νΦ

√
h(γ(0))

µ2
Φ
√
αf

=
νΦ

√
h(w0)

µ2
Φ
√
αf

,

which completes the proof of Lemma 2.27

C Proof of Theorem 228

The proof is along the lines of Theorem 1. We first compute the length of the trajectory traversed by29

gradient descent iterates. Formally, let I denote the first iteration such that wI /∈ ball(w0, ρΦ). The30

2



length of the trajectory traced by {wi}Ii=0 is upper bounded by31

`(I) :=

I−1∑
i=0

‖wi+1 −wi‖

= η

I−1∑
i=0

‖∇h(wi)‖

. ηνΦ

I−1∑
i=0

‖∇f(zi)‖.

(A.9)

This following lemma is useful for our proof.32

Lemma A.1. Suppose u,v ∈ ball(w0, ρΦ). Then we have ‖Φ(u)− Φ(v)‖ ≤ 3νΦ

2 ‖u− v‖.33

Proof. Using Lemma 1, we establish a bound on ‖Φ(u)− Φ(v)‖:34

‖Φ(u)− Φ(v)‖ =
∥∥∥∫ 1

0

∇Φ(v + t(u− v))(u− v) dt
∥∥∥

≤
∫ 1

0

‖∇Φ(v + t(u− v))(u− v)‖ dt

≤ 3νΦ

2
‖u− v‖.

35

Let i ≤ I − 2. To control the upper bound in (A.9), we use the smoothness of f and Lemma A.1 to36

obtain a standard “descent inequality” as:37

f(zi)− f(zi+1) ≥ 〈zi − zi+1,∇f(zi)〉 −
βf
2
‖zi+1 − zi‖2

= 〈Φ(wi)− Φ(wi+1),∇f(zi)〉 −
βf
2
‖Φ(wi+1)− Φ(wi)‖2

= 〈∇Φ(wi) {wi −wi+1} ,∇f(zi)〉 −
βf
2
‖Φ(wi+1)− Φ(wi)‖2

− 〈Φ(wi+1)− Φ(wi)−∇Φ(wi) {wi+1 −wi} ,∇f(zi)〉

≥ 〈∇Φ(wi) {wi −wi+1} ,∇f(zi)〉 −
βf
2
‖Φ(wi+1)− Φ(wi)‖2

− βΦ

2
‖wi+1 −wi‖2‖∇f(zi)‖

≥ 〈∇Φ(wi) {wi −wi+1} ,∇f(zi)〉 −
1

2
‖wi+1 −wi‖2

(
βΦ‖∇f(zi)‖+

9βfν
2
Φ

4

)
= η〈∇Φ(wi) {∇h(wi)} ,∇f(zi)〉 −

η2

2
‖∇h(wi)‖2

(
βΦ‖∇f(zi)‖+

9βfν
2
Φ

4

)
= η‖∇h(wi)‖2 −

η2

2
‖∇h(wi)‖2

(
βΦ‖∇f(zi)‖+

9βfν
2
Φ

4

)
= η‖∇h(wi)‖2

(
1− ηβΦ‖∇f(zi)‖

2
− 9ηβfν

2
Φ

8

)
& ηµ2

Φ‖∇f(zi)‖2 (chain rule and Lemma 1)

where the fourth inequality holds since ‖Φ(a) − Φ(b) − ∇Φ(b)(a − b)‖ ≤ βΦ

2 ‖b − a‖2 for38

βΦ-smooth Φ, and the last line holds provided that η satisfies:39

η .
1

βΦ maxi ‖∇f(zi)‖+ βfν2
Φ

. (A.10)
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We now use the bound above to find an upper bound on
√
f(zi)− f(zI−1)−

√
f(zi+1)− f(zI−1):40 √

f(zi)− f(zI−1)−
√
f(zi+1)− f(zI−1) =

f(zi)− f(zi+1)√
f(zi)− f(zI−1) +

√
f(zi+1)− f(zI−1)

&
ηµ2

Φ‖∇f(zi)‖2√
f(zi)− f(zI−1) +

√
f(zi+1)− f(zI−1)

≥ ηµ2
Φ‖∇f(zi)‖2

2
√
f(zi)− f(zI−1)

≥
η
√
αfµ

2
Φ‖∇f(zi)‖2√

2‖∇f(zi)‖

=
η
√
αfµ

2
Φ√

2
‖∇f(zi)‖.

(A.11)

Substituting (A.11) into (A.9), we have41

`(I) . ηνΦ

I−1∑
i=0

‖∇f(zi)‖

.
νΦ√
αfµ2

Φ

I−2∑
i=0

(√
f(zi)− f(zI−1)−

√
f(zi+1)− f(zI−1)

)
+ ηνΦ‖∇f(zI−1)‖

.
νΦ√
αfµ2

Φ

√
f(z0)− f(zI−1) + ηνΦ‖∇f(zI−1)‖

≤
νΦ

√
f(z0)

√
αfµ2

Φ

+ ηνΦ‖∇f(zI−1)‖.

(A.12)

Note that42

f(z0) = h(w0) .
αfµ

6
Φ

β2
Φν

2
Φ

and scaling down the learning rate sufficiently to control the second term in the upper bound ensure43

that44

`(I) ≤ ρΦ

2
=

µΦ

4βΦ
.

Hence, the gradient descent iterates satisfy:45

{wi}i≥0 ∈ ball(w0, ρΦ),

which implies that the limit w exists and is globally optimal. In the following, we simplify the46

expression for η in (A.10). Since the iterates of gradient flow remain within a ball of radius ρΦ, we47

can compute the local Lipschitz constant of f as48

max
i
‖∇f(zi)‖ ≤ ‖∇f(z0)‖+ max

i
‖∇f(zi)−∇f(z0)‖

≤ ‖∇f(z0)‖+ βf max
i
‖zi − z0‖

= ‖∇f(z0)‖+ βf max
i
‖Φ(wi)− Φ(w0)‖

= ‖∇f(z0)‖+
3βfνΦ

2
max
i
‖wi −w0‖

≤ ‖∇f(z0)‖+
3βfνΦ

2
· ρΦ

= ‖∇f(z0)‖+
3βfµΦνΦ

4βΦ
.

(A.13)
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Substituting (A.13) into (A.10), an upper bound on η is given by49

η .
1

βΦ‖∇f(z0)‖+ βfµΦνΦ + βfν2
Φ

≤ 1

βΦ‖∇f(z0)‖+ βfµ2
Φ + βfν2

Φ

(A.14)

where the last inequality holds since µΦ ≤ νΦ.50

Finally, using (7), we prove the linear convergence to the limit point w:51

h(wi+1) = h(wi+1)− h(wi) + h(wi)

= f(zi+1)− f(zi) + h(wi)

≤ −Cηµ2
Φ‖∇f(zi)‖2 + h(wi)

≤ (1− Cηαfµ2
Φ)h(wi) (A.15)

where C is a universal constant. This completes the proof of Theorem 2.52

D Proof of Lemma 353

We first obtain the expression for adjoint operator ∇Φ∗(Θ) : Rd2×n → Rd1×d0 × Rd2×d1 . Let54

∆W ∈ Rd1×d0 , ∆V ∈ Rd2×d1 , and ∆ ∈ Rd2×n. We expand Φ as follow:55

Φ(W + ∆W , V ) ≈ Φ(W,V ) +∇WΦ(∆W ),

Φ(W,V + ∆V ) ≈ Φ(W,V ) +∇V Φ(∆V )
(A.16)

where56

∇WΦ(∆W ) = V
(
φ̇(WX)�∆WX

)
, ∇V Φ(∆V ) = ∆V φ(WX),

� stands for the Hadamard (entry-wise) product, and φ̇(WX) is the derivative of φ calculated at each57

entry of the matrix WX . The operator∇Φ(Θ) is given by (∆W ,∆V )→ ∇WΦ(∆W ) +∇V Φ(∆V ).58

Using the cyclic property of the trace operator and trace
(
(A�B)C

)
= trace

(
(A�C>)B>

)
, we59

have60

〈∆,∇WΦ(∆W )〉 =
〈(
φ̇(WX)� V >∆

)
X>,∆W

〉
,

〈∆,∇V Φ(∆V )〉 =
〈
∆V ,∆φ

(
X>W>

)〉
.

(A.17)

Substituting (A.17), the adjoint operator is given by61

∇Φ∗(Θ) : ∆→
((
φ̇(WX)� V >∆

)
X>,∆φ

(
X>W>

))
. (A.18)

Suppose that there exist φ̇max, φ̈max <∞ such that62

sup
a
|φ̇(a)| ≤ φ̇max, sup

a
|φ̈(a)| ≤ φ̈max. (A.19)

Lemma A.2. Let A ∈ Rm×n and B ∈ Rn×k. Then, we have63

σmin(A)‖B‖ ≤ ‖AB‖ ≤ σmax(A)‖B‖.

Using Lemma A.2 and triangular inequality, we note that64

‖∇Φ∗(Θ,∆)‖ ≤
∥∥∥(φ̇(WX)� (V >∆)

)
X>
∥∥∥+

∥∥∆φ(X>W>)
∥∥

≤ φ̇maxσmax(X)σmax(V )‖∆‖+ σmax(φ(WX))‖∆‖.
(A.20)

Similarly, we have this lower bound:65

‖∇Φ∗(Θ,∆)‖ ≥ σmin(φ(WX))‖∆‖. (A.21)
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Substituting Θ0 = (W0, V0) into (A.20) and (A.21), µΦ and νΦ are given by:66

σmax(∇Φ∗(Θ0)) ≤ φ̇maxσmax(X)σmax(V0) + σmax(φ(W0X)) =: νΦ,

σmin(∇Φ∗(Θ0)) ≥ σmin(φ(W0X)) =: µΦ.
(A.22)

In the following, we find the smoothness parameter βΦ in (4). Let Θ, Θ̂ ∈ Rd1×d0 × Rd2×d1 . We67

note that ‖∇Φ(Θ,∆)−∇Φ(Θ̂,∆)‖ ≤ U1 + U2 where68

U1 = ‖V (φ̇(W>X)� (∆>WX))− V̂ (φ̇(Ŵ
>
X)� (∆>WX))‖

U2 = ‖∆V φ(W>X)−∆V φ(Ŵ
>
X)‖.

(A.23)

Let us denote69

σmax(V̂ ) ≤ χmax. (A.24)

An upper bound on U1 in (A.23) is given by:70

U1 ≤ ‖(V − V̂ )(φ̇(W>X)� (∆>WX))‖+ ‖V̂ (φ̇(W>X)� (∆>WX)− V̂ φ̇(Ŵ>X)� (∆>WX))‖
≤ φ̇maxσmax(X)‖V − V̂ ‖‖∆W ‖+ σmax(X)σmax(V̂ )‖φ̇(W>X)− φ̇(Ŵ>X)‖∞‖∆W ‖
≤ φ̇maxσmax(X)‖V − V̂ ‖‖∆W ‖+ φ̈maxσmax(X)‖X‖∞σmax(V̂ )‖W − Ŵ‖‖∆W ‖
≤ φ̇maxσmax(X)‖V − V̂ ‖‖∆W ‖+ φ̈maxχmaxσmax(X)‖W − Ŵ‖‖∆W ‖.

An upper bound on U2 in (A.23) is given by:71

U2 ≤ φ̇maxσmax(X)‖W − Ŵ‖‖∆V ‖.

Substituting the upper bounds on U1 and U2, an upper bound on σmax(∇Φ(Θ)−∇Φ(Θ̂)) is given by72

σmax(∇Φ(Θ)−∇Φ(Θ̂)) ≤ σmax(X)
(
φ̇max + φ̈maxχmax

)
‖W − Ŵ‖+ σmax(X)φ̇max‖V − V̂ ‖

≤
√

2σmax(X)
(
φ̇max + φ̈maxχmax

)
‖Θ− Θ̂‖

where the last inequality holds since73

‖W − Ŵ‖+ ‖V − V̂ ‖ ≤
√

2

√
‖W − Ŵ‖2 + ‖V − V̂ ‖2.

Finally, βΦ in (4) is given by74

βΦ =
√

2σmax(X)
(
φ̇max + φ̈maxχmax

)
. (A.25)

E Proof of Theorem 375

This is our setup: minΘ∈Rd1×d0×Rd2×d1 h(Θ) where76

h(Θ) = ‖V φ(WX)− Y ‖2.
Note that αf = βf = 2.77

Suppose that there exists χmax <∞ such that, for all i ≥ 0, we have78

σmax(Vi) ≤ χmax.

The details of χmax later will be provided in Section E.6.79

In Lemma 3, we have shown that80

µΦ = σmin(φ(W0X)),

νΦ = φ̇maxσmax(X)σmax(V0) + σmax(φ(W0X)),

βΦ =
√

2σmax(X)
(
φ̇max + φ̈maxχmax

)
.

In order to apply Theorem Theorem 2, we now establish high-probability bounds on random quantities81

µΦ, νΦ, and h(Θ0) given the initialization in (17).82
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E.1 Estimating µΦ, νΦ83

We now estimate the random quantities µΦ, νΦ in our neural network setting. They key quantities to84

estimate are σmin(φ(W0X)) and σmax(φ(W0X)). To that end, we consider Hermite decomposition85

of the activation function φ.86

We start with the basic definition of Hermite polynomial and its properties. Let i ≥ 0 and let87

qi : R → R denote the i-th Hermite polynomial. Note that qi’s form an orthogonal basis for the88

Hilbert space of functions.:89

H =

{
u : R→ R |

∫
u2(x) exp

(
−x

2

2

)
<∞

}
,

which is equipped with the inner product90

〈u, v〉H =
1√
2π

∫
u(x)v(x) exp

(
−x

2

2

)
dx

for u, v ∈ H. We consider probabilist’s convention of Hermite polynomial. Specifically, for i, j ≥ 0,91

we have92

〈qi, qj〉H =

{
i! i = j,

0 i 6= j.
(A.26)

Using the above orthogonal basis to decompose φ(W0X), we have93

φ(W0X) =

∞∑
i=0

ci
i!
· qi(W0X) (A.27)

where ci = 〈φ, qi〉H and each matrix qi(W0X) ∈ Rd1×n is formed by applying qi entry-wise to the94

matrix W0X . Let us denote95

M0 := φ(X>W>0 )φ(W0X).

Let 0 < τ < 1. Suppose there are constants r1, r2 such that τ r1 |φ(a)| ≤ |φ(τa)| ≤ τ r2 |φ(a)| for all96

a. In the following, we first obtain E[M̃0] = E[φ(X>W̃>0 )φ(W̃0X)] with W̃0 ∼ N (0, 1) and then97

obtain a lower bound on σmin(E[M0]) and an upper bound on σmin(E[M0]) by scaling the variance.98

Applying Hermite decomposition (A.27) and taking expectation, we have99

E[M̃0] = E
[
φ(X>W̃>0 )φ(W̃0X)

]
=

∞∑
i,j=0

cicj
i!j!

E[qi(X
>W̃>0 )qj(W̃0X)]

(A.28)

where the expectation is w.r.t. the random matrix W̃0. Let xa ∈ Rd0 denote the a-th column of the100

training data X . Each summand in (A.28) is an n× n matrix where101 [
E[qi(X

>W̃>0 )qj(W̃0X)]
]
a,b

=

d1∑
c=1

E
[
qi(x

>
a W̃0,c,→)qj(W̃

>
0,c,→xb)

]
, (A.29)

where W̃0,c,→ is the c-th row of W̃0 for a, b ∈ [n].102

In summand on the RHS of (A.29), we note that there is a linear combination of W̃0’s elements inside103

of each Hermite polynomial.104

We use the properties of Hermite polynomials [3][§18.18.11]:105

(a2
1 + · · ·+ a2

r)
i
2

i!
q̃i
(a1x1 + · · ·+ arxr

(a2
1 + · · ·+ a2

r)
1
2

)
=
∑

s1+···+sr=i

as11 · · · asrr
s1! · · · sr!

q̃s1(x1) · · · q̃sr (xr) (A.30)

where q̃i’s form an orthogonal basis, equipped with the inner product 〈u, v〉H̃ =106
1√
π

∫
u(x)v(x) exp(−x2) dx. This basis follows the physicist’s convention of Hermite polynomial.107
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Since q̃i and qi are rescalings of the other, we can replace qi’s into (A.30). Note that we have108

‖xa‖2 = 1 for all a ∈ [n]. Then we have109

qi(x
>
a W̃0,c,→) = i!

∑
s1+···+sd0

=i

xs1a,1 · · ·x
sd0

a,d0

s1! · · · sd0 !
qs1(W̃0,c,1) · · · qsd0

(W̃0,c,d0) (A.31)

where xa,k and W̃0,c,k are k-th entry of xa and W̃0,c,→ for k ∈ [d0]. Using the expansion in (A.31),110

we expand (A.29) as follows:111

ζi,j(a, b) = i!j!
∑

s1+···+sd0
=i

∑
s′1+···+s′d0

=j

xs1a,1 · · ·x
sd0

a,d0

s1! · · · sd0 !
·
x
s′1
b,1 · · ·x

s′d0

b,d0

s′1! · · · s′d0
!
ρs,s′(W̃0,c,→)

=

{
(i!)2

∑
s1+···+sd0

=i
(xa,1xb,1)s1 ···(xa,d0

xb,d0
)
sd0

s1!···sd0
! i = j,

0 i 6= j

=

{
i!
∑
s1+···+sd0

=i

(
i

s1,··· ,sd0

)
(xa,1xb,1)s1 · · · (xa,d0

xb,d0
)sd0 i = j,

0 i 6= j

(A.32)

where ζi,j(a, b) = E
[
qi(x

>
a W̃0,c,→)qj(W̃

>
0,c,→xb)

]
,112

ρs,s′(W̃0,c,→) = E
[
qs1(W̃0,c,1) · · · qsd0

(W̃0,c,d0
) · qs′1(W̃0,c,1) · · · qs′d0

(W̃0,c,d0
)
]
,

s = [s1, · · · , sd0 ], and s′ = [s′1, · · · , s′d0
].113

To simplify the expression in (A.32), we define X∗i ∈ Rdi0×n where the a-th column is given by114

X∗ia = vec(xa ⊗ · · · ⊗ xa) ∈ Rd
i
0 ,

which is also called Khatri-Rao product. For i = 0, we use the convention that X∗0 = 11> ∈ Rn×n.115

We can rewrite (A.32) as follows:116

ζi,j(a, b) =

{
i!〈X∗ia , X∗ib 〉 i = j

0 i 6= j.
(A.33)

Substituting (A.33) back into (A.29), we find that117 [
E[qi(X

>W̃>0 )qj(W̃0X)]
]
a,b

=

d1∑
c=1

E
[
qi(x

>
a W̃0,c,→)qj(W̃

>
0,c,→xb)

]
=

{
d1i!〈X∗ia , X∗ib 〉 i = j

0 i 6= j.

(A.34)

Substituting (A.34) into (A.28), we have118

E
[
M̃0

]
= d1

(
c2011

> + c21X
>X +

∞∑
i=2

c2i
i!

(X∗i)>X∗i

)
. (A.35)

We now establish an upper bound on σmax

(∑∞
i=2

c2i
i! (X∗i)>X∗i

)
:119

σmax

( ∞∑
i=2

c2i
i!

(X∗i)>X∗i

)
≤
∞∑
i=2

c2i
i!
σmax((X∗i)>X∗i)

≤ c2∞σ2
max(X)

(A.36)

where c∞ is given by120

c2∞ =

∞∑
i=2

c2i
i!
,
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which is finite provided that ‖φ‖H is bounded.121

Using (A.36), we now establish an upper bound on σmax(E[M̃0]):122

σmax(E[M̃0]) . d1

(
nc20 + (c21 + c2∞)σ2

max(X)
)
.

Moreover, suppose there exists some t such that σmin(X∗t) > 0. This requires to have dt0 ≥ n.123

Putting together the lower bound on σmin(E[M̃0]) and the upper bound on σmin(E[M̃0]), noting124

W0 = ω1W̃0 and applying τ r1φ(a) ≤ φ(τa) ≤ τ r2φ(a), we have125

ω2r1
1 d1

c2t
t!
σ2

min(X∗t) . σmin(E[M0]) ≤ σmax(E[M0]) . ω2r2
1 d1

(
nc20 + (c21 + c2∞)σ2

max(X)
)
.

(A.37)

E.2 Concentration of the random matrix M0126

To see how well the random matrix M0 concentrates about its expectation, note that127

M0 = φ(X>W>0 )φ(W0X)

=

d1∑
i=1

φ(X>W>0,i,→)φ(W0,i,→X)

=

d1∑
i=1

Ai

(A.38)

where {Ai}d1
i=1 ⊂ Rn×n are independent random matrices.128

Consider the event E1 that129

max
i∈[d1]

‖W0,i,→‖2 . k1ω1

√
d0 log d1, max

i∈[d1]
‖V0,i,↓‖2 . k2ω2

√
d2 log d1 (A.39)

where V0,i,↓ is the i-th column of V0. Note that W0,i,→ ∈ Rd0 and V0,i,↓ ∈ Rd2 are random zero-130

mean Gaussian vectors whose entries’ variances are ω2
1 and ω2

2 , respectively. Therefore, with an131

application of the scalar Bernstein inequality [6, Proposition 5.16], followed by the union bound, we132

observe that the event E1 happens except with a probability of at most133

p1 := d−Ck1d0
1 + d−Ck2d2

1 , (A.40)

for a universal constant C with sufficiently large k1, k2.134

Let i ∈ [d1]. Conditioned on the event E1, an upper bound on ‖φ(X>W0,i,→)‖2 is given by:135

‖φ(X>W0,i,→)‖2 . φ̇maxσmax(X)k1ω1

√
d0 log d1. (A.41)

Moreover, we have136

σmax(Ai) = ‖φ(X>W0,i,→)‖22
= ‖φ(X>W0,i,→)− φ(0)‖22
. φ̇2

maxσ
2
max(X)k2

1ω
2
1d0 log d1.

(A.42)

We now focus on the concentration of σmin(M0) and σmax(M0). We use a concentration property,137

which provides the tail bound of f̃(W ) = φ(X>W>)φ(WX) with multivariate Gaussian input W .138

In the following lemma, we show that f̃ is a Lipschitz function, and its Lipschitz constant explains139

how f̃(W ) concentrates around its mean.140

Lemma A.3. Let f̃(W ) = φ(X>W>)φ(WX). Suppose W satisfies (A.39). Then f̃ is κ-Lipschitz141

function with constant κ = 4φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1. So we have142

‖f̃(W )− f̃(W ′)‖ < 4φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1 · ‖W −W ′‖.
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Proof. Note that f̃(W0) = M0 and f̃ can be represented as143

f̃(X) =

d1∑
i=1

fi(Wi,→)

where fi is given by fi(Wi,→) = φ(X>W>i,→)φ(Wi,→X). We prove that each fi is κ-Lipschitz,144

which implies that f̃ is also κ-Lipschitz.145

We note that fi’s can be expressed as a composition of three functions:146

fi(v) = (g1 ◦ g2 ◦ g3)(v)

where g1, g2, and g3 are given by147

g1(v) = vv>, f2(v) = φ(v), f3(v) = vX. (A.43)

It is clear that g2 is φ̇max-Lipschitz, and g3 is σmax(X)-Lipschitz from their definitions. Lipschitz148

constant of g1 comes from the domain bound as follows:149

‖g1(v + δv)− g1(v)‖ = ‖δvv> + vδv> + δvδv>‖
≤ 2‖δvv>‖+ ‖δvδv>‖
≤ (2‖v‖+ ‖δv‖) · ‖δv‖.

(A.44)

A bound on (2‖v‖ + ‖δv‖) is obtained in (A.41). Then g1 is κ1-Lipschitz function with150

κ1 = 4φ̇maxσmax(X)k1ω1

√
d0 log d1. Therefore, all g1, g2 and g3 are Lipschitz function, so151

their composition fi is also Lipschitz function with constant κ = 4φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1,152

which completes the proof.153

Lemma A.4. Let z ∈ Rd denote a Gaussian random vector. Then we have Pr{‖z − E[z]‖ >154

t |E2} . exp(−t2) where E2 is the event that ‖z‖ is bounded.155

We can focus on the tail distribution of M0 = f̃(W0). Using Lemmas A.3 and A.4, we have156

Pr{‖M0 − E[M0]‖ > t |E1} . exp(−k2
3) (A.45)

where t = k34φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1 with some constant k3.157

Using (A.45), we now establish a tail bound on σmin(M0):158

Pr{σmin(M0) ≤ (1− δ1)σmin(E[M0])|E1} ≤ Pr{|σmin(M0)− σmin(E[M0])| ≥ δ1σmin(E[M0])|E1}
≤ Pr{σmin(M0 − E[M0]) ≥ δ1σmin(E[M0])|E1}
≤ Pr{σmax(M0 − E[M0]) ≥ δ1σmin(E[M0])|E1}
≤ Pr{‖M0 − E[M0]‖ ≥ δ1σmin(E[M0])|E1}
. p2

where159

p2 = exp

(
−
(

δ1σmin(E[M0])

4φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1

)2
)
.

Similarly, we obtain160

Pr{σmax(M0) ≥ (1 + δ2)σmax(E[M0])|E1} . p3

where161

p3 = exp

(
−
(

δ2σmax(E[M0])

4φ̇2
maxσ

2
max(X)k1ω1

√
d0 log d1

)2
)
.

Putting these bounds together with (A.37), we have :162

ωr11

√
(1− δ1)

c2t
t!
d1σmin(X∗t) ≤ σmin(φ(W0X))

σmax(φ(W0X)) ≤
√

(1 + δ2)ωr21 (
√

(c21 + c2∞)d1σmax(X) + |c0|
√
d1n)

(A.46)

except with a probability of at most p1 + p2 + p3.163

With establishing the bounds on σmin(φ(W0X)) and σmax(φ(W0X)), we can finally estimate µΦ, νΦ164

as follows:165
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E.3 Lower bound on µΦ166

A lower bound on µΦ is given by167

ωr11

√
(1− δ1)

c2t
t!
d1σmin(X∗t) ≤ σmin(φ(W0X)) = µΦ, (A.47)

except with a probability of at most p1 + p2.168

E.4 Upper bound on νΦ169

Since νΦ = φ̇maxσmax(X)σmax(V0) + σmax(φ(W0X)), we obtain a bound on σmax(V0):170

Since V0 is a Gaussian random matrix, we have171

σmax(V0) ≤ ω2(2
√
d1 +

√
d2) . ω2

√
d1 (A.48)

except with a probability of at most p4 = exp(−Cd1) where C is a universal constant [6][Corollary172

5.35].173

Combining (A.48) with the upper bound on σmax(φ(W0X)), we have174

νΦ = φ̇maxσmax(X)σmax(V0) + σmax(φ(W0X))

. ω2φ̇maxσmax(X)
√
d1 + ωr21

√
(1 + δ2)(c21 + c2∞)d1σmax(X) + ωr21 |c0|

√
(1 + δ2)d1n

except with a probability of at most p1 + p3 + p4.175

E.5 Upper bound on h(Θ0)176

In this section, we bound h(Θ0). Using ‖a + b‖22 ≤ 2‖a‖22 + 2‖b‖22, we have177

h(Θ0) = ‖V0φ(W0X)− Y ‖2

≤ 2‖V0φ(W0X)‖2 + 2‖Y ‖2.
(A.49)

To upper bound the random norm in (A.49), we first decompose V0φ(W0X) into terms including178

W0,i,→ ∈ Rd0 and V0,i,↓ ∈ Rd2 as follows:179

V0φ(W0X) =

d1∑
i=1

Bi (A.50)

where Bi = V0,i,↓φ(W>0,i,→X) ∈ Rd2×n’s are independent random matrices for i ∈ [d1].180

Conditioned on the event E1 defined in (A.39), we bound ‖Bi‖:181

‖Bi‖ = ‖V0,i,↓‖2‖φ(W>0,i,→X)‖2
≤ ‖V0,i,↓‖2 · φ̇maxσmax(X)k1ω1

√
d0 log d1

≤ ω1ω2φ̇maxσmax(X)k1k2

√
d0d2 log d1

(A.51)

for i ≤ d1.182

Substituting the upper bound in A.50 into A.51 and applying the Hoeffding inequality [2], we have183

Pr{‖V0φ(W0X)‖ & u(d0, d1, d2)|E1} = Pr{‖V0φ(W0X)− E[V0φ(W0X))|E1]‖ & u(d0, d1, d2)|E1}

≤ Pr

{
d1∑
i=1

‖Bi − E[Bi]‖ & u(d0, d1, d2)|E1

}
≤ p5

where184

u(d0, d1, d2) = δ3ω1ω2φ̇maxk1k2

√
d0d1d2σmax(X) log d1
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and p5 = exp(−Cδ2
3) with δ3 ≥ 0 and a universal constant C.185

Therefore, under the event E1, we have186

h(Θ0) ≤ 2‖V0φ(W0X)‖2 + 2‖Y ‖2

. δ2
3ω

2
1ω

2
2φ̇

2
maxk

2
1k

2
2d0d1d2σ

2
max(X) log2 d1 + ‖Y ‖2

(A.52)

except with a probability of at most p1 + p5. It is natural to assume that d2 = o(d1). We also have187

‖Y ‖ ≤ 1.188

Suppose that189

ω1ω2 .
1

φ̇max

√
d0d1 log d1

. (A.53)

Substituting (A.53) into (A.52), we have190

h(Θ0) ≤ δ2
3k

2
1k

2
2σ

2
max(X) (A.54)

where δ3, k1, and k2 are all constants and independent of d0, d1, and n.191

E.6 Denouement192

The key condition for linear rate convergence of gradient descent in (9) is193

h(Θ0) .
αfµ

6
Φ

β2
Φν

2
Φ

.

Putting everything together for the shallow neural network, with high probably, we have194

αf = 2

νΦ = ω2φ̇maxσmax(X)
√
d1 +

√
(1 + δ2)ω2r2

1 (c21 + c2∞)σmax(X)
√
d1 + |c0|

√
ω2r2

1 (1 + δ2)d1n

µΦ = ωr11

√
(1− δ1)

c2t
t!
d1σmin(X∗t)

βΦ =
√

2σmax(X)
(
φ̇max + φ̈maxχmax

)
.

(A.55)

We note that the order of σmax(X) and σmin(X∗t) play significant roles for the overparameterization195

order analysis. For t = 1, it requires n ' d0, which is not a common setting in practice. In the196

following, we focus on t ≥ 2.197

E.7 Order analysis with t ≥ 2198

In this section, we assume |c0| is sufficiently large such that |c0|
√

(1 + δ2)d1n becomes the dominat-199

ing term in νΦ.1 Then a sufficient condition to satisfy (9) is200

d2
1 &

δ2
3c

2
0(1 + δ2)k2

1k
2
2(φ̇max + φ̈maxχmax)2σ4

max(X)nt!3

ω6r1−2r2
1 (1− δ1)3c6tσ

6
min(X∗t)

, (A.56)

which can be written as201

d1 &

√
δ2
3c

2
0(1 + δ2)k2

1k
2
2(φ̇max + φ̈maxχmax)2t!3

ω6r1−2r2
1 (1− δ1)3c6t

·
√
nσ2

max(X)

σ3
min(X∗t)

.

For notational simplicity, we let δ4 = max(k1, k2) and denote Cδ = {δ1, δ2, δ3, δ4} and202

ξ(Cδ, t, φ, {ci}i≥0) =

√
δ2
3c

2
0(1 + δ2)δ4

4(φ̇max + φ̈maxχmax)2t!3

ω6r1−2r2
1 (1− δ1)3c6t

. (A.57)

1To have a nonzero c0, the activation function should not be an odd function.
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Note that ξ(Cδ, t, φ, {ci}i≥0) can be viewed as a constant w.r.t. d0, d1, and n. Then (A.56) can be203

written as:204

d1 = Ω̃(

√
nσ2

max(X)

σ3
min(X∗t)

). (A.58)

It remains to estimate σmax(X) and σmin(X∗t) to finish the order analysis of d1. Suppose that n ' dt0.205

Then , along the lines of [4][Section 2.1], we have σmax(X) '
√

n
d0

and σmin(X∗t) '
√

n
dt0
' 1.206

Combining them all, we have207

d1 & ξ(Cδ, t, φ, {ci}i≥0)
n

3
2

d0
. (A.59)

Therefore, the overall overparameterization degree becomes d0d1 ' Ω̃(n
3
2 ) for t ≥ 2.208

The exact expression of ψ(φ, ξ, , d0, d1, d2, X) in Theorem 3 is given by209

ψ ≤ p1 + p2 + p3 + p4 + p5

≤ d−Cδ4d0
1 + d−Cδ4d2

1 + e
−
(

δ1σmin(E[M0])

4φ̇2
maxσ

2
max(X)δ4

√
d0 log d1

)2

+ e
−
(

δ2σmax(E[M0])

4φ̇2
maxσ

2
max(X)δ4

√
d0 log d1

)2

+ e−Cd1 + e−Cδ
2
3 .

Note that d−Cδ4d0
1 + d−Cδ4d2

1 + exp(−Cd1) + exp(−Cδ2
3) decreases exponentially, which can be210

sufficiently small without changing the order of d1.211

Finally, with d0d1 ' Ω̃(n
3
2 ), the gradient descent converges to a global minimum with linear rate212

with probability at least 1− ψ, which can be arbitrary small.213

Order analysis without boundedness assumption on σmax(Vk) in Assumption 2.214

So far, we assumed σmax(Vk) is bounded for k ≥ 0. We can relax this assumption by bounding the215

length of the trajectory of gradient descent as discussed in Appendix C. Recall (A.12):216

`(I) .
νΦ

√
f(Z0)

√
αfµ2

Φ

.

Using triangular inequality and substituting (A.12), we can obtain a bound on ‖Vk‖217

‖Vk‖ ≤ ‖Vk − V0‖+ ‖V0‖

≤
νΦ

√
f(Z0)

√
αfµ2

Φ

+ ‖V0‖
(A.60)

As shown in (A.48), ‖V0‖ . ω2

√
d1 with high probability over the choice of V0. With sufficiently218

small ω2, the first term in the upper bound dominates in (A.60). Applying (A.54) and substitut-219

ing (A.60) into (A.56), we have220

d3
1 &

n2σ6
max(X)

σ10
min(X∗t)

d1 &
n

5
3

d0
.

The overall overparameterization degree becomes d0d1 ' Ω̃(n
5
3 ), which is slightly worse than221

the result of Theorem 3 under boundedness assumption on σmax(Vk). Note that we still have a222

subquadratic scaling on the network width.223

F Additional discussion on lazy training in Section 6224

In this section, we provide an asymptotic analysis for the term ‖h(Θi)− h̃(Θ̃i)‖ to show that there225

exists a regime where our initialization can avoid lazy training. Recall our setting:226

Φ(Θ) = V · φ(WX)
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where W ∼ N (0, ω2
1) and V ∼ N (0, ω2

2). Following the theoretical guidance in (19), we set227

ω1ω2 ' 1√
d0d1

.228

An upper bound on ‖h(Θi)− h̃(Θ̃i)‖ is given by [1, Theorem 2.3]:229

‖h(Θi)− h̃(Θ̃i)‖ .
Lip(∇Φ(Θ))

Lip(Φ(Θ))2
. (A.61)

In the following, we estimate Lip(∇Φ(Θ))
Lip(Φ(Θ))2 to find when it is not bound to be close to zero.230

Substituting βΦ and νΦ expressions in (A.55) into the upper bound in (A.61) for sufficiently large231

n, c0, we have232

‖h(Θi)− h̃(Θ̃i)‖ .
√

2σmax(X)(φ̇max + φ̈maxχmax)

(ω2φ̇maxσmax(X)
√
d1 + ωr21 c0

√
(1 + δ2)d1n)2

. (A.62)

We now find an upper bound on χmax by bounding the total length of the trajectory of gradient233

descent as in Appendix C where the length of the trajectory traced by gradient descent is given by234

(A.12):235

`(I) ≤
νΦ

√
f(Z0)

√
αfµ2

Φ

.

Using (A.12), (A.48), and (A.54), a bound on χmax is given by236

‖Vi‖2 ≤ ‖Vi − V0‖F + ‖V0‖2

≤
νΦ

√
f(Z0)

√
αfµ2

Φ

+ ‖V0‖2

.
(ω2φ̇maxσmax(X) + ωr21 c0

√
n)σmax(X)

ω2r1
1

√
d1σ2

min(X∗t)
+ ω2

√
d1

(A.63)

Therefore we have237

‖h(Θi)− h̃(Θ̃i)‖ .

√
2σmax(X)

(
φ̇max + φ̈max

(ω2φ̇maxσmax(X)+ω
r2
1 c0
√
n)σmax(X)

ω
2r1
1

√
d1σ2

min(X∗t)
+ ω2φ̈max

√
d1

)
(ω2φ̇maxσmax(X)

√
d1 + ωr21 c0

√
(1 + δ2)d1n)2

We now consider two cases: 1) ω2φ̇maxσmax(X) & ωr21 c0
√
n and 2) ω2φ̇maxσmax(X) . ωr21 c0

√
n.238

More precisely, for the asymptomatic analysis, we consider extremal cases ω1 � ω2 and ω1 � ω2239

and evaluate ‖h(Θi)− h̃(Θ̃i)‖ in each case:240

F.1 Regime with ω2 � ω1241

In the overparameterization regime with large d, we note that242

φ̈max
(ω2φ̇maxσmax(X)+ω

r2
1 c0
√
n)σmax(X)

ω
2r1
1

√
d1σ2

min(X∗t)
+ ω2φ̈max

√
d1 & φ̇max. Then we have243
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‖h(Θi)− h̃(Θ̃i)‖ .

√
2σmax(X)

(
(ω2φ̇maxσmax(X)+ω

r2
1 c0
√
n)σmax(X)

ω
2r1
1

√
d1σ2

min(X∗t)
+ ω2

√
d1

)
(ω2φ̇maxσmax(X)

√
d1 + ωr21 c0

√
(1 + δ2)d1n)2

.
σ2

max(X)

(
ω2

ω
2r1
1

√
d1σ2

min(X∗t)

)
(ω2σmax(X) + ωr21 c0

√
n)2d1

.
σ2

max(X)ω2/d
3
2
1

σ2
min(X∗t)(ωr11 ω2σmax(X) + ωr1+r2

1 c0
√
n)2

.
σ2

max(X)ω2/d
3
2
1(

σmin(X∗t)σmax(X)
ω
r1−1
1√
d0d1

+ ωr1+r2
1 σmin(X∗t)c0

√
n

)2 .

We note that this upper bound above goes to∞ in the regime ω2 � ω1, which means that gradient244

descent can avoid lazy training. Note that it does not imply this training scheme is guaranteed to be245

non-lazy though.246

F.2 Regime with ω1 � ω2247

In this regime, we have φ̈max
(ω2φ̇maxσmax(X)+ω

r2
1 c0
√
n)σmax(X)

ω
2r1
1

√
d1σ2

min(X∗t)
. φ̇max + ω2φ̈max

√
d1. Then we248

have249

‖h(Θi)− h̃(Θ̃i)‖ .
√

2σmax(X)(φ̇max + ω2φ̈max

√
d1)

(ω2φ̇maxσmax(X)
√
d1 + ωr21 c0

√
(1 + δ2)d1n)2

.

√
2σmax(X)(φ̇max + ω2φ̈max

√
d1)

(ωr21 c0
√
d1n)2

.

(A.64)

Note that this bound goes to 0 and lazy training is bound to happen asymptotically.250

G Implementation details of Section 6251

For the experiments illustrated in Figure 1, we computed the training and test accuracy for different252

variants of the proposed weight initialization scheme. We considered the MNIST data set made253

available through the torchvision implementation2. We used the provided split of 60 000 training254

examples and 10 000 test examples which we subsequently normalized.255

First, a teacher neural network was train on this data set. The label provided by the teacher was then256

used to relabel both the training and test examples. For each of the weight initializations a student257

network was constructed and trained on the relabeled data set. The student neural network had 1 000258

units in its hidden layer and used the GeLU activation function. For the loss we used the mean259

square error against a one-hot encoding of the true class label. We minimized this loss with stochastic260

gradient descent (SGD) for which there was three hyperparameter choices. As the difficult of the data261

set was modest we expected a large range of these hyperparameters to work. It thus sufficed to make262

a reasonable guess by choosing a batch size of 128, learning rate of 0.01 and 300 epochs. The teacher263

neural network differed from the student network by using He initialization and cross entropy loss.264

All results were implemented in PyTorch [5] and run on a Slurm cluster using a Tesla K40c GPU. We265

fixed ω1ω2 ≈ 0.002259 based on the He initialization for our particular network and varied ω2 in the266

range [0.002, 0.1]. We considered 10 different initialization in this range and ran 5 experiments for267

each configuration of weight initialization, (ω1, ω2). Using these independent runs we plotted the268

mean and standard deviation of the final training and test accuracy in Figure 1, in Section 6.269

2This implementation uses the original MNIST source: http://yann.lecun.com/exdb/mnist/.
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