
A Extended Related Literature

The information structure of the model is based on the literature on observational learning. The
seminal papers by [7, 8] show that if agents receive binary signals over the object’s quality and
observe previous agents’ action history, herding (information cascades) will eventually take place and
information will be not be aggregated. These findings are extended by [28] to general distributions
and follow-up works examine the robustness of these results in various game structures [1, 2, 14, 24].
Note that none of these works consider the existence of a planner that is able to control the flow of
information.

Several empirical studies examine the presence of observational learning in real-world scenarios
[13, 31]. Using data from organ transplantation in the United Kingdom, [13] develop empirical tests
to detect herding behavior and quantify its welfare consequences. [31] provides empirical evidence
for herding behavior in the United States deceased donor waitlist. Moreover, there also have been
growing clinical literature on behavioral factors in organ allocation such as [9, 11].

To improve the performance of the allocation system, we propose utilizing a voting mechanism
to elicit agents private information. The ability of voting procedures to uncover ground truth by
aggregating dispersed information dates back to the seminal Condorcet Jury Theorem [12], which
utilizes the law of large numbers to assert that majority voting will reach the correct decision, provided
that the population is large enough and agents are not strategic. [6] show that Condorcet’s result does
not hold when agents are strategic and are allowed to deviate from their private information. Our
notion of correctness is taken from [3]. One novel feature in our model is that the number of votes is
determined endogenously to maximize the probability of making the correct choice.

Our work is also loosely connected to the literature on information design (e.g., [10, 18, 19, 26, 27])
and Bayesian exploration (e.g., [15–17, 20, 22]). With the exception of [15], who consider an online
recommendation problem with costly information acquisition, most of these works do not take into
account the possibility that agents are privately informed. Instead, several papers such as [17, 19]
consider agents with private information in the form of types or idiosyncratic preferences. In contrast
to our model where private signals are informative about the true quality of the object, those types
are not correlated with the true state variable.6

A Optimal Solution in the Absence of Strategic Incentives

Lemma A.1. Suppose that agents are not strategic and voluntarily reveal their private signal value

to the planner. Let

y = 0.5
log
⇣

1�µ
µ

⌘

log
⇣

q
1�q

⌘ + 0.5 I.

Then, the planner achieves optimal correctness when she allocates the object if and only ifPI
i=1 1{si = g} � y.

Proof. Conditional on ! = G, the number XG of positive signals s = g follows a binomial
distribution, i.e., XG ⇠ Binomial(I, q). Conditional on ! = G, the number XB of positive signals
s = g follows a binomial distribution, i.e., XB ⇠ Binomial(I, 1� q).

Let y denote the number of minimal positive signals required to allocate the object. For any number
of positive signals higher than y, it is also optimal to allocate the object since the posterior belief that
! = G strictly increases.

6I.e., in our case, knowing the value of private signals does lead the decision maker to update her belief
accordingly to this information.
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The threshold y is the smallest integer that satisfies

P(! = G | XG = y) � 0.5

()
µ
�I
y
�
qy(1� q)I�y

µ
�I
y
�
qy(1� q)I�y + (1� µ)

�I
y
�
qI�y(1� q)y

� 0.5

() µqy(1� q)I�y � (1� µ)qI�y(1� q)y

() µq2y�I � (1� µ)(1� q)2y�I

()
✓

q

1� q

◆2y�I

� 1� µ

µ
.

Recall that q 2 (0.5, 1). Taking the logarithm of the previous relation and rearranging the terms, we
finally get that

y = 0.5
log
⇣

1�µ
µ

⌘

log
⇣

q
1�q

⌘ + 0.5 I.

B Omitted Analysis of the Sequential Offering Mechanism (Section 3)

We first analyze the optimal strategies of the first three agents in the queue. Before taking any action,
each agent observes his position in the queue in addition to his private signal and the common object
prior µ. In particular, by observing his position i, agent i recognizes that the object is being offered
to him because all of the i� 1 preceding agents have rejected it. This observation contributes to his
posterior belief about the object quality.

Agent 1. Agent 1 updates his posterior belief using Bayes’ law based only on his signal s1.

P(! = G|s1) =
(

µq
µq+(1�µ)(1�q) for s1 = g

µ(1�q)
µ(1�q)+(1�µ)q for s1 = b.

Since he receives utility 1 if ! = G and �1 if ! = B, his expected utility to opt in is
P(! = G|s1)� (1� P(! = G|s1)) . On the other hand, his utility to opt out is 0. We observe
that agent 1 is better off opting in if

P(! = G|s1)� (1� P(! = G|s1)) > 0,

which corresponds to
⇢
µq � (1� µ)(1� q) > 0 when s1 = g,
µ(1� q)� (1� µ)q > 0 when s1 = b.

.

Let ↵1 be agent 1’s optimal action in this mechanism. Then the following lemma characterizes ↵1.
Lemma B.1. Under the sequential offering mechanism, agent 1 chooses action

↵1 =

8
<

:

y for µ > q
I{s1 = g} for µ 2 (1� q, q]
n for µ  1� q.

Lemma B.1 shows that the sequential offering mechanism drives the first agent to follow his signal if
it is more informative than the common prior (i.e., when µ 2 (1� q, q]). In the opposite case, where
the prior is more informative (i.e., when either µ > q or µ  1 � q), the agent ignores his private
signal. In particular, for high priors µ > q the object is always allocated to agent 1 regardless of its
true quality !.

Agent 2. When the second agent is offered the object, he knows that the first agent has already opted
out. At the same time, agent 2 is aware of agent 1’s optimal strategy as described in Lemma B.1.
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Therefore, if the prior satisfies µ 2 (1� q, q], then agent 2 infers that agent 1 has followed his own
signal s1 = b. As such, for µ 2 (1 � q, q], agent 2 updates his posterior belief informed by this
observation as follows:

P(! = G|s2,↵1 = n) =

(
µ for µ 2 (1� q, q], s2 = g

µ(1�q)2

µ(1�q)2+(1�µ)q2 for µ 2 (1� q, q], s2 = b.

On the other hand, for µ /2 (1� q, q], it holds that

P(! = G|s2,↵1 = n) =

(
µq

µq+(1�µ)(1�q) for µ /2 (1� q, q], s2 = g
µ(1�q)

µ(1�q)+(1�µ)q for µ /2 (1� q, q], s2 = b,

in which case agent 1’s action is uninformative to agent 2.
Lemma B.2. Under the sequential offering mechanism, agent 2 chooses

7

↵2 =

⇢
I{s2 = g} for µ 2 (1/2, q]
n for µ  1/2.

Proof. Similarly to agent 1, agent 2 prefers to opt in if

P(! = G|s2,↵1 = n)� (1� P(! = G|s2,↵1 = n)) > 0. (3)

For µ 2 (1 � q, q] and s2 = g, Equation (3) holds when µ > 1/2. For µ 2 (1 � q, q] and s2 = b,
Equation (3) corresponds to

µ(1� q)2 � (1� µ)q2 > 0.

However, for any µ 2 (1� q, q] we have

µ(1� q)2 � (1� µ)q2  q(1� q)2 � (1� q)q2 = q(1� q) (1� 2q) < 0,

which makes Equation (3) infeasible.

For µ  1� q, notice that

µ(1� q)� (1� µ)q < µq � (1� µ)(1� q)  0.

Thus Equation (3) is again infeasible regardless of s2.

For µ = 1/2 exactly, by our assumption, he simply rejects the object. Therefore, agent 2 prefers to
opt in if µ 2 (1/2, q] and s2 = g. Otherwise, he prefers to opt out.

Lemma B.2 shows that agent 2 follows his signal if µ > 1/2, whereas he ignores the signal and opts
out if µ  1/2. The characterizations of ↵1 and ↵2 offer implications that will be useful to analyze
the optimal strategies of subsequent agents. First, for µ > 1/2, Lemma B.1 and Lemma B.2 together
suggest that both agent 1 and agent 2 follow their signals. Therefore, the availability of the object
after being offered to agent 2 implies to subsequent agents that both s1 = b and s2 = b. Second, for
µ  1/2, agent 2’s action is uninformative about s2. Agent 1’s action, however, can be informative
depending on the value of µ. If µ 2 (1 � q, 1/2) then the subsequent agents can infer that s1 = b
because agent 1 follows his signal. If µ  1� q, however, agent 1’s action is also uninformative.

Notice here that, whenever agent 1’s or 2’s opt-out action is informative, his private signal (that the
subsequent agents can perfectly infer) is b. We use this implication for our analysis next.

Agent 3. If the object is offered to agent 3, one of the three events must have occurred: (i) µ 2 (1/2, q]
and s1 = s2 = b, or (ii) µ 2 (1� q, 1/2] and s1 = b, or (iii) µ  1� q. Nonetheless, we claim that
in any case, agent 3 would always choose to opt out.
Lemma B.3. Under the sequential offering mechanism, agent 3 always chooses to opt out: ↵3 = n.

7In the sequential offering mechanism, if µ > q then the object is never offered to agent i � 2, because
agent 1 always opts in.
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Proof. Agent 3 will prefer to opt in if

P(! = G|s3,↵1 = ↵2 = n)� (1� P(! = G|s3,↵1 = ↵2 = n)) > 0. (4)

For µ 2 (1/2, q], agent 3’s posterior belief given her signal is

P(! = G|s3,↵1 = ↵2 = n) = P(! = G|s3, s1 = s2 = b)

=

(
µ(1�q)2q

µ(1�q)2q+(1�µ)q2(1�q) for µ 2 (1/2, q], s3 = g
µ(1�q)3

µ(1�q)3+(1�µ)q3 for µ 2 (1/2, q], s3 = b
.

For s3 = g, we have

µ(1� q)2q � (1� µ)q2(1� q) = (1� q)q[µ(1� q)� (1� µ)q]  0.

The proof is analogous for s2 = b. As a result, for µ 2 (1/2, q] agent 3 prefers to opt out regardless
of his own signal.

For µ 2 (1� q, 1/2], agent 3 infers that s1 = b. Agent 3’s posterior belief equals

P(! = G|s3,↵1 = ↵2 = n) = P(! = G|s3, s1 = b)

=

(
µ for µ 2 (1� q, 1/2], s3 = g

µ(1�q)2

µ(1�q)2+(1�µ)q2 for µ 2 (1� q, 1/2], s3 = b.

Then Equation (4) is infeasible because

µ� (1� µ) = 2µ� 1  0.

Finally, for µ  1� q,

P(! = G|s3,↵1 = ↵2 = n) = P(! = G|s3)

=

(
µq

µq+(1�µ)(1�q) for µ  1� q, s3 = g
µ(1�q)

µ(1�q)+(1�µ)q for µ  1� q, s3 = b

where we have

µ(1� q)� (1� µ)q < µq � (1� µ)(1� q) = µ+ q � 1  0,

making Equation (4) infeasible.

Now we extend Lemma B.3 to any remaining agent in the queue. Let ↵i denote the optimal action of
agent i.
Lemma B.4. In the sequential offering mechanism, any agent other than the first two always opts-out.

That is, for any i � 3 :
↵i = n.

Proof. We use mathematical induction on i to prove the statement. For the basis i = 3, we have that
due to Lemma B.3 agent 3 always opts out thus his action is always uninformative to the subsequent
agents. Next, as the inductive step, consider some agent i. Suppose that agent i updates his posterior
belief in some manner such that it is optimal for him to opt out regardless of si. Because this action
is uninformative, the next agent i + 1 must update his posterior belief the same way as agent i.
Therefore, it is also optimal for agent i+ 1 to opt out.

Another way to interpret Lemma B.4 is that if neither agent 1 nor agent 2 opts in, then the object will
be discarded. Using this result along with Lemma B.1 and Lemma B.2 we characterize the outcome
of the sequential offering mechanism (Lemma 1 in Section 3):
Lemma 1. Under VSEQ, the object is allocated if and only if: (i) µ > q, (ii) µ 2 [1/2, q] and either

s1 = g or s2 = g, (iii) µ 2 [1� q, 1/2] and s1 = g. Otherwise, the object is discarded.
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Proof. The proof follows directly from combining Lemmas B.1 to B.4.

Proposition 1. Under the sequential offering mechanism, VSEQ:

(i) At most the two initial agents in the queue determine the allocation outcome: if the first two

agents decline, then the object will be always discarded.

(ii) The correctness equals c(VSEQ) =

8
>>><

>>>:

µ for µ > q

2µq(1� q) + q2 for µ 2 [1/2, q]

q for µ 2 [1� q, 1/2)

1� µ for µ < 1� q.

Proof. Part (i) directly follows from Lemma 1. For part (ii), notice that for µ 2 (1/2, q], the object is
allocated if either s1 = g or s2 = g. Conditional on ! = G, this happens with probability 1�(1�q)2.
The object is discarded if s1 = s2 = b, which happens with q2 conditional on ! = B. Recall that
P(! = G) = µ. Therefore the correctness of the outcome is µ

�
1� (1� q)2

�
+ (1 � µ)q2 =

2µq(1� q) + q2.

For µ 2 (1� q, 1/2] the object is allocated if s1 = g. Conditional on ! = G, the object is allocated
with probability q. The object is discarded when s1 = b and conditional on ! = B this happens with
probability q. Hence the outcome is correct with probability q.

C Proofs for Section 4

C.1 Proofs for Section 4.1

Lemma 2. V{K} is incentive-compatible if and only if (i) µ 2 IK , or equivalently (ii) µ < q and

K(µ)  K  K(µ).

Proof. Proof of (i): Consider a single-batch voting mechanism V{K}. Suppose that agent i chooses
to opt in. Let GK be the probability that the object gets allocated to agent i conditional on the object
quality being good. Similarly, let BK be the probability that the object gets allocated to agent i
conditional on the object quality being bad. Then GK and BK can be computed as

GK =
KX

y=K+1
2

1

y

✓
K � 1

y � 1

◆
qy�1(1� q)K�y

BK =
KX

y=K+1
2

1

y

✓
K � 1

y � 1

◆
qK�y(1� q)y�1.

Given private signal si, his expected utility conditional on each action is

ui(y; si) = P(! = G|si)GK � P(! = B|si = g)BK

ui(n; si) = 0.

Then the mechanism V{K} is incentive-compatible if ui(y; g) � ui(n; g) and ui(y; b)  ui(n; b).
That is, V{K} is incentive-compatible for prior µ if

ui(y; g) � ui(n; g) () P(! = G|si = g)GK � P(! = B|si = g)BK � 0

() P(! = G)P(si = g|! = G)GK

P(si = g)
� P(! = B)P(si = g|! = B)BK

P(si = g)
� 0

() µqGK � (1� µ)(1� q)BK � 0 (5)

and

ui(y; b) � ui(n; b) () P(! = G|si = b)GK � P(! = B|si = b)BK  0

() P(! = G)P(si = b|! = G)GK

P(si = b)
� P(! = B)P(si = b|! = B)BK

P(si = b)
 0

() µ(1� q)GK � (1� µ)qBK  0. (6)
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Given that the left-hand sides of both (5) and (6) monotonically increases with µ, there should be
some thresholds of prior, namely µ

K
2 (0, 1) and µK 2 (0, 1), such that

µqGK � (1� µ)(1� q)BK � 0 8µ � µ
K

µ(1� q)GK � (1� µ)qBK  0 8µ � µK ,

where the thresholds solve the following indifference conditions:
µ
K

1� µ
K

=
1� q

q

BK

GK
(7)

µK

1� µK

=
q

1� q

BK

GK
. (8)

Because q > 1
2 it naturally follows that µ

K
< µK . Therefore, there exists a threshold policy such

that any given V{K} is incentive-compatible for a prior µ that satisfies µ
K

 µ  µK .

Next we fully characterize µ
K

and µK . To do so, we use Lemma D.1 to write

GK =
1

q
· 1

K

KX

y=K+1
2

✓
K

y

◆
qy(1� q)K�y

BK =
1

1� q
· 1

K

K+1
2 �1X

y=0

✓
K

y

◆
qy(1� q)K�y

and therefore
BK

GK
=

q

1� q
·
1� P

�
XK � K+1

2

�

P
�
XK � K+1

2

� (9)

where XK is a binomial(K, q) random variable. Plugging this into (7) and (8) we obtain

µ
K

= 1� P
✓
X � K + 1

2

◆
(10)

µK =
q2
�
1� P

�
X � K+1

2

��

q2
�
1� P

�
X � K+1

2

��
+ (1� q)2P

�
X � K+1

2

� (11)

=
q2µ

K

q2µ
K
+ (1� q)2(1� µ

K
)
.

Letting IK ,
⇣
µ
K
, µK

⌘
concludes the proof.

Proof of (ii): By Lemmas C.1 and C.2 (stated below), the set of K such that µ 2 IK must be
comprised of consecutive odd numbers. Therefore, for any K that satisfies K(µ)  K  K(µ), the
corresponding V{K} must be incentive-compatible.

We show two technical lemmas with regards to IK that were used to prove Lemma 2. In doing so,
we make use of Lemma D.2.
Lemma C.1 (Decreasing IK). IK decreases with K. That is, the endpoints µK and µ

K
both

decrease with K. In particular, µ1 = q and limK!1 µ
K

= 0.

Proof. Recall that the endpoints µ
K

and µK are computed as Equations (10), both of which by
Lemma D.2, decrease with K. To see the second part of the statement, since

P (X1 � 1) = P (X1 = 1) = q

it follows that µ1 = q2(1�q)
q2(1�q)+(1�q)2q = q. Moreover,

lim
K!1

µ
K

= lim
K!1

q2
�
1� P

�
XK � K+1

2

��

q2
�
1� P

�
XK � K+1

2

��
+ (1� q)2P

�
XK � K+1

2

� = 0

where the last equality is due to limK!1 P
�
XK � K+1

2

�
= 1 by Lemma D.2.
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Lemma C.2 (Overlapping IK). For any batch size K � 3, the interval IK intersects with IK�2.
That is,

µ
K

< µ
K�2

< µK < µK�2.

Proof. (Sketch) The first and third inequalities are immediate from Lemma C.1. Showing the second
inequality involves finding appropriate bounds for BK

GK

GK�2

BK�2
. Due to the length of the proof, we defer

this part to Appendix C.4.

Figure 2 illustrates Lemmas C.1 and C.2.
Lemma 3. Suppose µ < q. Then, an incentive-compatible V{K} always exists and achieves correct-

ness c
�
V{K}

�
= P

�
XK � K+1

2

�
, where XK ⇠ Binomial(K, q).

Proof. We first show the existence of incentive-compatible V{K} for any µ < q. Consider some K.
By Lemmas C.1 and C.2,

K[

K=1

IK = (µK, q)

which implies that that no value of prior µ between µK and q is skipped. Using the asymptotic result
from the second part of Lemma C.1,

lim
K!1

K[

K=1

IK =
⇣

lim
K!1

µK, q
⌘
= (0, q).

Therefore for any µ such that µ  q, there exists at least one K such that µ 2 IK .

For the second part, we have

c
�
V{K}

�
= µPV{K}(Z = 1 | ! = G) + (1� µ)PV{K}(Z = 0 | ! = B)

= µP
✓
Y � K + 1

2

���� ! = G

◆
+ (1� µ)P

✓
Y <

K + 1

2

���� ! = B

◆

= P
✓
XK � K + 1

2

◆
.

Proposition 2. Suppose µ < q. Then the batch size K = K(µ) maximizes correctness among all

incentive-compatible V{K}.

Proof. By Lemma 3, c
�
V{K}

�
= P

�
XK � K+1

2

�
, which by Lemma D.2, increases with K.

Lemma 4. K(µ) weakly decreases with µ.

Proof. See the proof of Lemma C.1.

C.2 Proofs for Section 4.2

Lemma 5. A voting mechanism V{⇡j}1
j=1

is incentive-compatible if and only if for any batch j,

current belief µj�1 and batch size Kj , ⇡j (µj�1) , V{Kj} is incentive-compatible.

Proof. Each agent participates in at most one batch. Furthermore, agents in the same batch j share the
same belief µj�1 with the planner. Thus, given the current belief µj�1 and batch size Kj (given the
outcome of batch j � 1), the mechanism V{⇡j}1

j=1
restricted to batch j is equivalent to a single-batch

mechanism V{Kj} with a current belief µj�1. Therefore, by induction, the mechanism V{⇡j}1
j=1

is
incentive-compatible if and only if for each batch j, the single-batch mechanism V{Kj} with belief
µj�1 is incentive-compatible.
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Lemma C.3. For µ � q, there is no incentive-compatible voting mechanism; under any V 2 V,
every agent opts in.

Proof. By Lemma 5, it suffices to consider single-batch voting mechanisms. For any K, Lemma C.1
implies that

µK  max
K

µK = µ1 = q.

Therefore for all µ � q, there exists no K such that µ < µK . For these priors, every agent will
choose (possibly untruthfully) ↵i = y under any voting mechanism, and therefore the mechanism
always allocates the object (and terminates after one batch). In expectation, such an outcome is
correct with probability µ. Notice that the correctness of this outcome is equivalent to that under VSEQ

for µ � q.

Lemma C.4. Suppose that the object is offered to batch j but is not allocated. Then µj < µj�1.

Proof. Object is not allocated to batch j if Yj  Kj�1
2 . Using the posterior update rule in (1),

µj =
µj�1qYj (1� q)Kj�Yj

µj�1qYj (1� q)Kj�Yj + (1� µj�1)qKj�Yj (1� q)Yj

 µj�1(1� q)

µj�1(1� q) + (1� µj�1)q

< µj�1.

Proposition 3. For any µ < q and J, V J
GREEDY has the following properties:

(i) V J
GREEDY is incentive-compatible;

(ii) Ex-post batch sizes satisfy Kj0  Kj for any j0 < j 2 [J ];
(iii) c

�
V J

GREEDY

�
strictly increases with J .

Proof. Part (i) is by Lemma 5.

For part (ii), by Lemma C.4, µj decreases with j. Each batch size Kj is chosen as Kj = K(µj�1),
which, by Lemma 4, weakly increases with j.

For part (iii), consider any integer J and the greedy mechanism V J
GREEDY. Suppose that the object has

not been allocated up to batch J. Then should the planner offer the object to another batch?

On the one hand, the expected correctness conditional on stopping at batch J is
P (! = B | µJ) = 1� µJ .

On the other hand, the expected correctness conditional on offering to an additional batch J+1 is equal
to c

�
V{KJ+1}

�
, which is the correctness of a single-batch voting mechanism where KJ+1 = K(µJ)

is the size of batch J + 1 chosen in a greedy manner. Then by Lemma 3, the expected correctness is

P
✓
XK(µJ )

� K(µJ) + 1

2

◆
.

Consider the interval IK(µJ )
that defines the values of incentive-compatible priors for the single-batch

voting mechanism V{K(µJ )}. In particular, consider the lower endpoint of this interval, µ
K(µJ )

. Then,
because µJ 2 IK(µJ )

by construction, it must be that µJ > µ
K(µJ )

. Furthermore, we can compute

µ
K(µJ )

= 1� P
✓
XK(µJ )

� K(µJ) + 1

2

◆
.

Hence, the expected correctness achieved by an additional batch is

c
⇣
V{K(µJ )}

⌘
= P

✓
XK(µJ )

� K(µJ) + 1

2

◆

= 1� µ
K(µJ )

> 1� µJ .
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Corollary 1. For any µ < q, VGREEDY is an incentive-compatible (multi-batch) voting mechanism

that improves correctness in comparison to the sequential offering mechanism VSEQ.

Proof. Immediate from Theorem 1 and Proposition 3 (part (iii)).

C.3 Proof of Theorem 1

Theorem 1. For any µ < q, there exists a voting mechanism V 2 V that is incentive-compatible and

improves correctness compared to the sequential offering mechanism VSEQ. For µ � q, there is no

incentive-compatible voting mechanism and any V 2 V achieves the same correctness as VSEQ.

Proof. In Proposition 1 we calculate the correctness of VSEQ, which will be used as our benchmark.
We split the proof into three different cases:

• Case I: µ < 1� q, so by Proposition 1,

c(VSEQ) = 1� µ.

By Lemmas 3, there must exist an incentive-compatible single-batch voting mechanism
V{K} such that µ 2 IK . In particular, under such a mechanism,

µ > 1� P
✓
K � K + 1

2

◆
= 1� c

�
V{K}

�
.

Therefore,
c(V{K}) > 1� µ = c(VSEQ).

• Case II: µ 2 [1� q, 1/2).
c(VSEQ) = q,

and more importantly, for these values of prior, VSEQ is equivalent to V{1} that is incentive-
compatible. Therefore, we use the observation (by Lemma 3 and D.2) that the correctness
of an incentive-compatible V{K} increases with K.

Then it is sufficient to show that there exists an incentive-compatible V{K} such that K � 3.
To this end, we show that V{3} is incentive-compatible. The interval I3 computes to

I3 =

✓
(1� q)2(2q + 1),

q

2
+

1

4

◆

where (1� q)2(2q + 1) < 1� q and q
2 + 1

4 > 1
2 . Hence

[1� q, 1/2) ⇢ I3,

implying that V{3} is incentive-compatible for any µ 2 [1� q, 1/2).

• Case III: µ 2 [1/2, q/2 + 1/4], in which case 1
2  µ < q. By Proposition 1,

c(VSEQ) = 2µq(1� q) + q2.

As in Case II,
[1/2, q/2 + 1/4] ⇢ I3,

and therefore V{3} is incentive-compatible, which achieves (by Lemma 3)

c
�
V{3}

�
= q3 + 3q2(1� q) > 2µq(1� q) + q2 = c(VSEQ).

• Case IV: µ 2 (q/2 + 1/4, q).

c(VSEQ) = 2µq(1� q) + q2.

Notice that V{3} is no longer incentive-compatible for these values of µ. Since I1 =
(1 � q, q), V{1} is the only incentive-compatible single-batch voting mechanism, which
however achieves c

�
V{1}

�
= q < c(VSEQ).
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Motivated by Proposition 3 (especially, part (iii)), we turn to voting mechanisms with
multiple batches instead. Consider V 2

GREEDY. Since V{1} is the only incentive-compatible
single-batch voting mechanism, in order for V 2

GREEDY to be incentive-compatible, it must
have K1 = 1. The correctness of this mechanism is then

c(V 2
GREEDY) = EV 2

GREEDY
[I(! = G \ Z = 1) + I(! = B \ Z = 0)]

= P (Y1 = 1 \ ! = G | K1 = 1)

+ P (Y1 = 0 | K1 = 1) max
K2

E
⇥
c(V{K2}) | Y1 = 0,K1 = 0

⇤

= µq + (µ(1� q) + (1� µ)q) E

c(V{K(µ1)}) | µ1 =

µ(1� q)

µ(1� q) + (1� µ)q

�
.

Here, in the event where the object is not allocated to the first batch (i.e., Y1 = 0),

µ1 2
 � q

2 + 1
4

�
(1� q)� q

2 + 1
4

�
(1� q) +

�
1� q

2 � 1
4

�
q
,
1

2

!

each of which is achieved by plugging in µ = q
2 + 1

4 and µ = q respectively. In particular,
observe that

µ1 <
1

2
<

q

2
+

1

4
= µ3,

where µ3 denotes the upper endpoint of the interval I3. This in turn implies

K(µ1) � K(µ3) = 3

where the inequality is by Lemma 4. Therefore,

E

c(V{K(µ1)}) | µ1 =

µ(1� q)

µ(1� q) + (1� µ)q

�
� c(V{3}) = q3 + 3q2(1� q).

Using this observation,

c(V 2
GREEDY) � µq + (µ(1� q) + (1� µ)q)

�
q3 + 3q2(1� q)

�

and more importantly,

c(V 2
GREEDY)� c(V 2

SEQ) � µq + (µ(1� q) + (1� µ)q)
�
q3 + 3q2(1� q)

�
� 2µq(1� q)� q2.

The partial derivative (with respect to µ) of the inequality’s right-hand side is negative.
Therefore, plugging in µ = q yields

c(V 2
GREEDY)� c(V 2

SEQ) > q2 + 2q(1� q)
�
q3 + 3q2(1� q)

�
� 2q2(1� q)� q2

where the right-hand side term is always positive for any q 2 (0.5, 1). As a result,

c(V 2
GREEDY) > c(VSEQ).

Notice in Cases II and III, we use V{3} as a sufficient condition. However, one can always
further improve correctness by using either the optimal V 1

GREEDY for the given prior or any
other V J

GREEDY (including VGREEDY implemented as Algorithm 1) with more batches.

Finally, the proof of the second statement is given in Lemma C.3.

C.4 Remaining Proof of Lemma C.2

Lemma C.2 (Overlapping IK). For any batch size K � 3, the interval IK intersects with IK�2.
That is,

µ
K

< µ
K�2

< µK < µK�2.
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Proof. First and third inequalities are immediate from Lemma C.1. Hence our focus is to show that
for any K � 3,

µ
K�2

 µK .

By the indifference conditions (7) and (8), we can instead show 1�q
q

BK�2

GK�2
< q

1�q
BK
GK

, or equivalently

✓
1� q

q

◆2

<
BK

GK

GK�2

BK�2
,

where GK (respectively, BK ) are defined in Section 4.1 as the probability that the object gets allocated
to some agent in the batch of size K conditional on the true quality of the object being good
(respectively, bad). We show the last inequality in three steps. Each step involves finding a tighter
lower bound for BK

GK

GK�2

BK�2
than the previous step.

First of all, we bound BK
GK

GK�2

BK�2
using a function of binomial distributions.

Recall the indifference conditions (7) and (8):

µ
K

1� µ
K

=
1� q

q

BK

GK
,

µK

1� µK

=
q

1� q

BK

GK
.

Rearranging the terms yields

BK

GK
=

µ
K

1� µ
K

q

1� q
=

1� P
�
XK � K+1

2

�

P
�
XK � K+1

2

� q

1� q

GK�2

BK�2
=

1� µ
K�2

µ
K�2

1� q

q
=

P
�
XK�2 � K+1

2 � 2
�

1� P
�
XK�2 � K+1

2 � 2
� 1� q

q
.

Therefore,

BK

GK

GK�2

BK�2
=

1� P
�
X � K+1

2

�

P
�
X � K+1

2

�
P
�
XK�2 � K+1

2 � 2
�

1� P
�
XK�2 � K+1

2 � 2
�

=

PK+1
2 �1

y=0

�K
y

�
qy(1� q)K�y

PK+1
2 �1

y=0

�K
y

�
(1� q)yqK�y

PK+1
2 �2

y=0

�K�2
y

�
(1� q)yqK�2�y

PK+1
2 �2

y=0

�K�2
y

�
qy(1� q)K�2�y

.

Observe that the last expression can be written as
0

B@

PK+1
2 �2

y=0

�
K
y

�
qy(1� q)K�y +

� K
K+1

2 �1

�
q

K+1
2 �1(1� q)

K+1
2

PK+1
2 �2

y=0

�
K
y

�
(1� q)yqK�y +

� K
K+1

2 �1

�
(1� q)

K+1
2 �1q

K+1
2

1

CA

0

@
PK+1

2 �2
y=0

�
K�2
y

�
(1� q)yqK�2�y

PK+1
2 �2

y=0

�
K�2
y

�
qy(1� q)K�2�y

1

A

which is lower bounded by (by Lemma D.4)

PK+1
2 �2

y=0

�K
y

�
qy(1� q)K�y

PK+1
2 �2

y=0

�K
y

�
(1� q)yqK�y

PK+1
2 �2

y=0

�K�2
y

�
(1� q)yqK�2�y

PK+1
2 �2

y=0

�K�2
y

�
qy(1� q)K�2�y

.

Hence

BK

GK
>

PK+1
2 �2

y=0

�K
y

�
qy(1� q)K�y

PK+1
2 �2

y=0

�K
y

�
(1� q)yqK�y

PK+1
2 �2

y=0

�K�2
y

�
(1� q)yqK�2�y

PK+1
2 �2

y=0

�K�2
y

�
qy(1� q)K�2�y

. (12)

23



The second step involves rearranging the lower bound in (12) found in the previous step. We introduce
the following notations.

⌘q ,
K+1

2 �2X

y=0

✓
K

y

◆
qy(1� q)K�y

✓
K � 2

y

◆
(1� q)yqK�2�y

⌘1�q ,
K+1

2 �2X

y=0

✓
K

y

◆
(1� q)yqK�y

✓
K � 2

y

◆
qy(1� q)K�2�y

 q ,
K+1

2 �2X

y=0

K+1
2 �2X

z=y+1

"✓
K

y

◆
qy(1� q)K�y

✓
K � 2

z

◆
(1� q)zqK�2�z

+

✓
K

z

◆
qz(1� q)K�z

✓
K � 2

y

◆
(1� q)yqK�2�y

#

 1�q ,
K+1

2 �2X

y=0

K+1
2 �2X

z=y+1

"✓
K

y

◆
(1� q)yqK�y

✓
K � 2

z

◆
qz(1� q)K�2�z

+

✓
K

z

◆
(1� q)zqK�z

✓
K � 2

y

◆
qy(1� q)K�2�y

#
.

Then the right-hand side term of (12) is equal to ⌘q+ q

⌘1�q+ 1�q
, and thus

BK

GK

GK�2

BK�2
=

⌘q +  q

⌘1�q +  1�q
.

Since ⌘q +  q and ⌘1�q +  1�q are series of the same length K2�1
8

⇣
=

(K+1
2 �1)K+1

2
2

⌘
, we use

Lemma D.3 twice to find the following lower bound.

⌘q +  q

⌘1�q +  1�q
� min

⇢
⌘q
⌘1�q

,
 q

 1�q

�

� min

(
min

y2{0,...,K+1
2 �2}

�K
y

��K�2
y

�
qK�2(1� q)K

�K
y

��K�2
y

�
(1� q)K�2qK

,

min
(y,z)|y2{0,...,K+1

2 �2},
z2{y+1,...,K+1

2 �2}

�K
y

��K�2
z

�
qK�2+y�z(1� q)K�y+z +

�K
z

��K�2
y

�
qK�2�y+z(1� q)K+y�z

�K
y

��K�2
z

�
(1� q)K�2+y�zqK�y+z +

�K
z

��K�2
y

�
(1� q)K�2�y+zqK+y�z

)

where both inequalities follow by Lemma D.3.

The final step involves finding the lower bounds of these terms. For any y we have

�K
y

��K�2
y

�
qK�2(1� q)K

�K
y

��K�2
y

�
(1� q)K�2qK

=

✓
1� q

q

◆2

and thus

min
y2{0,...,K+1

2 �2}

�K
y

��K�2
y

�
qK�2(1� q)K

�K
y

��K�2
y

�
(1� q)K�2qK

=

✓
1� q

q

◆2

.
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Similarly for any y 2 {0, . . . , K+1
2 � 2}, z 2 {y + 1, . . . , K+1

2 � 2},
�K
y

��K�2
z

�
qK�2+y�z(1� q)K�y+z +

�K
z

��K�2
y

�
qK�2�y+z(1� q)K+y�z

�K
y

��K�2
z

�
(1� q)K�2+y�zqK�y+z +

�K
z

��K�2
y

�
(1� q)K�2�y+zqK+y�z

=
qK�2+y�z(1� q)K+y�z

h�K
y

��K�2
z

�
(1� q)2(z�y) +

�K
z

��K�2
y

�
q2(z�y)

i

(1� q)K�2+y�zqK+y�z
h�K

y

��K�2
z

�
q2(z�y) +

�K
z

��K�2
y

�
(1� q)2(z�y)

i

=

✓
1� q

q

◆2
�K
y

��K�2
z

�
(1� q)2(z�y) +

�K
z

��K�2
y

�
q2(z�y)

�K
y

��K�2
z

�
q2(z�y) +

�K
z

��K�2
y

�
(1� q)2(z�y)

>

✓
1� q

q

◆2

To show the last inequality above, because z > y and q > 1� q, it is sufficient to show that
✓
K

z

◆✓
K � 2

y

◆
>

✓
K

y

◆✓
K � 2

z

◆
. (13)

Observe that ✓
K

z

◆✓
K � 2

y

◆
=

K!

z!(K � z)!

(K � 2)!

y!(K � y � 2)!
✓
K

y

◆✓
K � 2

z

◆
=

K!

y!(K � y)!

(K � 2)!

z!(K � z � 2)!
.

Then (13) holds since
1

(K � z)!(K � y � 2)!
>

1

(K � y)!(K � z � 2)!

because

(K � y � 1)(K � y) =
(K � y)!

(K � y � 2)!
>

(K � z)!

(K � z � 2)!
= (K � z � 1)(K � z).

Therefore this concludes the proof of Lemma C.2:

BK

GK

GK�2

BK�2
>

⌘q +  q

⌘1�q +  1�q
>

✓
1� q

q

◆2

where the first lower bound was achieved via the first step, and the final tighter lower bound was
achieved via the second and third steps.

D Technical Properties

Lemma D.1. 1
y

�K�1
y�1

�
= 1

K

�K
y

�
.

Proof.

1

y

✓
K � 1

y � 1

◆
=

1

y

(K � 1)!

(y � 1)!(K � y)!

=
(K � 1)!

y!(K � y)!

=
1

K

K!

y!(K � y)!

=
1

K

✓
K

y

◆
.
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Lemma D.2. For any q 2 (0.5, 1) and odd K 2 N, let XK be a Binomial(K, q) random variable.

P
✓
XK+2 � (K + 2) + 1

2

◆
> P

✓
XK � K + 1

2

◆

and as K grows

lim
K!1

P
✓
XK � K + 1

2

◆
= 1.

Proof. To show the first part, we use the following property of the binomial distribution

P
✓
XK+1 � K + 1

2
+ 1

◆
= P

✓
XK � K + 1

2
+ 1

◆
+ qP

✓
XK � K + 1

2

◆
.

Then in follows that

P
✓
XK+2 � (K + 2) + 1

2

◆
= P

✓
XK+1 � K + 1

2
+ 1

◆
+ qP

✓
XK+1 � K + 1

2

◆

=P
✓
XK � K + 1

2
+ 1

◆
+ qP

✓
XK � K + 1

2

◆

+ q


P
✓
XK � K + 1

2

◆
+ qP

✓
XK � K + 1

2
� 1

◆�

= 2qP
✓
XK � K + 1

2

◆
+ P

✓
XK � K + 1

2
+ 1

◆
+ q2P

✓
XK � K + 1

2
� 1

◆

>P
✓
XK � K + 1

2

◆
+ P

✓
XK � K + 1

2
+ 1

◆
+ q2P

✓
XK � K + 1

2
� 1

◆

and we obtain the desired inequality

P
✓
XK+2 � (K + 2) + 1

2

◆
> P

✓
XK � K + 1

2

◆
.

To show the second part of the property, note that by the Weak Law of Large Numbers, for any ✏ > 0

lim
K!1

P (|XK/K � q| < ✏) = 1,

and because q �XK/K  |XK/K � q|,
1 = lim

K!1
P (|XK/K � q| < ✏)  lim

K!1
P (q �XK/K < ✏) .

Since P (q �XK/K < ✏)  1 it follows that

lim
K!1

P (q � ✏ < XK/K) = 1. (14)

Because q > 1/2, there exists some ✏ > 0 such that q � ✏ = 1
2 and that satisfies Equation (14):

1 = lim
K!1

P
✓
1

2
<

XK

K

◆
= lim

K!1
P
✓
XK >

K

2

◆
= lim

K!1
P
✓
XK � K + 1

2

◆
.

Lemma D.3. For any n and non-negative sequences {ai}ni=0 and {bi}ni=0,

min
i

ai
bi


Pn

i=0 aiPn
i=0 bi

.

Proof. Let rmin , mini
ai
bi
. Then for any i, ai

bi
� rmin, or equivalently

ai � rmin bi.

Hence, Pn
i=0 aiPn
i=0 bi

�
Pn

i=0 rminbiPn
i=0 bi

= rmin.
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Lemma D.4. For any K � 3,
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�K
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� K
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2 �1

�
q
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y
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Proof. It is equivalent to show that
 

K
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2 � 1

!
q

K+1
2 �1(1� q)
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2 �2X
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!
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!
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y=0

 
K
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!
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which reduces to

(1� q)

K+1
2 �2X

y=0

✓
K

y

◆
(1� q)yqK�y > q

K+1
2 �2X

y=0
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K

y

◆
qy(1� q)K�y

and equivalently
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PK+1
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y=0
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>
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.

The last inequality holds because by Lemma D.3,
PK+1
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�K
y
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y=0
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y
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