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Figure 3: Architecture of our policy network, dual-aspect collaborative Transformer (DACT).

3 Problem formulation

We define a VRP instance as a group of N nodes to visit, where the node feature xi of node i contains
2-dim coordinates and other problem-specific features (e.g., customer demand). A solution δ consists
of a sequence of nodes visited in order where we denote pi to be the position (indices) of node i in
the solution which is deemed as the positional feature of node i. The objective is to minimize the
total travel distance D(δ) under certain problem-specific constraints.
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Figure 2: Illustration examples of three pairwise
operators for routing problems when node pair
(i = 2, j = 1) is specified for operating. From
left to right: 2-opt, insert, and swap.

Starting with an initial yet complete solution, our
neural RL policy tries to improve the solution it-
eratively. At each step, the policy automatically
selects a pair of nodes and locally adjusts the solu-
tion using a preset pairwise operator such as 2-opt,
insert, or swap. As illustrated in Figure 2, given a
node pair (i, j), the 2-opt operator adjusts a solu-
tion by reversing the segment between node i and
node j; the insert operator adjusts a solution by
placing node i after node j; and the swap operator
adjusts a solution by exchanging the position of node i and node j. Such operation is repeated until
reaching the step limit T and we model it in the form of Markov Decision Process (MDP) as follows.

State. For an instance withN nodes, a state describes current solution δt using its node and positional
features of each node, i.e., st = Ψ(δt) = {xt1, ..., xtN , pt1, ..., ptN}.
Action. The action at = (i, j) specifies a node pair (i,j) for the pairwise operator.
Reward. The reward function is defined as, rt =D(δ*

t )−min
[
D(δt+1), D(δ*

t )
]

where δ*
t is the

best incumbent solution found until time t. It refers to the immediate reduced cost at each step
with respects to the best incumbent solution, which ensures the cumulative reward equal to the total
reduced cost over the initial solution. Hence the reward rt>0 if and only if a better solution is found.
Policy. The policy πθ is parameterized by the proposed DACT model with parameters θ. At each time
step, the action (i, j) is obtained by sampling the stochastic policy for both training and inference.
Transition. The next state st+1 is originated from st by performing the preset pairwise operator on
the given node pair (action). Our state transient is deterministic, in the sense that it always accepts the
next solution as the next state (infeasible solutions will be masked), regardless of its objective value.
With such simple rule, the RL agent is expected to automatically learn how to combine multiple steps
of simple local movements to achieve better solutions, even if some of them may worsen the current
solution. Note that the step limit T can be any user-specified value according to the allowed time
budget. Hence, our MDP can have infinite horizon and we consider the reward discount factor γ<1.

4 Dual-aspect collaborative Transformer model

We now present the details of our Dual-Aspect Collaborative Transformer (DACT). The concrete
architecture of DACT is presented in Figure 3, where we take the TSP with N nodes as an illustration
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https://github.com/yining043/VRP-DACT
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